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Abstract 
Reed-Muller codes are widely used in communications and they 
have fast decoding algorithms. In this paper we present an 
improved data hiding technique based on the first order binary 
Reed-Muller syndrome coding. The proposed data hiding method 
can hide the same amount of data as known methods with 
reduction of time complexity from 2m(2m-1)2m+1 binary 
operations to 2m (2m -1) m binary operations. 
Keywords: Steganography, Error correcting codes, Reed-Muller 
codes RM(1,m), Boolean functions. 

1. Introduction 

Steganography is the art and science of invisible 
communications. It is used, sometimes together with 
cryptography, to protect information from unwanted third 
parties. In contrast with cryptography, where the enemy is 
able to detect, intercept and modify the transmitted 
information [5], steganography is used primarily when the 
fact of communicating needs to be kept secret. This is 
accomplished by embedding the secret messages within 
another, apparently innocuous, messages (called covers).  

Today’s typical covers are computer files, mainly 
(due to the limited power of human visual and hearing 
systems) image, video and audio files; but in fact, whatever 
an electronic document contains irrelevant or redundant 
information, it can be used as a cover for hiding secrets. 
For example, despite their known weaknesses, the most 
popular steganographic systems are LSB (least significant 
bit) techniques. In its more elementary form, the encoder 
selects a pixel of a bitmap image and replaces its LSB by a 
bit of information. More elaborated versions allow hiding 
information in JPEG and other format images.  

Now-days, steganographic techniques are used in 
order to guarantee security and privacy on open systems 
(as the Internet). They play also a role in electronic 
commerce, where they are used to prevent illegal uses of 
digital information (by means of watermarking for example, 
see [7]). For a more complete description of uses and 
applications of steganography, see [12], [10].  

 
The design of a steganographic system has (at least) 

two facets: firstly, the choice of accurate covers and the 
search for strategies to modify them in an imperceptible 
way; this study relies on a variety of methods, including 
psycho-visual and statistical criteria. Secondly, the design 
of efficient algorithm for embedding and extracting the 
information. Here we concentrate our attention on this last 
problem.  

Our goal in this paper is to improve the efficiency of 
these embedding/retrieval algorithms by using coding 
theory techniques to construct new and more efficient 
algorithms. Recall that error-correcting codes are 
commonly used for detecting and correcting errors in data 
transmission. Their use in steganography is not new. It was 
first suggested by Crandall [11] who called it matrix 
encoding and later implicitly used by Westfeld in the 
design of F5 [1].  

There exists a close relationship between 
steganographic protocols and error correcting codes. Since 
error-correcting codes can be used to construct good 
steganographic protocols and study their properties. An 
explicit description of the relationship between error-
correcting codes and steganographic systems was treated in 
[13] and [4].  

Here, we propose to focus on a particular family of 
error correcting codes: the first-order binary Reed-Muller 
codes denoted RM(1,m). Theses codes are widely used in 
communications over long distances; a Reed Muller code 
was used by Mariner 9 to transmit black and white 
photographs of Mars.  

This paper is organized as follows. After the 
introduction, Section 2 presents syndrome coding, first 
order Reed-Muller codes and we discuss their interest in 
steganography after writing them with Boolean functions. 
Section 3 contents our contribution that’s an improved 
algorithm based on list-decoding that enables us to embed 
more rapidly compared to the Matrix/Embedding approach. 
The last section is devoted for, discussion, comparison and 
conclusion.  
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Notations: denotes the Galois field {0, 1}, dH and 
ωH the Hamming distance and the Hamming weight 
respectively. 

2. Coding Theory And Steganography 

2.1 Syndrome Coding 

Let C be an [n, k] code with parity check matrix H, and 

. For the syndrome of x is defined to be 
x.H

T. We let Coset(s) to denote the set of all vectors in  
with syndrome s. A vector with the smallest weight is 
called the leader of Coset(s) which we denote by Is (if 
there is more than one vector, simply take one at random). 
Clearly Coset(s) = C + Is. Now, when decoding a vector y 

we compute y.HT =s and take the associated leader Is in 

Coset(s). The nearest element to y in C is then c = y - Is. 
To see this: 

 
Then, 

 
Thus we decode y by y-Is. This procedure can be 

adapted to make a method to perform the embedding 
process. 

2.2 Syndrome Coding and Steganography 

The behaviour of a steganographic algorithm can be 
sketched in the following way: a cover-data x is modified 
into y to embed a message M, y is sometimes called the 
stego-data. Here, we assume that the detectability of the 
embedding increases with the number of bits that must be 
changed to transform x to y, see [1] for some examples. 

Syndrome coding deals with this number of changes. 
The key idea is to use some syndrome computation to 
embed the message M into the cover-data x. In fact, this 
scheme uses a linear code C, more precisely its cosets, to 
hide M. A word y hides the message M if y lies in a 
particular coset of C, related to M. Since cosets are 
uniquely identified by the so called syndromes, embedding 
consist exactly in searching y with syndrome M, close 
enough to x. We now set up the notation and describe 
properly the syndrome coding scheme, and its inherent 
problems. We are looking for two mappings, embedding 
Emb and extraction Ext, such that: 

  (1) 

   (2)  

Equation 1 means that we want to recover the message in 
all cases, Equation 2 means that we authorize the 
modification of at most T coordinates in the vector x. 

It is quite easy to show that the scheme enables to 
embed messages of length (n-k) in a cover-data of length n, 
while modifying at most T (≤ ρ) elements of the cover-data, 
where  is the covering radius of C. 
The embedding and extraction functions are defined after 
Fontaine and Galand in [3] by: 

                  (3) 

                        (4) 
where e is the smallest element of weight ≤ ρ such that: 

                              (5) 
Remark that effective computation of e (=Is) is the 
complete syndrome decoding problem, which is a very 
hard problem. 

The hidden message can be recovered from y by: 

   (6) 
In this paper, the embedding process is divided into 

two steps. In the first one, the exhaustive search is used to 
acquire the first sequence q= (q1,....,qn). The coset member 
q can be identified more simply and independent of x by 
looking for a sequence q that fulfils 

q.H
T  = s 

In the second step of the embedding process, this coset 
member q can be used to determine a sequence that has a 
minimum distance to the cover sequence. Using the 
exhaustive search, we compare the member coset q directly 
to the 2k codewords, and knowing that the time needed to 
find the first coset member q is negligible [6], then we 
obtains a leader coset in О(n(n-1)2k) binary operations. In 

fact Is = q-c where c satisfies dH (q,c) = dH (q,C).  
Whenever considering a big codeword length n, finding 

the optimal solution and thus finding a coset leader is 
known to be an NP-complete problem.  

Since embedding based on the classical approach, by 
finding a coset leader using an exhaustive search is really 
complex and therefore time consuming. We focused on 
embedding strategies to reduce the embedding complexity 
without reducing the embedding efficiency.  

In order to reduce complexity of syndrome coding for 
embedding, we can reduce complexity to find a vector e 
with a minimal weight satisfying Equation 5 (e will be a 
leader of the Coset(s)). 

2.3 First-Order binary Reed-Muller codes 

The recursive nature of the construction of first-order 
binary Reed-Muller codes (RM(1,m)) suggests that there is 
a recursive approach to decoding as well.  
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Roughly speaking, the RM(1,m) code of length n = 

2
m is a  subspace of dimension k = m+1 which consists of 

affine functions. We can define this code as follows: 
starting with a word (u0,u1,……,um) of length k = m+1, this 
word represents the affine function f ϵ RM(1,m) defined by 
the equality : 

           (7) 

where , and  is the 
scalar product. 
The encoded word is then given by the vector 

 
The minimum distance of RM(1,m) is d =2

m 
-1.  

So this code can correct t errors where 

 
By the support of a function f we mean, the set: 

 
and the weight of  f  is the cardinal’s support: 

 
Before presenting the decoding algorithm of RM(1,m) 

codes, we need to recall some definitions: 

Definition 1: Let   be a Boolean function. Its 

Fourier transform is defined by: 

 
We can show by induction on m that 

 
where δ0 is the Dirac function defined by: 

 
Definition 2: TheWalsh-Hadamard transform (WHT) of a 
Boolean function f is a real-valued function defined for all 

 as the Fourier transform of its sign function 

: 

 
Let f  be a codeword of RM(1,m). We can write f as 

, where  and   . 
Consequently all Walsh-Hadamard coefficients are 

zero except the one of index u: 
 

. 

3. The Proposed Steganographic Scheme 

In this section we describe our contribution that’s to 
use syndrome coding with a First-Order binary Reed-
Muller code that has very efficient decoding methods. 

Our problem is the following: We have vectors 

and of length n = 2m of 

symbols of , and a message of 
length n - k. We want to modify f into g such that M is 
embedded in g, changing at most T coordinates in f. 

3.1 Hiding Using Fast Walsh transform (FWT) 

For we define the Boolean function and  

 
Given a Boolean function g, the relationship between the 
Walsh transform of g at v and the distance between g and v 
is then given by: 

                                              (8) 
Indeed, 

 
Let q be a member of Coset(s) that is qHT = s. To find 

the leader coset e (=Is) we look for  such that 

where c=(c(0),….,c(2m-1)) 
satisfies 

 
and 

 
The principle idea consists of decomposing the sum 
depending on whether one of the coordinates (in practice 
we consider xm of x = (x1,….,xm)) is 1 or 0: 

 

 

 

 

 

 

So, once  and are calculated, it remains 

2
m-1 additions and subtractions to obtain. Continuing the 
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decomposition (m times in all), then we obtain  in 
m.2

m additions/subtractions. From a practical point of 

view, we can obtain using an array of size 2
m, and 

 lexicographically ordered.  
Thus we have reduced the complexity from 2

m 
(2

m
-

1)2m+1 binary operations to 2m (2m-1) m.  
 Moreover, the Hamming weight of e is precisely 

the number of changes we apply to go from f to g, so we 
need ωH(e) ≤ T.  

When T is equal to the covering radius of the code 
corresponding to H, such a vector e always exists. But, 
explicit computation of such a vector e, known as the 
bounded syndrome decoding problem, is proved to be NP-
complete for general linear codes. Even for well structured 
codes, we usually do not have polynomial time algorithm 
to solve the bounded syndrome decoding problem up to the 
covering radius. The list decoding of RM(1,m) codes 
overcome this problem in a nice fashion. 

3.2 Hiding Using List Decoding 

List decoding [9] is of interest in coding theory, for 
example when the weight of the error exceeds the 
correction capability (in which case there may be several 
solutions or the (good) solution is further from the noise 
vector that solution returned by a maximum likelihood 
decoding). 
 
3.2.1 List Decoding Algorithm 
 
This algorithm compute from a vector q, a vector c ϵ 
RM(1,m) such that dH (q,c) ≤ T. 

The list decoding with radius T (parameter fixed in 
advance) outputs the list LT,m(q) ={c ϵ RM(1,m) | dH (q, c) 
≤ T} of all codewords of a code RM(1,m) located within 
distance T  to the vector q. 

Let d=2m-1 denote the minimum distance of RM(1,m). 
The following Johnson upper bound on the list size will be 
useful below. See [2] for a simple proof of this bound over 
an arbitrary alphabet. 
Proposition 1: Any code C satisfies the inequality 

               (9) 
In this paper, we consider list decoding for codes 

RM(1,m) with decoding radius T = (1 - ɛ)d, where ɛ > 0. 
The corresponding list is denoted by 

 
It follows from Proposition 1, and since the list size 

does not exceed n, that 

               (10) 

Let c(x1,….,xm) be an arbitrary linear Boolean 

function, and let c( j) = c1x1+….+cjxj be its jth prefix.  

Let be the list of the jth prefixes of all 

functions c(x1,….,xm) ϵ Lϵ,m(q). we consider the j-

dimensional faces Sa ={(x1,….,xj,aj+1,….,am)}, where the 

variables x1,….,xj take arbitrary values, whereas the 

variables xj+1 = aj+1,…., xm = am are fixed. 
Given any Boolean functions f and g (also considered 

as vectors), let dH (f,g|Sa) denote the Hamming distance 
between their restrictions onto some j-dimensional faces 
Sa: 

 
Obviously, 

 
where we use the definition 

 
Thus, for any (received) vector q, 

 
Let us define the j

th distance between the vectors f and 
g as 

 
Lemma 1: For any affine function c = c1x1+….+cmxm +c0 

and for any prefix c( j)
 = c1x1+….+cj xj, we have 

 
We say that a prefix c

( j)
 = c1x1+….+cj xj satisfies the sum 

criterion if 

                 (11) 
In accordance with this criterion, define the list 

 
It follows from Lemma 1 that: 

 
 

3.2.2 The Proposed embedding scheme 
 

Our proposed approach, that we call Sum Criterion 
embedding scheme, works by using of list decoding who is 
executed by consecutive calculation of the lists of 
(suspicious) prefixes using the sum criterion. 

The principle of this algorithm is to define at each 
step (j) a test to eliminate a certain number of linear 
functions in (j) variables, those which we are confident that 
it can be the prefix of a solution of the problem.  

We’re going to extract information at each step (j) to 
invalidate certain sets of functions. 

Given in step ( j) a list  such that 
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        (12) 
in the ( j +1)

th step the algorithm processes all possible 

extensions c( j)(x1,….,xj + c j+1xj+1) of the preceding 

prefixes, where and cj+1 ϵ {0,1}. Among 
these extended prefixes, the SC-algorithm leaves only 
those that satisfy the sum criterion. The latter prefixes in 

turn form a new list  which satisfies Relationship 
(11) for j: = j+1 . In the last step (Step m); therefore, the 

list  coincides with the list  
 
 

The Sum Criterion Algorithm for embedding 
 
Inputs f = ( f0,….,fn-1), the cover data ; 

M = (M0,….,Mn-k) the message to hide, 
ɛ > 0 such that T = (1 - ɛ)d distortion. 
d: minimal distance of RM(1,m) code. 
H his parity check matrix. 

Outputs ( g0,….,gn-1), stego-data such that: d(g, f ) ≤ T 

1. We compute: s = M - f .H
T 

2. If s = 0 then e = 0 : no message to hide 
else 

Find a member coset q, such that q. H
T
 = s 

For each codewords c ϵ RM(1,m : 
j = 1 do : 

While  do : 

 
where   

 j=j+1 
End while 

If  j > m then e = q - c
(m) 

where (ωH(e) = d(q, c(m)) ≤ T) 
else check next c ϵ RM(1,m 
EndFor 

3. g = f +e (return g). 
 

4 Discussion 

The proposed scheme for data hiding method based 
on RM(1,m) syndrome coding is compared with that uses a 
classical exhaustive search. The basic contributions of their 
methods are the reduction of time complexity. They 
achieve significant improvement over existing classical 
approach. 

The first algorithm based on the fast Walsh transform 
allows us to find the Hamming distances from the coset 

member q to all 2
k codewords in О(n.ln

2
(n)) binary 

operations. 
The second proposed scheme for data hiding method 

based on the sum criterion list decoding algorithm for 
RM(1,m) codes, allows us to reconstructs all codewords 
located within the ball of radius (1 - ɛ)d about the member 
coset in О(n.ln2(min{ɛ-2, n})) binary operations [8]. 

We have shown in this paper that first-order binary 
Reed Muller codes are good candidates for designing 
efficient steganographic schemes. Contributions of this 
paper include the reduction of time complexity and storage 
complexity as well. Time complexity of our methods is 
reduced compared to the existing methods. Since, it is easy 
to extend this method to large n which will allows us to 
hide data less complexly. 
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