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Abstract : 

The aim of this work is to present the survey of the 
computational mathematics method called Optimal Derivative 
interoduced by Arino-Benouaz( 1995, 1996, 2000) and 
develloped by Bohner_Benouaz (2007, 2009, 2011) using in the 
modelling of the nonlinear physicals systems. 
Keywords: Optimal derivative , Computational procedure, 
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1. Introduction 

        The study of differential equations is a mathematical 
field that has historically been the subject of much 
research, however, continues to remain relevant, by the 
fact that it is of particular interest in such disciplines as 
engineering, physical sciences and more recently biology 
and electronics, in which many models lead to equations 
of the same type. Most of these equations are generally 
nonlinear in nature. The term “nonlinear” gathers 
extremely diverse systems with little in common in their 
behavior. It follows that there is not, so far, a theory of 
nonlinear equations. A large class of these nonlinear 
problems is modelled by nonlinear ordinary differential 
equations. Linearization methods play an important role in 
the analysis of ordinary differential equations. A classical 
linear approximation is obtained by the Frechet derivative 
of a nonlinear equation. 
 
        Most analytical methods for obtaining approximate 
solutions to nonlinear ordinary differential equations 
require that the nonlinearities be suffciently differentiable 
in order to determine higher-order approximations. Such 
methods include perturbation techniques [1,4], standard 
and modified Linsted Poincare procedures [5,7], 
Adomian’s decomposition method [8,10], the homotopy 
analysis technique [11,12], the homotopy perturbation 
method [7] which is a special case of the homotopy 
analysis technique and is obtained from the latter by 
setting the parameter that is used to increase the 
convergence radius to one (the homotopy perturbation 
method also corresponds to the differential form of 
Adomian’s decomposition method), artificial parameter 

techniques [7,17,22], iterative linearized and quasi 
linearized  harmonic balance methods [23,26], etc.   
In fact, a careful study of the above techniques indicates 
that  they require that the nonlinearities be analytic 
functions of the dependent variables and their derivatives 
with respect to the independent variable. When this is not 
the case, e.g., when there are fractional-power 
nonlinearities, one may provide some higher-order 
approximations by introducing generalized functions 
[27,32] or the theory of distributions [33] and employing 
weak convergence [34]. However, even when generalized 
functions are used, one frequently has to deal with the 
presence of monopoles, dipoles, quadrupoles, etc., which 
correspond to the Dirac delta function and its first and 
second-order derivatives, etc., respectively, whose Fourier 
series do not converge point-wise. 
 
        The study of stability of the equilibrium point of a 
nonlinear ordinary differential equation is an almost trivial 
problem if the function F which defines the nonlinear 
equation is suffciently regular in the neighborhood of this 
point and if its linearization in this point is hyperbolic. In 
this case, we know that the nonlinear equation is 
equivalent to the linearized equation, in the sense that 
there exists a local diffeomorphism which transforms the 
neighboring trajectories of the equilibrium point to those 
neighbors of zero of the linear equation. On the other 
hand, the problem is all other when the nonlinear function 
is nonregular or the equilibrium point is the center. 
 
        Consider the nonregular case. Imagine the case when 
the only equilibrium point is nonregular. In this case, we 
cannot derive the nonlinear function and consequently we 
cannot study the linearized equation. A natural question 
arises then: Is it possible to associate another linear 
equation to the nonlinear equation which has the same 
asymptotic behavior ? 
 
        The idea proposed by Benouaz and Arino is based on 
the method of approximation. In [39, 40], the authors 
introduced the optimal derivative, which is in fact a global 
approximation as opposed to the nonlinear perturbation of 
a linear equation, having a distinguished behavior with 
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respect to the classical linear approximation in the 
neighborhood of the stationary point. This technique 
presented in the paper do not require the derivatives of the 
nonlinearities (neither do they require the presence of 
small parameters in the ordinary differential equations) 
and are, therefore, applicable to nonlinear oscillators with 
non-smooth nonlinearities. 
 
        The aim of this paper is to present several examples 
using  the optimal derivative. After a brief review of the 
optimal derivative procedure in the second section, the 
third section is devoted to the study of the relationship 
between the optimal derivative and Frechet derivative in 
the equilibrium point in the scalar and vectorial case. In 
the fourth section , we prove for a class of functions that 
the optimal derivative can be computed even though the 
classical linearization in 0 does not exist. In the last 
section, we present two applications  in relation with the 
problem in Electronic and mecanical  systems , the study 
shows, in particular, the influence of the choice of initial 
conditions. A comparizon with the classical linearization 

2. The Optimal Derivative 

2.1. The Method 

Consider a nonlinear ordinary differential problem of the 
form: 

( ) ( ) 00, xxxF
dt

dx ==                                         (1) 

Where 

 x = (x1,...,xn) is the unknown function, 
 F = (f1,....,fn) is a given function on an open 

subset Ω ⊂ Rn, 

with the assumptions 

(H1) F(0) = 0, 

(H2) the spectrum ( )( )xDFσ  is contained in the set {z: Rez 

< 0} for every 0≠x  in a neighborhood of 0, for 

which DF(x) exists. 

(H3) F is γ Lipschitz continuous. 

Consider nIRx ∈0  and the solution x of the nonlinear 

equation starting at x0. With all linear ݔ଴			 ∈  , (௡ܴ)ܮ)ܣ		
we associate the solution y of the problem 

( ) ( ) ,0, 0yytyA
dt

dy ==  

and we try to minimize the functional 

( ) ( )( ) ( ) dttyAtyFAG 
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                            (2) 

along a solution y. We obtain 
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Precisely, the procedure is defined by the following 
scheme: Given x0, we choose a first linear map. For 
example, if F is differentiable in x0, then we can take A0 = 
DF(x0) or the derivative value in a point in the vicinity of 
x0. This is always possible if F is locally Lipschitz. If A0 is 
an asymptotically stable map, then the solution starting 
from x0 of the problem. 

( ) ( ) ,0, 00 yytyA
dt

dy ==  

tends to 0 exponentially. We can evaluate G(A) using 
criteria and we minimize G for all matrices A. If F is 
linear, then the minimum is reached for the value A = F 
(and we have A0 = F). Generally, we can always minimize 
G, and the matrix which gives the minimum is unique. We 
call this matrix A1 and replace A0 by A1, we replace y by 
the solution of the linearized equation associated to A1, 
and we continue. The optimal derivative A is the limit of 
the sequence build as such (for details see [39]). 

2.2  Properties of the Method 

We will now consider situations where the procedure 
converges. 

• Influence of the choice of the initial condition 

Note that if we change x(t) to z, then the relation atilda can 
be written as 

( ) =
00

0
0

x
T

x
T dzzFzdzÃ , 
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where  0
0x

is the curvilinear integral along the orbit 

γ(x0)= {eBt : t ≥ 0} of x0. We obtain 

( )
1

00

00
−

















=  T

x
T

x

zdzdzzFÃ  

It is clear that the optimal derivative depends on the initial 
condition x0. 

2.2.1 Case when F is linear 

If F is linear with σ(F) in the negative part of the complex 
plane, then the procedure gives F at the first iteration. 
Indeed, in this case, (3) reads 

( ) ( )xFxA Γ=Γ  

and it is clear that A = F is a solution. It is unique if Ã(x) is 
invertible. Therefore, the optimal approximation of a linear 
system is the system itself. 

2.2.2 Case when F is the sum of a linear and nonlinear 
term 

Consider the more general system of nonlinear equations 
with a nonlinearity of the form 

( ) ( ) ( ) ,0, 0xxxFxMxF
~

=+=  

where M is linear. The computation of the matrix A1 gives 
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Hence, A= M 1 + 1Ã  with 
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Then, for all j we have Aj = M + jÃ with 

( )( ) ( )[ ] ( )[ ] 1
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jj
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If, in particular, some components of F are linear, then the 

corresponding components of 
~

F are zero, and the 
corresponding components of Aj are those of F. If fk is 
linear, then the kth row of the matrix Aj is equal to fk. 

3. Relationships Between the Optimal 
Derivative and the Classical Linearization in 
Zero 

3.1. Scalar case 

3.1.1  Expression 

Consider the scalar differential problem 

( ) ( ) 00, xxxf
dt

dx ==                                                   (4) 

with f : R → R and under the assumptions 

(h1)   f (0) = 0, 

(h2)   f 
/(x) <0 in every point where f / exists in an interval 

(-α, α) with α > 0, 

(h3)   f is absolutely continuous with respect to the 
Lebesgue measure. 

The calculation is done in a way similar to that of the 
vectorial case. We start with the calculation of a0 = f /(x0), 
then we calculate a1 by solving the problem 

( ) 00 0, xxxa
dt

dx ==  

By changing F to f in (3), we have 

( )( ) ( )

( )


∞+

+∞

=

0

2
0

0
1

dttxx

dttxtxf

a , 

and by substituting x = exp(a0 t) x0,we obtain 
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( )
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
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x
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Note that a1 does not depend on a0, and consequently, the 
procedure for the optimal derivative converges in the first 
step, namely   

      ( ) ( )==
0

0
2
0

2
x

0 dxxf
x

xãã                                 (5) 

We remind the reader that it has been shown that ( )0xã  is 

a Lyapunov function [40] for the nonlinear problem (4). 
The scalar case is very interesting in the sense that we can 
write the optimal derivative as a function of the classical 
linearization of f in 0 (if f / exists in 0); so it is possible to 

find a limit when x0 → 0, namely ( )0xã , even though the 

derivative of  f  in 0 does not exist. The importance of the 

result lies in the possibility of using ( )0xã for the 

description of the behavior of the solution and for the 
study of stability in the vicinity of 0 when the derivative in 
this point does not exist. 

3.1.2  Case when the derivative of f in 0 exists 

If f is continuous and if the derivative of f in 0 exists, then 

it is known [?] that ( )0xã  can be written as 

( ) ( ) ( )+=
0

0
2
0

/ 2
0

x

0 dzzz
x

fxã ε ,      

 where     

( ) ( ) ( )0/f
z

zf
z −=ε  

and that ( ) ( )0/fxã  lim 00x0 ==→ . This relation shows 

that the two quantities  ( )0xã  and ( )0/f  are almost equal 

and are equal in the limit as x0 tends to 0. 

3.1.3 Case when f is analytic in 0 

Now assume that f is analytic in 0, i.e., 
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Then it is possible to give an expansion of ( )0xã similar 

to the Taylor expansion of f in the neighborhood of 0. For 
this, we use the relation scaopt and replace f(z) by the 
expression given by relation (6) so that 
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Where this formula holds in the interval of convergence of 
the Taylor series in 0. Generally, if f is of class Ck with k 

∈ N in the vicinity of 0 and f(0) = 0, then ã  is of class 

Ck−1 in this vicinity, and we obtain 

( )( ) ( )
( )( ) 10,0

!1

2
0 1

0 −≤≤
+

= − kjfx
j

ã jjj  

3.1.4  Case when f is not regular in 0 

We now consider the nonregular case, and more 
particularly the case that f is only nondifferentiable in 
0.Writing f(z) in the form 

( ) ( )zgz- =zf , 

the relation (5) becomes 

( ) ( )−=
0

0
2
0

2
x

0 dzzgz
x

xã                                    (7) 

The chosen function 

( ) ( )r
r zpzg ln= , 

where p is a bounded nonnegative periodic function of 

period 1 satisfying ( ) 0
1

0

>=  dzzpp , is nondifferentiable 

in 0. The relation (7) is written for r =1 and 0 < x0< 1 as 

( ) ( )−=
0

0
2
0

ln
2

x

0 dzzpz
x

xã  

For all α ∈ (0, 1),we have 
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So in particular, if ln α = −1, i.e., α = e−1, then 

( ) ( )00 xãexã =  . In this case, ( )0xã  does not have limit 

when x0 → 0+. In the case r > 1, we obtain 

( ) ( ) }{ −−−=
1

0

lnln2 dzzxpzxã r
00r  

Let us now consider the relation 

( ) ( )−=
0x

r0r duugu
x

xã
0

2
0

2
                                      (8) 

where ( ) ( )r
r upug ln= .Note that ( )ugr  is non 

differentiable in 0. In this case, we will show that the 
optimal derivative (8) can exist even if the derivative of 
the function ( )ug r  in 0 does not exist. Then 

( )
−

−→ pxã 0r  when x0 → 0 for every r > 1. 

For more details, see the proof given in [48], Although the 
stability criteria by linearization are clearly stated and 
rigorously justified, classical linearization is sometimes 
inconvenient because it assumes that the Jacobian matrix 
at the equilibrium point exists. However, this assumption 
is not always true. Consider for instance a nonlinear 
system with a function involving an absolute value such 
that the nonlinearity is not differentiable in the vicinity of 
the equilibrium point. The classical linearization gives a 
necessary condition but not a suffcient one, since it does 
not allow to study stability in the presence of purely 
imaginary eigenvalues. The search for a Lyapunov 
function itself constitutes a sensitive issue because it is 
based in general on experience and luck. 

4.  Computational Procedure 

First of all let us point out briefly the iterative procedure 
allowing the calculation of the optimal derivative. Starting 
the calculus, the point x0 is selected arbitrarily near the 

origin. The differential equations have been solved using 
the fourth order Runge-Kutta method [16, 19]. 

 Input x0 and A0. 

 Level (I): Computation of A1 in terms of A0: 
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 Level (II): Computation of Aj in terms of Aj−1: 
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 Level (III): Computation of 

1−− jj AA  

 Level (IV): If 

ε<− −1jj AA
 

where ε is the desired level of approximation, then set 

jAÃ = . Ã is the optimal derivative of F at x0. Otherwise 

set 1−= jj AA and go to Level (II). 

Remark 4  The precision of the optimal derivative is 
expressed in terms of the norm of the initial condition 
x0[8] and is given by 

( ) ( ) ( )2
0

~ xOty-tx <
 

In the previous work, we have show for which initial 
conditions the precision is maintained. As long as 0x is 

large in a certain sense, the approximation must be good. It 
becomes more difficult when approaching 0. Indeed, it is 
shown that the approach of 0 yields inversion of the 
quadratic error to the profit of the classical linearization. 
This shows that the classical linearization is better near the 
origin when it exists. Let us present examples emphasizing 
the theoretical aspect in relation to the influence of the 
choice of the initial conditions on the quality of the 
approximation. 
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5 Application 

5.1. Introduction 

We present two examples, the first from the nonlinear 
electronic system is presented in detail and comparaison 
with classical linearization is aborded. Second example is 
cited with analyse as a reference for possibilities offer by 
the optimal derivative. 

5..2. Fist Example 

The function of the electronic circuit (see …) in the Figure 
1is represented by two variables of states the voltage drop ஼ܸଵon the terminal of the first capacity and the voltage 
drop ஼ܸଶon the terminal of the second capacity). The 
nonlinearity is due to the use of nonlinear diode. 
 

 

 

                                               (Image) 

 

Fig 1: Circuit used in the example, 

When a tension ஼ܸis applied to the diode in the direct 
direction, the model of the diode is given by ݂( ஼ܸଵሻ = ቊ0																																															݂݅ ஼ܸଵ ൏ 0			ܽ ஼ܸଵ + ܾ ஼ܸభଶ + ݀ ஼ܸభସ 											݂݅ ஼ܸଵ ൒ 0			  
With the parameters ܴ = 33. 10ଶΩ,				ܥଵ = 220. 10ିସ,ܨ				ܥଶ = 350. 10ିସܨ,	 ܽ = 10ିସ, ܾ = 10ିହ, ݀ = 10ି଺ 

and starting from the laws of Kirchoff relating to the nodes 
and the meshes of the circuit, we obtain the equations 

൞݀ ஼ܸଵ݀ݐ = − ଵܥ1 (ܽ ஼ܸଵ + ܾ ஼ܸభଶ + ݀ ஼ܸభସ + ஼ܸଵ − ஼ܸଶܴ ሻ݀ ஼ܸଶ݀ݐ = ଶܥ1ܴ ሾ ஼ܸଵ − ஼ܸଶሿ.																																										  
Changing  ݔ = ஼ܸଵܽ݊݀	ݕ = ஼ܸଶ, 
The system (eqref) can be rewritten as 

൞݀ݐ݀ݔ = − ଵܥܽ ݔ − ଵܥܾ ଶݔ − ଵܥ݀ ସݔ − ଵܥ1ܴ ݔ + ଵܥ1ܴ ݐ݀ݕ݀ݕ = ଶܥ1ܴ ݔ − ଶܥ1ܴ  																																														.ݕ
By replacing the parameters with their values, the system 
becomes 	൞݀ݐ݀ݔ = −(1.8. 10ିଶݔ + 4.55. 10ିହ(10ݔଶ − ସሻݔ − 1.38. 10ିଶݕሻ݀ݐ݀ݕ = 8.66. 10ିଷ(ݔ −  																																																																				.ሻݕ
 

• Classical linearization 

The classical linearization at the equilibrium point (0, 0) is 
obtained by calculation the Frechet derivative of the 
nonlinear function of the system (eqref), 

0,0ሻ)ܨܦ = ቂ−1.8. 10ିଶ 1.38. 10ିଶ8.66. 10ିଷ −8.66. 10ିଷቃ. 
• Optimal derivative 

The optimal derivative is obtained by applying the 
algorithm proposed above, see section (ref). For the 
quadratic error, we use the relation  

ொܧ =෍‖ݔ௜(ݐሻ − ሻ‖ଶ,௡ݐ)෤௜ݕ
௜ୀଵ  

Where  ݐ)ݔሻ represents a solution of the nonlinear system, ݐ)ݕሻ represents a solution of the optimal derivative. 

5.2.1 Results of the method 

We study the system using several initial conditions. The 
results obtained are exhibited in the Table 1, where ܧொ௠௔௫ 
(O.D.) and ܧொ௠(C.L.) represent the maximum quadratic 
errors for the optimal derivative and the classical 
linearization, respectively. In the left column the initial 
conditions (ݔ଴,ݕ଴) are given. The second column 
represents the optimal derivative ܣሚ. 
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Table 1 

,଴ݔ) ொ௠(O.Dܧ ሚܣ (଴ݕ
.) 

 ொ௠(C.L.)ܧ

(0.8,0.5) −0.0187 			0.0142			0.0087 −0.0087 
2.1302e-

04 
3.5140e-04 

(8e-02,5e-01) −0.0181 			0.0138			0.0087 −0.0087 
7.5438e-

06 
1.0367e-05 

(8e-02,5e-02) −0.0181 			0.0138			0.0087 −0.0087 
7.4729e-

09 
2.2644e-08 

(8e-03,5e-02) –0.0180 			0.0138				0.0087 –0.0087  
8.5925e-

10 
1.0691e-09 

(8e-03,5e-03) −0.0180 			0.0138			0.0087 −0.0087 
7.0425e-

13 
2.2132e-12 

(8e-04,5e-03) −0.0179 			0.0138			0.0087 −0.0087 
9.0836e-

14 
1.0969e-13 

(8e-04,5e-04) −0.0179 		0.0138			0.0087 −0.0087 
2.2657e-

17 
1.3572e-16 

(8e-05,5e-05) −0.0178 		0.0138				0.0087 −0.0087 3.249e-21 3.481e-21 

The curve ܧொ௠௔௫ =  ଴‖ሻݔ‖)݄
In Figure 2 is obtained starting from a smoothing 
polynomial using the Origin Software. The determination 
of the value ݔ଴for which the curve of error changes 
behavior will be calculated is performed using the Matlab 
Softwar. 

 

Fig 2: Max quadratic error with respec 

In figure 3, a zoom of the part where there is inversion of 
the quality of the approximation to the profil of the 
classicallinearization is represented. 

 

 

 

 

Fig 3: Zoom of the part where there is inversion of the quality of the 
approximation 

5.2.2.  Analysis of results of the first example 

The representation of the maximum quadratic error with 
respect to ‖ݔ଴‖ relating to the classical linearization and 
the optimal derivative enables us to divide our curve into 
two distinct parts: 
The first part, where the maximum quadratic error due to 
the classical linearization is lower than that due to the 
optimal derivativon an interval of ‖ݔ଴‖ ൏ 0.43	in this case 
the classical linearization gives a better aproximation than 
the optimal derivative. 

The second part where the maximum quadratic error due 
to the classical linearization becomes definitely higher 
than that due to the optimal derivative on an interval of ‖ݔ଴‖ > 0.43 here it is the optimal derivative which is 
better. Namely, for a given initial condition ݔ଴, 
approximation by the optimal derivative is better in the 
vicinity of the origin. These two aspects reflect the fact 
that the linearization by Frechet derivative (when it exists 
and when it is hyperbolic) is the best approximation in the 
vicinity of the origin. 

5.3 Second example 

This example is derived from a Nonlinear mechanical 
system representing a forced nonlinear oscillator [50],[51] 
[52], in fact is a mechanical posistioning device with feed-
back control. given by the system: 
ሷݔ  + ሶݔߜ + ݔሻݔ)ܭ = ݖ− + ሶݖሻݐ)ܨ + ݖߙ = ݔ)ߛߙ − ሻݎ  

 
x is defined as the displacement, ݔߜሶ  the linear damping 

with a damping constant δ> 0, object of negative feed-

back control (z) with time constant  α
1 and the gain γ ) , 
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( ) ( )12 −= xxK  

 
We take  0)( =tF ݎ , = 0		representing  autonomous 

system, in which the governing equation have no explicit 
time dependence. Our goal that this type of dynamical 
systems can still exhibit complicated dynamics (complex 
bifurcations and transient to chaos)  with a regime in with 
two or more stables limit cycles exist : 
ሷݔ  + ሶݔߜ + ଷݔ − ݔ = ሶݖݖ− + ݖߙ = ݔߛߙ               (4) 

 
 the system  (4) with the dimensionless equation is given 
by  
 ቐ ሶݔ = ሶݕݕ = ݔ − ଷݔ − ݕߜ − ሶݖݖ = ݔߙߛ − ݖߙ                         (5) 

,ݔ) ,ݕ ሻݖ ∈ ,ߜ ଷ with the parametersܴܫ ,ߙ ߛ > 0 

5.3.1.  Discussion  

we can deduce from the determination of the bifurcation 
surfaces that the higher codimension bifurcations can 
easily be spotted, once the full parameter dependence of 
the bifurcation surfaces is known.  
We can note that the proposed method may be more 
efficient in term of approximation the nonlinear function is 
no regular or the equilibrium point is no regular. In this 
case, one cannot derive the nonlinear function and 
consequently one cannot study the linearized equation see 
[37]. In contrast to common analytical techniques based on 
eigenvalue computation (which can only be applied to 
systems of size dimension N ≤ 4), the method is applicable 
for systems of intermediate size because it is possible to 
compute numerically the optimal linear matrix and the 
roots of their characteristic equation (eigenvalues). the 
proposed  linearization representing also a numerical 
confirmations of the prediction behaviour. Therefore it 
represent a good approximation to the initial nonlinear 
system.  

6. Conclusion  

Simplification is very important in modelling. The optimal 
derivative procedure can be used as a powerful tool for 
modelling nonlinear physicals  systems numerically. The 
optimal derivative method helps to give a quantitative and 
qualitative description of Systems which appear in the 
behavior of the electronic and mecanical problems. 

 

 
 In conclusion, the answer to the question relative 
to the relation between the property of stability of the 
linear equation obtained by the optimal derivative and that 
of the nonlinear equation in the vectorial case is very 
subtle. Generally, when the procedure converges, the 
matrix obtained is stable. All these considerations bring us 
to the following conjecture. 
 
Conjecture:  If the procedure of the optimal derivative 
converges and the limit of the sequence Aj is exponentially 
stable (or if Aj has a stable fixed point), then the nonlinear 
system is stable. 
 
This study shows that the conditions under which the 
conjecture was formulated can be satisfied, i.e., the 
existence, uniqueness and convergence towards a stable 
fixed point [7]. The procedure of calculation also enables 
us to solve problems where the classical linearization may 
not be useful. 
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