
Performance Enhancement Evaluation Performance Enhancement Evaluation Performance Enhancement Evaluation Performance Enhancement Evaluation inininin Database Database Database Database

Decompression Using Decompression Using Decompression Using Decompression Using HIRACHIRACHIRACHIRAC AlgorithmAlgorithmAlgorithmAlgorithm

Muthukumar Murugesan
1
, T. Ravichandran

2

1 Research Scholar, Department of Computer Science, Karpagam University,

Coimbatore, Tamilnadu-641021, India,

2 Principal, Hindusthan Institute of Technology,

Coimbatore, Tamilnadu-641032, India

Abstract
Storage space ability and computational authority increases,

processing and analyzing large volumes of database systems

acts as a significant role in several areas of scientific research.

Database compression and decompression is a susceptible

problem in the database framework. Disk storage systems can

often be the most expensive components of a database

solution, even a small reduction in the storage subsystem can

result in substantial cost savings for the entire database

solution. When you have large amounts of data, the cost of the

storage subsystem can easily exceed the cost of your data

server.

In this paper we proposed a new algorithm for database

compression and decompression called HIRAC algorithm. If

we compress the database, there is chance of hurting the data

in the compressed database systems. Projected algorithm will

manipulates each row in compressed database inside the file to

extract the original database without losing any data.

Keywords:database compression, database decompression,

real-time database, compression performance, database

performance

1. Introduction

Data stored in databases keep growing as a result of

businesses requirements for more information. A big

portion of the cost of keeping large amounts of data is in

the cost of disk systems, and the resources utilized in

managing that data. Reducing the amount of memory

consumed, and freeing it up for other database or system

operations can further improve the database performance

for queries and other operations.

Generally, in day to day basis lakhs and millions of

transactions will be used to process and store the data

into real time database system. Global providers like

insurance, banking, finance, railway system and others

are having a massive number of transactions on daily

basis. All these transactions should be handled on the

database for further reference. Such databases’ size

would be raised as MBs and GBs of data through daily

actions. There is a huge problem for implementing the

backup of data without losing. Global providers are used

for processing the backup of the database several times

in a day. This research addresses the difficulties of the

problem and provides the solution using compressing,

decompressing and taking the backup of the database in

multiple devices.

Extensive experiments were conducted to estimate and

enhance the performance of the proposed

HIRAC(Hierarchical Iterative Row-Attribute

Compression) algorithm for real time database systems.

It gives you the ability to transparently compress data on

disk in order to decrease disk space and storage

infrastructure requirements. Compressed rows are

smaller, not only you need fewer disks, but your overall

system performance may be improved. Accessing data

from the disk is the slowest database operation. By

storing compressed data on disk, fewer I/O operations

need to be performed to retrieve or store the same

amount of data. Therefore, for disk I/O-bound

workloads, the query processing time can be noticeably

improved.

In a compressed database system, data are accumulated

in compressed layout on disk and are decompressed

through query processing. Compression develops query

presentation for two reasons. First, it saves disk and

memory bandwidth because a compressed disk page or

cache line packs more data than an uncompressed disk

page or cache line. Second, if the compressed data can

be kept compressed during query processing,

compression reduces disk and memory latency by fitting

more compressed data in memory and cache.

Nevertheless, compression acquires CPU overhead for

the compression and decompression of data.

To enhance our research in this work, we present an

efficient approach for decompressing the compressed

database to retrieve the information based on users’

requests. Before performing the decompression, it is

necessary to identify and find the location of database in

the parallel multi-storage repository which consists of

set of compressed database based on the users’ requisite

query information. After identifying the exact data

location in the compressed database, extract it from the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 35

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

multi storage parallel repository. Decompress the

compressed database to retrieve the user needed

information from the compressed database. By doing

like this, the user database transaction processing

achieves high in performance and retrieves the

information in fewer intervals of time.

2. Related Work

Several techniques have been presented to compress the

database. Among which, the recently used technique is

attribute level compression methods. This type of

compression methods needs more time to perform large

number of transactions. To overcome the issue, our first

work describes the process of compressing the real time

database systems using HIRAC algorithm [1]. It

excellently compressed the database systems in a less

interval of time. Our second work presented multi

storage parallel process based on compressed database

[2]. Using optimal multi storage parallel backup, we

efficiently achieved the parallel multi storage backup

compressed data for real time database systems. Here we

focused on the data storage in real time database systems

to store the data more effectively and to reduce the

storage requirements. Our third work outlined the

techniques to analyse the compression performance for

real time database systems [3]. This technique not only

reduces space requirements on disk and I/O performance

when measured in records per time for permanent and

temporary data, they also reduce the requirements of

memory, thus reducing the number of buffer faults

resulting in I/O.

Many compression schemes are evaluated at present. A

greatly proficient and new dictionary-based lossless

compression technique is employed and compared

beside a prior execution for a reconfigurable scheme.

The paper [3] appears at numerous incompatible devise

parameters, for instance the compression ratio, latency,

silicon area, and power utilization. In [4], we are

apprehensive with an efficient construction for

chronological data set that does not provide on-line

query presentation and is particularly considered for

very huge sensor network database. The modeled data

are compressed by adapting numerous candidate

strategies counting dictionary-base constrict and lossless

vector quantization.

The paper [5] originates diverse compression strategies

for data mounded up in row inclined besides column-

oriented databases. Obviously, data in columns is further

compressible than data in rows. Compressions

algorithms [6] realize improved on data with little in

series entropy (high data value location) i.e are

employed for optimization position. The structure of

data firmness in the real-time database has been

originated beside with the sequential data aspect, the

merits and demerits of data compression algorithm [7].

A database compression algorithm [8] realizes well as

favoring at characteristic stage with no requirement of

the decompression of a better unit.

2.1 Database Compression using HIRAC Algorithm

Compression can significantly reduce disk space storage,

increase memory utilization, and better I/O performance;

there is a risk of CPU degradation. It optimizes storage

of multiple rows in a page, by minimizing the data

redundancy. Therefore, one must take into account and

consider the trade-off between compression and

performance.

The process of real time database compression using

HIRAC algorithm is processed under below steps.

• Analyzing the entire database

• Implementing the HIRAC algorithm

• Copying the data from the database files into

backup devices at parallel.

Database analysis is apprehensive with the environment

and use of data. It engages the classification of the data

elements which are desired to sustain the data dealing

out system of the organization, the introduction of these

elements into rational groups and the description of the

relations among the resulting groups. To compress

database, an algorithm is presented called HIRAC

algorithm which iteratively enhances the collection of

selected representative rows. From one step to the next,

new representative rows may be chosen, and old ones

discarded. Since the endeavor of a compression

algorithm is to decrease the storage constraint for a

database, HIRAC algorithm utilize this as an

optimization principle and guarantee that only patterns

which progress the compression are established in each

step of its iterations. Though the optimization problem is

hard in an existing compression algorithms case as well,

the heuristic used in this simple. Using several backup

devices used for backup of the compressed database

utilized in parallel in terms of enhancing the speed of

backup and restores operations.

2.2 Multi Storage Parallel Backup

For backup and restore of data stored on the storage

system, a standard method for backup requires the host

systems to extract the data from the database to the data

storage systems. This method would be incredibly slow

and it requires typing up the host systems’ time in the

form of database access operations and data processing.

A better solution is known as direct connect. A high

speed direct connection is required between the storage

systems and backup management systems thereby

allowing fast transfer of data directly to the backup

management systems without the intervention of host

systems.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 36

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The Multi Storage Parallel Backup Compression

consists of the below five steps:

• Compressed database using HIRAC algorithms

• Maintain the internal synchronization point

• Creating the transaction log files if they do not

exist

• Copying the backup/compress data to the

backup devices

• Copying the transaction log with the same

backup devices

The backup compressed data is concerned with backup

and restore of 1) data files as seen from the database

client 2) taking backup copy of the control file system 3)

Archived log files. A parallel multi storage database

system has several restrictions on a backup system for a

data storage system. All data files in the parallel multi

storage devices must reside on contiguous portions of

storage devices and visible to all parallel server database

devices. An optimal approach is used here for storing the

items in the compressed database. A compressed

database has several rows and columns, but when it

stored under different multiple storage devices with

different row or column attributes. Through the control

and log files, the transaction carried over the compressed

database is illustrated and consumes less disk storage

requirements since it is compressed efficiently.

In this work, we present an efficient approach for

decompressing the compressed database to retrieve the

information based on users’ requests. Before performing

the decompression, it is necessary to identify and find

the location of database in the parallel multi storage

repository which consists of set of compressed database

based on the users’ requisite query information.

3. Database Decompression Using HIRAC

Algorithm

The proposed work is efficiently designed to perform the

decompression process for compressed database which

is stored under parallel multi storage repositories. The

proposed Performance Enhancement Evaluation in

Database Decompression (PEEDD) using HIRAC

Algorithm is processed under two different phases. The

first phase is to identify the location of data in the

compressed database which is stored under multi storage

repositories. The second phase describes the process of

decompressing the respective compressed database.

Reading and writing compressed data consumes more

CPU resources than reading and writing uncompressed

data. Consider an uncompressed table with a row size of

800 bytes. Five of this table's rows would fit in a 4K

data page/block. Now after data is compressed, assume

that the compression routine achieves 30% compression

on average. In that case, the 800-byte row will consume

only 560 bytes (800 x 0.30 = 560). After compressing

the data, seven rows will fit on a 4K page. Because I/O

occurs at the page level, a single I/O will retrieve more

data, which will optimize the performance of sequential

data scans and increase the likelihood of data residing in

the cache because more rows fit on a physical page.

The architecture diagram of the proposed Performance

Enhancement Evaluation in Database Decompression

using HIRAC Algorithm is shown in fig 1.

Fig 1: Structure of Database Decompression

From the fig (fig 1), it is being noted that the process of

decompression is done only after performing the two

major processes. The first process is to compress the

database systems using HIRAC algorithm. The second

process is to store the compressed database systems in

parallel multi storage by taking backup of those

compressed database systems. If the user wants to

retrieve the items from the database, then it is necessary

to decompress the compressed database which is stored

under parallel multi storage backup repositories.

The following subsection describes the decompression

process for real time database systems.

3.1 Decompressing the Compressed Database

The process of decompressing the compressed database

which is stored in multi storage parallel backup

repositories involves in below four major steps.

1. Identify the location of database in parallel

compressed database repositories

2. Extract the compressed database information from

repositories

3. Organize the locations into common place

4. Implement the decompression process to

decompress the respective compressed database.

The location of database in the storage repository is

identified for accessing the users’ query. Decompression

process will take place based on the outcome.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 37

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 2: Elements of Database Decompression

After compressing the database, it is stored under

different storage repositories in parallel. Once the

compressed database is stored under different locations,

each compressed database is specified with some unique

ID. For instance, let the set of compressed database be

D. Assign unique id to each compressed database as d1,

d2,…, dn. With the unique id, the compressed database

is retrieved from the storage repositories. A user will

send a query to access the compressed database for user

retrieval process. A user query contains an information

like compressed database id with retrieval information.

With the compressed database id, the respective

database is retrieved from the storage repositories and

processed for further retrieval schemes.

Once the compressed database is identified, retrieve the

specified database from storage repositories. Then

implement the decompression algorithm which is the

reverse process of compression algorithm. At first, with

the given attribute id and constraints, respective

information is retrieved and accessed. The process of the

proposed PEEDD using HIRAC algorithm is shown in

fig 3.

Fig 3: Algorithm of the Proposed PEEDD

The above figure (fig 3) describes the process of the

retrieving the user requisite information from the

compressed database which is stored under different

storage repositories. With the specific id, identify the

location of the compressed database in the storage

repositories. With the location information, retrieve the

respective compressed database and decompress it. The

decompression is based on the reverse process of the

compression algorithm. After decompressed the

database, the users’ query is processed and used to

retrieve the information from the real time database

environments.

4. Experimental Evaluation

The proposed Performance Enhancement Evaluation in

Database Decompression Using HIRAC Algorithm is

implemented in SQL Server and Java. We used a real

time 1GB sample database for a trialing to examine the

efficiency of the decompression performance. In this

work, we have seen how the compressed database

systems are decompressed with the set of representative

rows and columns for real time environments which are

stored in multi storage parallel devices. Here we have

outlined a series of performance experiments in order to

examine the efficiency of the proposed HIRAC

algorithm. The experiments were tested using the below

configuration.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 38

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

System Component Description

Processors Intel® Core 2 Duo CPU

P-IV 2 GHz Processer

Memory 3 GB memory

Operating System

Microsoft Windows XP

Professional Version

2002

Service Pack 3

Database Manager Microsoft SQL Server

2008 Enterprise Edition

(64 bit)

Database Size 1 GB

Table 1: System Components

Over the last decades, enhancements in CPU speed have

provided developments in disk processing rates by

commands of amount. For instance, the CPU speed has

been enhanced by on one thousand in 15 years, as disk

bandwidth and latency have been enhanced by simply

forty fold and three fold correspondingly. This hardware

drift enforces a rigorous confronts to the presentation of

a database system as database applications are frequently

memory-bound or disk-bound.

The proposed HIRAC based decompression model for

real time environment is efficiently designed for

decompressing the compressed database systems stored

in multiple storage systems.

The performance of the PEEDD using HIRAC algorithm

is measured in terms of:

1. Transaction time

2. Number of users request

3. Storage space

4. Time consumption for decompression

Transaction Time denotes the time period during which

a database fact is/was stored in the database.

Storage Space denotes the area in which the parallel

storage repositories provide space to store compressed

database in it.

Time Consumption for Decompression denotes the

time taken to decompress the compressed database for

user information retrieval purpose.

5. Results and Discussion

In this work, we have seen how the compressed database

is decompressed with size of 1GBs which is efficiently

stored under multi storage parallel devices. The new

proposed approach is efficiently done by using HIRAC

algorithm.

There are two significant troubles for reconstructing a

compressed database system:

• How a compressed database compresses the

data

• How query has been executed to reconstructing

the database.

These two troubles are inconsequential as of the

transaction of disk and memory access provides

decompression overhead. For instance, to decide how to

constrict the data, the classification must suspiciously

weigh the I/O savings a compression technique might

take with its possible decompression overhead. A

decompression technique producing considerable I/O

savings but effecting exorbitant decompression

transparency would be unsuitable since the complete

performance might not be enhanced. Likewise, through

query processing, the method desires to choose when to

decompress the data and reside compressed in the

production of the present process. Maintaining data

compressed in the outcome of the present process might

keep more disks I/O since the compressed outcome will

be slighter than the uncompressed outcome.

Nevertheless, this might acquire more decompression

transparency for the later operations.

We used a real time database for an experimentation to

examine the efficiency of the decompression of

compressed database system. The below table and graph

described the proposed PEEDD using HIRAC algorithm

with an appropriate results.

No. of

Database

Storage Space (MB)

Proposed

PMBDC

Existing Attribute

Level Method

2 9.2 16.3

4 12.5 19.2

6 18.9 23.5

8 21.3 25.2

10 22 29.4

12 24.2 32

14 24.8 35.4

Table 2: No. of Database vs. Storage Space

The above table describes the requirement of storage

space needed to store the compressed database in a

reliable manner. The storage space of the proposed

PEEDD system using HIRAC algorithm is compared

with existing attribute level compression methods.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 39

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 4: No. of Database vs. Storage Space

Fig 4 describes the requirement of storage space needed

to store the compressed database in a reliable manner.

Storage space denotes the storage area in which the

parallel multi storage repositories provide space to store

compressed database in it. The storage space is

measured in terms of megabyte (MB). In the proposed

PEEDD approach, the process of storage is done by

compressing the database using HIRAC algorithm. After

performing the compression, the compressed database is

multi storage repositories in parallel. Since the database

is compressed with respect rows and columns, the

storage space required to store the database is less in the

proposed PEEDD system. Compared to existing attribute

level methods which does not support minimal storage

space, the proposed PEEDD suits best to achieve the

parallel multi-storage area. The variance in the storage

space needed to store the compressed database is 50-

60% low in the proposed Performance Enhancement

Evaluation in Database Decompression Using HIRAC

Algorithm.

No. of

Compressed

Database

Time Consumption for

Decompression (ms)

Proposed

PMBDC

Existing Attribute

Level Method

1 2.4 5.8

2 3.8 9.7

3 5.8 13.5

4 6.7 17.2

5 9.3 20

6 10.2 21.5

7 12.1 23

Table 3: No. of Compressed Database vs. Time

Consumption for Decompression

The above table (table 3) describes the time taken to

decompress the compressed database based on the

retrieved set of compressed database systems. The time

consumption for decompression of the proposed parallel

multi storage backup decompression for real time

database systems is compared with with existing

attribute-level compression methods.

Fig 5: No. of Compressed Database vs. Time

Consumption for Decompression

Fig 5 describes the time taken to decompress the

compressed database based on the retrieved set of

compressed database systems. Time consumption for

decompression denotes the time taken to decompress the

compressed database for user information retrieval

purpose. In the proposed PEEDD, the decompression

takes place in minimal interval of time because the exact

database is retrieved from the storage repository based

on the user query. So, the time take to decompress the

database is also being low since the location of database

is easily identified. Compared to existing attribute level

methods which does not support minimal storage space,

the proposed PEEDD system suits best to achieve the

decompression process for user retrieval purpose. The

variance in the decompression time is 60-70% low in the

proposed Performance Enhancement Evaluation in

Database Decompression Using HIRAC Algorithm.

The most obvious advantage of database decompression

is that of reducing the time consumption. The

decompression performance has been tested in this

paper, which is compared with the existing attribute

level method. The tested data is from simulation data is

based on historical data characteristics. Testing includes

compressed database file size, decompression timing on

existing and proposed decompression approach. The

below table described the time consumed for

decompression of the proposed decompression method

below are the tested results for the same.

Compressed

File Size

(MB)

Decompression Time (mm:ss)

Proposed

PEEDD

Existing Attribute

Level Method

1024 1:16 1:58

510 0:42 1:03

340 0:33 0:52

250 0.21 0:37

Table 4 Compressed DB Size vs. Time Consume

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 40

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 6 Compressed DB Size vs. Decompression Time

The result of decompression performance test is shown

in table 4 and Fig 6. The proposed decompression

algorithm achieves good performance. HIRAC

compression algorithm can satisfy real-time performance

demand of compressed database. The time is measured

in terms of minutes and seconds (mm:ss). Table 4 and

Fig 6 is depicts a performance test results for existing

and proposed algorithms. The decompression time of

HI”RAC algorithm is very short. As shown in above

table, the new decompression algorithm is superior in all

respects to the general decompression algorithm in the

real-time database.

1. The decompression rate is nearly doubled than

before. Comparing with previous data

decompression algorithm, our proposed algorithm

provides 50% ~ 60% good results.

2. The decompression time is greatly lower than

before. The existing decompression algorithm is

adopted in the time code labels and the quality code

of new decompression algorithm, so the

decompression time is greatly reduced.

3. The decompression time was cut down. So it is

better to meet the requirements of real-time

database.

Finally it is being observed that the present work

provides an efficient approach for decompressing the

compressed database which is stored under different

storage repositories in parallel. The decompression

process is reliably done based on users’ query and

achieves high efficiency in its performance.

6. Conclusion

In this work, we efficiently decompress the compressed

database stored in multi storage system simultaneously

based on users’ query for real time environment. The

compression is done using HIRAC algorithm which

followed iterative steps to achieve the better

compression rate. Then the compressed data is to be

stored under different devices simultaneously with an

optimal approach. Then for decompression, it first

identifies the location of the database in storage

repositories and then extracted it for decompression.

The merits of using the proposed PEEDD are 1) It

increases the user database transaction time for retrieval

process 2) It efficiently achive the fast retrieval of

information from database 3) Greatly reduced the

decompression time by identifying the location of

database in storage repositories. Experimental results

have shown that the proposed Performance

Enhancement Evaluation in Database Decompression

Using HIRAC Algorithm provides 70% transaction time

and achieves 75% in efficiency compared to an existing

attribute level method for storing compressed data. As

an overall result HIRAC algorithm enables more

granular, enhances the compression and decompression

performance.

References

[1] M.Muthukumar and T.Ravichandran, Optimizing and

enhancing parallel multi storage backup compression for real-

time database systems, IJECTA, ISSN: 2229-6093, Volume3

Issues4, Pages 1406-1417, July 2012.

[2] M.Muthukumar and T.Ravichandran, Optimizing multi

storage parallel backup for real time database systems,

IJESAT, ISSN: 2250-3676: Volume2 Issues5, Pages 1515-

1521, Sep 2012.

[3]M.Muthukumar and T.Ravichandran, Analyzing

compression performance for real time database systems,

International Conference on Advanced Computer Engineering

and Applications (ICACEA), 2012.

[4] Aslam, N. et. Al., “Code Compression and Decompression

for Coarse-Grain Reconfigurable Architectures”,

 IEEE Transactions on Very Large Scale Integration (VLSI)

Systems, 2008

[5] Pei-Lun Suei et. Al., “Data compression and query for

large scale sensor data on COTS DBMS”

 IEEE Conference on Emerging Technologies and Factory

Automation (ETFA), 2010

[6] Gupta, A. et. Al., “Nonlinear Sparse-Graph Codes for

Lossy Compression”, Information Theory, IEEE Transactions

on, Volume: 55, Issue: 5, May 2009

[7] Veluchandhar et. Al., “A backup mechanism with

concurrency control for multilevel secure distributed database

systems”, Third International Conference on Digital

Information Management, 2008.ICDIM 2008.

[8] Aghav, S. et. Al., “Database compression techniques for

performance optimization”, 2010 2nd International Conference

on Computer Engineering and Technology (ICCET).

[9] Changing Zhen et. Al., “Design and Realization of Data

Compression in Real-TimeDatabase”, International

Conference on Computational Intelligence and Software

Engineering, 2009.CiSE 2009.

[10] Kuruppu, S. et. Al., “Iterative Dictionary Construction

for Compression of Large DNA DataSets”, IEEE/ACM

Transactions on Computational Biology and Bioinformatics,

feb 2012

[11] Hongyuan Ma et. Al., “Experiences with Hierarchical

Storage Management Support in Blue Whale File System”,

 2010 International Conference on Parallel and Distributed

Computing, Applications and Technologies (PDCAT),

[12] Hongfei Yin et. Al., “”Verification-Based Multi-backup

Firmware Architecture, an Assurance of Trusted Boot Process

for the Embedded Systems”, 2011 IEEE 10th International

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 41

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Conference on Trust, Security and Privacy in Computing and

Communications (TrustCom).

[13] SeongHoon Kim et. Al., “A configuration management

system for multi-hop zigbeenetworks”, ICCE '09. Digest of

Technical Papers International Conference on Consumer

Electronics, 2009.

First Author:Muthukumar Murugesan received the

B.Sc, M.C.A and M.Phil degrees in Computer Science

from the Madras University, Chennai, Tamilnadu, India,

Bharathidasan University, Tamilnadu, India and

Manonmaniam Sundaranar University, Tamilnadu, India

in year 1997, 2000 and 2003 respectively. He was

working as IT Analyst, in Department of Application

and Software Development, IBM India Private Limited,

Bangalore, Karnadaka, India. Currently he is a research

scholar in Department of Karpagam University,

Coimbatore, Tamilnadu, India. His fields of interest are

database, compression, storage, and network.

Second Author:Dr.T.Ravichandran received the B.E

degrees from Bharathiar University, Tamilnadu, India

and M.E degrees from Madurai Kamaraj University,

Tamilnadu, India in 1994 and 1997, respectively, and

PhD degree from the Periyar University, Salem, India, in

2007. He is currently the Principal of Hindustan Institute

of Technology, Coimbatore Tamilnadu, India. Before

joining Hindustan Institute of Technology, Professor

Ravichandran has been a Professor and Vice Principal in

Vellalar College of Engineering & Technology, Erode,

Tamilnadu, India. His research interests include theory

and practical issues of building distributed systems,

Internet computing and security, mobile computing,

performance evaluation, and fault tolerant computing.

Professor Ravichandran is a member of the IEEE, CSI

and ISTE. Professor Ravichandran has published more

than 120 papers in refereed international journals and

refereed international conferences proceedings.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 42

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

