

Design and IDesign and IDesign and IDesign and Implementation of a mplementation of a mplementation of a mplementation of a CCCComponentomponentomponentomponent----based based based based

CCCConcurrency oncurrency oncurrency oncurrency CCCControl ontrol ontrol ontrol MMMMechanismechanismechanismechanism for a for a for a for a DDDDistributed istributed istributed istributed DDDDatabaseatabaseatabaseatabase

Maximiliano Canché1, Juan Lavariega2 and Erika Llanes3

 1 Faculty of Mathematics, Autonomous University of Yucatan

Tizimín, Yucatán, México

2 Department of Computer Science, Monterrey Technological Institute

Monterrey, Nuevo León, México

3 Faculty of Mathematics, Autonomous University of Yucatan

Tizimín, Yucatán, México

Abstract
Currently, component-based systems offer substantial benefits

due to their ability to divide responsibilities. Some of the main

benefits of developing components as independent parts of a

system are: reduced costs, reduced implementation effort and

the addition or replacement of modular functions. Moreover,

since there is no well-defined architecture for distributed

database systems, commercial companies apply the concept of

distribution differently. One option for getting the functionality

of a Distributed Database Management System is extending a

monolithic Database Management System of fragmented way,

i.e. adding or replacing functions in a modular form. In this

paper, we design and develop a concurrency control component

in order to synchronize access to data in a distributed database

and describe the advantages of implementing it as an extension

of a monolithic Database Management System. The component

is developed with Open Source tools because these elements

allow developers to further improve these elements with relative

ease.

Keywords: Software Components, Component-based,

Distributed Database, Concurrency Control.

1. Introduction

The complexity and resource requirements of today’s

software systems create the need for flexibility,

adaptability, and ease of composition or reuse.

Component-based software development can be

considered as an evolutionary step beyond object-oriented

development in achieving these goals [1]. This can reduce

build time, because instead of developing a complete

system we can adapt an existing one to our needs by

adding the required functionality. With this approach, it is

possible to modify the behavior of a system by adding,

removing or exchanging components.

One technology that helps us in building component-

based applications facilitating adaptability and

independence are Open Source Systems [2]. With these

tools it is possible to integrate devices from various

sources on a system and obtain a rapid adoption of the

new technology thanks to the existing competition.

Furthermore, the costs of open technologies are

considerably lower compared to proprietary technologies.

Distributed data processing is a need that nowadays many

organizations try to satisfy. In a Distributed Database

(DDB) [3] transactions are executed which should be

coordinated by Database Management Systems (DBMS's),

particularly by the transaction manager, in order to

maintain desirable properties for the effective operation of

your organization.

Concurrent access in transactions is essential because of

the nature of the information and of the multiple users

that wish to access it at the same time. When this occurs it

is necessary for the DBMS to ensure transactions

serialization, i.e. the result should be the same as if they

were running sequentially in a specific order.

Concurrency control becomes more relevant when the

database operates in a distributed environment. This

requires a distributed synchronization algorithm which

must ensure that concurrent transactions are not only

serialized at the point where they are running, but also

serialized globally (implying that the order in which they

are executed at each point should be identical). The

Concurrency Control mechanisms must maintain both the

consistency and isolation properties of transactions, hence

the importance of concurrency control as a key component

of these [3].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 68

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

A desirable feature for the architectures of the DBMS's is

the possibility of defining them in fragments (components)

such that new components can be added or existing

components can be exchanged in a flexible manner [9].

With this approach it is possible to adapt distributed

functions to the behavior of a DBMS.

The aim of this paper is to provide a framework which

provides extensibility to a monolithic DBMS creating a

concurrency control mechanism based on prefabricated

software components in order to obtain the necessary

functionality to synchronize access to the elements of a

Distributed Database and maintain the consistency thereof.

This mechanism runs with the primary support of Open

Source Systems (being built and adapted using public

domain tools), to guide the evolution of DDB in such

systems.

2. Methodology

We took as a base the architecture of Concurrency Control

for multiuser applications described in [5]. This

architecture allows the integration of concurrency control

in different environments, based on the concept of systems

building with independent prefabricated parts.

Additionally we considered the classification of

mechanisms defined in [3]. Next we adapted the

architecture to a distributed environment to design and

develop the Concurrency Control component using the

strict two-phase locking technique (2PL strict) [4], and

finally we conducted tests and analysis of its performance

in an Open Source environment.

3. Design of the component

3.1 Component-based distributed architecture

A component architecture is a description of a system in

form of a collection of components that interact with each

other through connectors, these are structural

relationships and behavioral dependencies. In other words,

the architecture defines a standard for the composition of

components into a system in terms of what makes a

component, how are interfaces described and how do

components interact and communicate [1]. In this paper

we define a four-layer, component-based architecture for

the interaction of components in a distributed

environment, which is shown in Figure 1.

In the top layer of the architecture we considered the

execution of user applications which request transaction

operations. For the next layer we defined the operating

environment of the Distributed Transaction Manager

called TransactionManager, which interacts with the

locking component denominated LockManager -an

essential part of this work- and the Global Database

(GlobalDB) which maintain the lock units. Atomic units

to be held in transactions are identified and planned by

TransactionManager. In the third layer are the agents [6]

of various local sites found in the Distributed database,

which are actually component processes running and

waiting for requests. Finally, in the fourth layer we have

the Database Management Systems (DBMS) at their

respective points accessing their local data.

Fig. 1. Architecture and distributed environment of components

3.2 Components of concurrency control and its

functions

In the described distributed architecture, the component

LockManager performs the basic concurrency control

functions. It is responsible for maintaining the locks in a

database and is designed to be easy to use and to extend to

other features of a DBMS. This component provides the

following services to a transaction manager:

• Receiving data lock requests with three levels of

granularity: field, record, and table levels.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 69

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

• Granting (or denying when necessary) lock

requests based on verification of conflicts for its

decision. If the application is for a lock on a data

such that there is no conflict on this lock, the

lock is granted, otherwise it is denied.

• Receiving requests for the release of a particular

lock given its lock number, which is unique.

• Receiving requests for the reléase of all locks of a

transaction.

• Keeping the transactions synchronized in order

to provide them with serialization.

To provide these services the Concurrency Control

component is based on the following set of elements:

• LockObject: A component that serves as a

common language between LockManager and

the transaction manager. It contains items to be

blocked and a unique ID for each.

• Restriction: A component used by LockObject

and LockManager. It maintains a structure that

stores the restrictions (conditions) of a lock

object.

• Dblock: A database consisting of two basic

relationships: the relationship of locks and the

relationship of constraints.

LockManager DBLock

LockObject

Restriction

accede a

1

1

1..*

1

1..*

1..*

1..*

utiliza

utiliza

describe

1

Fig. 2. Interaction of the component’s elements

3.3 Functionality

Transactions must be received by a transaction manager

which will create a list of objects related to lock and send

it to LockManager through a request to the respective

locking. The requests made by the transaction manager to

obtain a lock are concurrent processes (independent of

each other), which will be competing for LockManager.

Hence the need to maintain synchronization of

LockManager in requests. This is shown in Figure 3.

Additionally, each site must have an agent which is an

application server to run requests of the transaction

manager. Each agent is a process that interacts with the

DBMS of the local site for the purposes of transactions in

the distributed database.

LockManager

RequestLock (X);
removeLock(X);
return idLock;

T1

T2

Tn

RequestLock(T1,x)

RequestLock (T2,y)

...

RequestLock (Tn,z)

Fig. 3. Transactions competing for LockManager

4. Implementation and testing

The component implementation was done in Java

Language. Java is a precompiled language that provides

ease of use of tools such as database access, extensive

libraries of data structures, methods of remote invocation

and object access synchronization [7]. Java provides

mechanisms to synchronize access to methods when they

are accessed concurrently. Java associates a lock with

each object that has synchronized code when it is accessed

and releases it when the object is left. This is done

automatically and atomically by Java runtime system,

which frees the developer from the task of implementing

locking mechanisms to methods [8]. The greatest strength

of Java is its mobility in different environments. The logic

implemented in Java can be moved from site to site in a

distributed system using both hardware and heterogeneous

operating systems. Achieving this in a consistent manner

is a goal of components implemented in Java, hence the

choice of this language for the implementation of this

concurrency control component.

We used the MySQL DBMS [10] at each point and the

Linux Operating System as a development environment.

We also used the Windows XP Operating System for

client applications and for testing the multiplatform link

with remote method invocations between the two

operating systems.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 70

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

We performed a funds transfer application as a test

scenario. A database was distributed at two points of the

network and the fragmentation criteria were the

following:

• Site 1: Records with [No_Cuenta <50]

• Site 2: Records with [No_Cuenta> = 50]

We developed a prototype for the transaction manager

(TransactionManager) which received requests from

customers. This was in charge of building the lock objects

of LockManager (the main component of this work).

The client interface was performed using the package

javax.swing for the access to TransactionManager. The

interface receives data for two pairs of accounts (Source,

and Destination) and the amounts to be transferred

between accounts. Both the application interface and the

source code for the creation of a lock object in

LockManager are shown in Figures 4 and 5 respectively.

Fig. 4. Account Transfer Application

LockObject lockObject = new

LockObject(idTransaction, lockType, globalTable,

restrictions);

int idLock;

int notLocking = 0;

do {

 idLock = LM.requestLock (lockObject);

//Critical section of LockManager

 if (idLock == 0) {

 try {

 Thread.sleep(150);

 notLocking++;

 }

 catch (Exception e) {

 System.out.println(e.getMessage());

 }

 }

 } while (idLock == 0 && notLocking <5);

Figure 5. Code of the lock object creation in LockManager

5. Conclusions and future work

In this paper, we present a study which aims to continue

applying the approach of massive exploitation of Open

Source resources in developing configurable and

adaptable components to different DBMS's. The main

advantages of this development approach are:

• Applications can be easily adapted to changing

components (for example diverse DBMS’s).

• The use of these kinds of components provides

desirable characteristics in systems such as

scalability, reuse, and encapsulation.

We consider that the use of a scheme like the one used in

this paper facilitates the construction of software and

system extensibility with less cost and effort reducing the

possibility of errors in applications.

Based on the experience gained in the development of this

work we have considered future work on the extension of

the Lock Manager to a physically distributed Lock

Manager. Since the component is administered only on a

centralized server, we will have problems if the server

fails. A key area of research is the extension of

functionality to a physically distributed environment.

Acknowledgments

The authors would like to acknowledge Autonomous

University of Yucatan for providing the facilities to finish

this work.

References

[1] C. Atkinson and C. Bunse, Component-Based Software

Development for Embedded Systems, Springer, 2005.

[2] Open Source Initiative, http://opensource.org/, (accessed

August 12, 2012).

[3] M.T. Ozsu and Patrick Valduriez. Principles of Distributed

Database Systems, Springer, 2011.

[4] T. Sultan, H. El-Bakry and H. A. Hameed, Design of

Efficient Dynamic Replica Control Algorithm for

Periodic/Aperiodic Transactions in Distributed Real-Time

Databases, IJCSI International Journal of Computer Science

Issues, Vol. 9, Issue 1, No 2, January 2012.

[5] G. Heineman, An Architecture for Integrating Concurrency

Control into Environment Frameworks, 17th International

Conference on Software Engineering, Seattle, WA, 1995.

[6] S. Ceri and G. Pelagatti, Distributed Databases, Principles &

Systems, Mc. Graw Hill, 1985.

[7] Y. Bai, Practical Database Programming with Java. Wiley-

IEEE Press, 2011.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 71

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[8] B. Goetz and T. Peierls, Java Concurrency in Practice,

Addison-Wesley Professional, 2006.

[9] K. Dittrich and A. Geppert, Component Database Systems,

The Morgan Kaufmann Publishers, 2000.

[10] R. Bradford, Effective MySQL Optimizing SQL Statements

(Oracle Press), McGraw-Hill Osborne Media, 2011.

Maximiliano Canché-Euán obtained his degree in Computer
Science from the Autonomous University of Yucatan, Mexico, in
2000 and his M. Sc. Degree in Information Technology from
Monterrey Technological Institute (ITESM) in 2002. He is a
professor of Computer Science at the Faculty of Mathematics at the
Autonomous University of Yucatan. Currently he is giving courses
on programming of mobile devices, databases and computer
animation in professional programs at the UADY. His research lines
are: Animation, Networks, Programming and Databases.

Juan Carlos Lavariega-Jarquín obtained his Bachelor degree and
his M.Sc. degree in Computer Science from Monterrey
Technological Institute (ITESM) in 1987 and 1990 respectively. He
obtained his phD degree in Computer Science from Arizona State
University in 1999. Currently he is a full-time lecturer at Monterrey
Technological Institute, Campus Monterrey. He is a member of the
IEEE Computer Society. His specialization areas are Database
Systems, Software Engineering and Operating Systems.

Erika Rossana Llanes-Castro received her degree in Computer
Science from the Autonomous University of Yucatan (UADY) in
2002 and her M. Sc.Degree in Computer Science from Monterrey
Technological Institute (ITESM), Campus Estado de Mexico in
2011. Currently, she is a full time academic technician at the
Autonomous University of Yucatan since 2002 in the department of
Computer Science in Tizimín México. She has participated in
software engineering development projects. Currently is giving
courses on programming mobile devices in the professional
programs at the UADY.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 72

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

