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Abstract 

The services such as electronic commerce, internet privacy, 
authentication, confidentiality, data integrity and non 
repudiation are presented by public key cryptosystems. The 
most popular of public key cryptosystems is RSA 
cryptosystem. RSA is widely used for digital signature and 
digital envelope, which provide privacy and authentication.  
The basic operation of RSA cryptosystem is modular 
exponentiation which is achieved by repeated modular 
multiplications. RSA can be speeded up by using the Chinese 
Remainder Theorem (CRT) and using strong prime criterion. In 
this paper, we present an efficient modulo n  multiplication 
algorithm with reasonable factors of 2n and 2n+2.  In this 
paper we discuss decryption techniques in RSA cryptosystem. 
We show that this new technique can speed up the decryption 
process and it can reduce the computational time compared to 
the methods of traditional, CRT, and Hwang et al.[10] .  

Keywords :  RSA cryptosystem,  modular multiplication, 
Chinese Remainder theorem, prime factors. 

1. Introduction 

Modular multiplication contributes a vital role to more than a 
few public-key cryptosystems such as the RSA cryptosystem 
[1]. Hayshi et al. [2] and Rao et al.[3] proposed a new modular 
multiplication method to reduce the computational time of RSA 
cryptosystem. In the paper[2], modular exponentiation with the 
modulus n transforms into replacement operations with modulii 
n+1 and n+2. However, n is a odd number, we cannot factor 
n+2 easily in the method proposed in [2].  In [3], modular 
exponentiation with the modulus n converts into substitute 
operations with modulii 2n+1 and 2n+2.  It happened that 2n+1 

and 2n+2 can easily be factorized, even if  n is a prime or 
difficult to be factorized into prime factor. However, in the 
method of  [3],  2n+1 cannot be factored easily when n is odd 
number but advantage of method in [3] over the method in [2] 
is that 2n+1 is larger than n+1.  In this paper, we propose an 
efficient modulo n multiplication method with factors of 2n and 
2n+2. The advantage of this method is  that we can easily 
factorize 2n and 2n+2 because they are even when n is even or 
odd. The proposed method renovates a modular operation with 
the modulus n  into two alternate operations with moduli 2n+2 
and 2n. The idea is that fast Chinese Remainder Theorem 
(CRT) assessment may work for moduli 2n+2 and 2n, even if it 
does not work for modulus n. The algorithm can improve the 
performance of RSA decryption and reduce the time 
complexity of RSA encryption. The security of RSA 
cryptosystem is based on the difficulty of factoring problem. 
So, the prime factors of modulus of RSA algorithm must be 
strong primes. The large modular exponentiation result can be 
generated from small exponents and moduli. Based on the 
strong prime [4-8] of RSA principle, abusers can employ the 
proposed algorithm to improve the performance of RSA 
decryption.  

In section 2, we review RSA algorithm. Section 3 introduces 
our proposed algorithm for modular multiplication.  
Computational complexity  of our proposed algorithm for 
decryption  in public key cryptosystem (RSA) is presented in 
section 4 before we originate conclusions in section 5.  
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2. RSA algorithm   

RSA algorithm is a classic public-key cryptosystem for 
encryption and decryption. It is a fundamental procedure of 
various security protocols. It can be illustrated in brief as 
follows: 

(i)   Select two large strong prime numbers, p and q. Let n =p q. 

(ii)  Compute Euler’s totient value for  n : φ (n) = (p - 1) (q - 1). 

(iii) Find  a random number e satisfying 1 < e < φ (n) and       
       relatively prime to φ(n) i.e., gcd(e, φ (n)) = 1. 

(iv) Calculate  a number d such that d = e-1 mod φ (n). 

(v)  Encryption: Given a plain text m satisfying m < n, then the    
       cipher  text  c = me mod  n. 

(vi) Decryption : The cipher text is decrypted by m = cd mod n. 

3. A novel algorithm for modular 
multiplication 

In this section, we present a well-organized modulo n 
multiplication algorithm with reasonable factors of 2n+2 and 
2n. Let a, b, and n  be three n-bit positive binary integers where 
a, b < n and gcd (2,2n) = 2 (a prime). Assume 2n and 2n+2 can 
be decomposed into products of mutually prime factors, i.e., 2n 
=2× (l1l2…ls ), where l i and l j are relatively prime to each other 
for 1≤ i < j ≤ s, and 2n+2 =2(n+1) =2× (m1m2…mt), where mi 
and mj are relatively prime to each other  for 1≤ i < j  ≤ t.  

A novel modular multiplication algorithm 

Input:   a,b,n,(l1,l2,…,ls ), (m1,m2,…,mt) 

Output: g = ab mod n 

Step 1 :  Calculate  k = (n2-1) / 2 . 

Step 2  :  Compute s  =ab. 

Step 3 : If s  ≥ k, then q =1, else q =0. 

Step 4 : Compute r j =s mod l j ,  j = 1,….,s. 

Step 5 : Use  CRT algorithm  to compute y1. 

Step 6 : Compute yk =s mod mk, k=1,…t. 

Step 7 : Use  CRT algorithm  to compute y2. 

Step 8 :  Compute g =2-1(y1+ y2 – q') mod n where q' = q if y1 > 
y2  ; otherwise q' = q+1. 

Step 9  : Return (g ) 

 

 

CRT algorithm  

Assume m1,m2,…mt are mutually coprime.  Denote 
M=m1m2…mt .  Given x1,x2,…,xt there exist a unique x, 0 < x < 
M, such that  

x = x1 mod m1 

x = x2 mod m2 

. 

. 

. 

x = xt mod mt 
 
 x can be computed as  
 x = ( x1u1 M1 + x2u2 M2+…+ xtut Mt) mod M      
where  Mi = (m1m2 …mt ) / mi   and ui  = M i

-1 (mod mi). 
 
The following Theorem exhibits that the effect of ˝ab mod n 
˝can be produced from  “(ab) mod (2n)”  and “(ab) mod 
(2n+2)”. The new modular algorithm produces the exact value 
of ˝(a b) mod n" at Step 8.   

Theorem 3.1 : Given y1= x  mod (2n), y2= x mod (2n+2), such 
that 0 ≤  x ≤ 4n(n+1) and gcd(2,2n)=2, then g = x mod (2n+1)= 
2-1(y1+ y2-[x ≥ 2n(n + 1)] - [y1 < y2]) mod (2n+1), where 
Knuth's bracket notation [9] for a Boolean-valued expression E  
i.e.,[E] is 0 if E is false and 1 if E is true. 

Proof : Since 0 ≤  x  ≤ 4n(n+1), we write x = a . (2n+1) + g, 
where 0 ≤ a ≤ 2n and  0 ≤ s ≤ 2n. 

 If  g+a ≤ 2n , then x =a(2n)+(g + a), so y1= x mod (2n)= g + a. 

 If  g + a ≥ 2n+1, then x =(a+1)(2n)+(g+a-2n), so y1= x  mod 
(2n)= g+a-2n 

Similarly, if g – a ≥ 0  then x = r(2n+2)+(g - a), so y2=x mod 
(2n+2)=g-a. 

otherwise, if g –a ≤ - 1 then  x =(a - 1)(2n+2)+(g – a +2n+2),so 
y2= x mod (2n+2) = (g – a +2n+2), 

Thus, there are four cases to consider in computing y1+y2. 

Case (i) : y1+y2 = g + a +g – a = 2g. 

   Then g =2-1(y1+y2) mod 2n+1. 

   Since s + a ≤ 2n and g - a ≥ 0, we obtain x < 2n(n + 1) and 

    y1>y2. 

Case (ii) : y1+y2=g+a+g-a+2n+2 =2g+2n+2 = 2(g+n+1). 

Then g = 2-1(y1+y2-1) mod 2n+1. 

Since g + a ≤ 2n and g-a ≤ -1,we obtain x < 2n(n+1) and y1<y2. 

Case (iii) : y1+y2=g+a-2n -1+1+g-a=2g – 2n = 2(g-n). 

      Then g=2-1(y1+y2-1) mod 2n+1. 
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      Since g + a ≥ 2n+1 and g-a≥0, we obtain x ≥ 2n(n+1)  and 

       y1 > y2. 

Case (iv) : y1+y2=g+a-2n-1+1+g-a+2n+2=2g+2. 

      Then g=2-1(y1+y2-2) mod 2n+1. 

      Since g+a ≥ 2n+1 and g – a ≤ -1, we obtain x ≥ 2n(n+1)   

           and y1<y2. 

Thus, g=2-1(y1+y2-[x ≥ 2n(n+1) ]-[y1<y2]) mod 2n+1, where   
for a Boolean  valued expression B, [B] is 0 if B is false and 1 
if B is true. 

In the modular multiplication computation, the remainder with 
modulus n can be derived from both the remainder with 2n and 
the remainder with 2n+2 by the previous theorem. If 2n and 
2n+2 can be decomposed into products of mutually prime 
factors then a computation with numbers of smaller scale must 
be faster. The computations of the remainder with modulus 2n 
and the remainder with modulus 2n+2 consist of several 
independent parts, so that these computations can also be 
performed in parallel.  

Additionally, 2×(2n+2)/2=2n+2≡1 mod n, so (2n+2)/2 is the 
multiplicative inverse of 2 modulo n. Therefore, the inverse 
value of Step 8 can be computed efficiently. It is clear that the 
proposed modular multiplication algorithm is more efficient 
than direct modular multiplication. 

 

Lemma 1: Given y1 = x mod(2n) and y2 = x mod(2n+2) such 
that 0≤ x <(2n(n+1)) and n is a prime ,then x = (2n+2)y1/2 - 
(2n)y2/2 +(2n)(2n+2)q/2,where q is either 0 or 1. 

Proof:   

              y1   =   x mod (2n)                                                   (A) 

              y2    =   x mod (2n+2)                                              (B) 

 From (A) and (B)  we get,  

  x   =   y1 + 2n q1                                                   (1)  

  x   =   y2 + (2n+2 )q2                                           (2) 

where q1 and q2 are two positive integers. 

Multiplying Eq. (1) by (2n+2) we get 

   x (2n+2) = (2n+2) y1 + (2n)(2n+2)q1                (3) 

Multiplying Eq. (2) by (2n) we get 

   x (2n) = (2n) y2 + (2n)(2n+2)q2                         (4) 

  Using Eq.(3) and Eq.(4),  

     2x  = (2n+2)y1-(2n) y2 + (2n)(2n+2) [q1-q2]                   (5) 

Eq.(5) can be rewritten as  

 x = (n+1)y1 - n y2 + (2n)(n+1)q                           (6) 

 We will prove q is either 0 or 1 as follows: 

Case (i): Assume q < 0.Since y1 ≤ (2n-1) and y2 ≥ 0, we get 

 x ≤ (n+1)(2n-1) - (2n)(n+1) 

    =  -1 

    < 0 

          i.e., x < 0.  

 Which is a contradiction. 

 Therefore, q ≥0. 

Case (ii): Assume that q > 1.Since y1 ≥ 0 and y2 ≤ (2n+1), we 
get 

                  x ≥ - (n) (2n+1) + (2n) (2n+2) 

         = 2n2 + 3n > 2n2 + 2n 

                = 2n(n+1)   

          x > 2n(n+1)   

This result contradicts the given condition x <(2n(n+1)) . 

Hence ,q is not larger than1. 

By above two cases , q must be either 0 or 1. 

Theorem 3.2 : Given y1= x mod (2n) and y2 = x mod (2n+2) 
such that 0 ≤ x <  2n(n+1) and n is a prime ,then x = 2-1(y1+y2-
q) mod (2n+1), where q=0 if y1 ≥ y2 ; otherwise q=1. 

Proof:  Using Lemma 1, 

 x = (n+1)y1 - ny2 + (2n)(n+1)q  ,where q is either 0 or 1. 

 x = 2-1 (y1+y2-q) mod (2n+1)                                            (7) 

                    where q is either 0 or 1.                    

In addition ,we will demonstrate the conditions of q=0 and q=1 
in Eq. (7). 

 From Eq.(2) and Eq.(1), we get 

y2 - y1= (2n)q1 -(2n+2) q2 =(2n)(q1-q2) - 2q2 where y1 ≥ 0,           
y2 ≥ 0,and 2n+1 > 0 and both q1 and q2 are two positive 
integers. 

 Let q = q1 – q2 . Then  
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                y2 – y1 = (2n)q – 2q2                                        (8) 

By Eq. (2) and   0 ≤ x < 2n(n+1) ,0 ≤ y2 ≤ (2n+1), we get 0 ≤ 
y2+(2n+2)q2 < 2n(n+1) 

  Hence, 0 ≤ q2 < n 

  Now by  Eq. (8), 

 y2 – y1 > (2n)q – 2n = 2n(q – 1)                          (9) 

Case (i) :  Let y1 ≥ y2 . 

     Therefore,  y2 – y1 ≤ 0. 

 By Eq.(9), we get (2n)(q – 1) < 0. 

 Since 2n > 0 , we have q – 1< 0  ⇒ q < 1. 

 By Lemma 1 ,q must be equal to 0 when y1 ≥ y2. 

Case (ii): Let y1 < y2. 

                  we get y2 – y1 > 0 

 By Eq. (9),we get (2n)(q – 1) ≥ 0 ⇒ q ≥ 1. 

 By Lemma1, q = 1 when y1 < y2. 

Hence x =  2-1(y1+y2-q) mod (2n+1), where q=0 if y1 ≥ y2; 
otherwise q=1. 

 

Theorem 3.3 : Let 2n+1 be an odd prime ,the multiplicative 
inverse of 

                        2 modular (2n+1) is (n+1) 

Proof: By the equation : 

  2 × (n+1) = (2n+2) ≡ 1 mod (2n+1) 

We get the multiplicative inverse of  2 modular (2n+1) is (n+1). 

 

4. Computational complexity 

In this section, we express our proposed modular multiplication 
method is more efficient than the traditional decryption method 
, decryption method based on CRT, decryption method based 
on Hwang et al.[10].  Nowadays, the bit length of modulus 
should be at least 1kb = 8192 bits in order to make the 
operations secure.  We will use this value in our calculations 
below. 

The notations used for computational complexity of operations 
are  

1.EMOD (y, n) denotes the computational complexity of 
modular exponentiation (xy mod n). 

2.MUL (x), ADD(x) and MOD(x) denotes the computational 
complexity of multiplication, addition  and  modulus  
operations with the bit length of operand is x. 

 (iii)   LEN(x) denotes the bit length of x. 

  (iv)SH denotes  computational complexity of the                   
         shift operator. 

By the addition chain method [9] the computational complexity 
of modular exponentiation is  

EMOD(y,n) =1.5 × LEN (y)[MUL(LEN(n))+ 2 MOD(LEN(n)) 
+ 1]                                                                                         (10) 

The computational complexity of multiplication and addition 
operations can be expressed as follows [13]: 

MUL(x) = 3MUL(x/2) + 5ADD(x) + 2 SH                          (11) 

ADD(x)  = x/32.                                                                    (12) 

Using divide and conquer algorithm[14], the computational 
complexity of modulo operation can be expressed as  

MOD(x) = MOD(x/2) +4MUL(x/2)+1.5ADD(x)+ 3SH       (13) 

w.l.g., we assume that the computational complexities MOD 
(32), MUL(32), ADD(32) and SH take one clock cycle. The 
clock cycles for  MUL(x), MOD(x), and ADD (x) are 
calculated and given in Table I.  

 

Using Eq.(11) and Eq.(12), we get 

MUL (8192 ) = 3 MUL (4096)+ 5 ADD(8192) +2SH 

= 3 MUL (4096) +5 (256) +2(1) 

= 3 MUL (4096)  + 1282 

= 3 [3 MUL (2048)+ 5 ADD(4096) +2SH] +1282 

= 9 MUL (2048) +15 (128) +6+1282 

= 9 [3 MUL (1024)+ 5 ADD(2048) +2] +3208 

=   27   MUL (1024) + 45 (64) +18+3208 

=   27 MUL (1024) + 6106 

=   27 [3MUL(512) + 5ADD(1024) + 2SH] +6106 

=  81 MUL (512) + 135(32)+54 +6106 

=  81 MUL (512) + 10480 

=  81 [3MUL(256) + 5ADD(512) + 2SH] +10480 

= 243 MUL (256) + 405 (16)+162+10480 
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= 243 [3MUL (128) + 5ADD(256) + 2SH]  + 17122 

= 729 MUL (128) + 1215 (8) + 486+17122 

= 729 [3MUL(64) + 5ADD(128) + 2SH]+27328 

= 2187 MUL (64) + 3645 (4) + 1458+27328 

= 2187[3MUL(32) + 5ADD(64) + 2SH]+43366 

= 6561 MUL (32) + 10935 (2) +4374+43366 

=  76171 ] 

By the equations (11), (12) and (13), we get 

MOD (1024) = MOD (512) + 4MUL(512) + 1.5ADD(1024) +   
                          3SH 
 
= [MOD (256) + 4 MUL (256) + 1.5 ADD (512) + 3 SH] +    
    3295 
 
= [MOD (128) + 4 MUL (128) + 1.5 ADD (256) + 3 SH] +    
    4294 

= [MOD (64) + 4 MUL (64) + 1.5 ADD (128) + 3 SH] + 4577 

= [MOD (32) + 4 MUL (32) + 1.5 ADD (64) + 3 SH] + 4646 

= 4657 

 

MOD (2048) = MOD (1024) + 4 MUL (1024) + 1.5 ADD 
(2048) + 3 SH 

= [MOD (1024) + 4(2595) + 1.5(64) + 3] 

= [MOD (1024) +10380 +96 + 3] 

= [MOD (1024) +10479] 

= [MOD (512) + 4 MUL (512) + 1.5 ADD (1024) + 3 SH] +    
    10479 

= [MOD (512) + 4(811) + 1.5(32) + 3] + 10479 

= [MOD (512) + 3295 ] + 10479 

= [MOD (512) ]+13774 

= [MOD (256) + 4 MUL (256) + 1.5 ADD (512) + 3 SH] +     
   13774 

= [MOD (256) + 4(243) + 1.5(16) + 3] + 13774 

= [MOD (256) + 972 + 24 + 3] + 13774 

= [MOD (256) ]+ 14773 

= [MOD (128) + 4 MUL (128) + 1.5 ADD (256) + 3 SH] +   

14773 

= [MOD (128) + 4(67) + 1.5(8) + 3] + 14773 

= [MOD (128) +268 + 12+ 3] + 14773 

= [MOD (128) ]+ 15056 

= [MOD (64) + 4 MUL (64) + 1.5 ADD (128) + 3 SH] + 15056 

= [MOD (64) + 4(15) + 1.5(4) + 3] + 15056 

= [MOD (64) + 60 + 6 + 3] + 15056 

= [MOD (64)] + 15125 

= [MOD (32) + 4 MUL (32) + 1.5 ADD (64) + 3 SH] + 15125 

= [ 1+4(1)+1.5(2) + 3] +15125 

= 15136 clock cycles. 

MOD (4096) = MOD (2048) + 4 MUL (2048) + 1.5 ADD 
(4096) + 3 SH 

= 15136+ 4(8107) + 1.5(128) + 3 

= 15136 +32428 + 192 +3 

= 47759 clock cycles. 

 

MOD (8192) = MOD (4096) + 4 MUL (4096) + 
1.5ADD(8192) + 3SH 

= 47759+ 4(24963) + 1.5(256) + 3 

= 47759 + 99852+ 384 +3 

= 147998 clock cycles. 

By Equation (10), the traditional decryption method can be 
repressed as 

EMOD(y, n) = 1.5 × 8192[MUL(8192) + 2 MOD(8192)+1]. 

That is, the traditional decryption method should take 
4573200384   clock cycles. 

If the decryption method based on CRT only and the bit lengths 
of p and q are equal, the operation of the decryption method 
can be represented as 2 EMOD (y/2, n/2) +  3 ADD(4096) + 
2MUL(4096) + MOD(4096). By this case, the decryption 
method takes   1480580885  clock cycles. 

In Hwang et al.[10] method, p - 1, p + 1, q - 1 and q + 1 can be 
factored into at least three numbers. Without loss of generality, 
in the research papers [5,6, 7, 12, 15] assumed that the bit 
length of the largest prime factor is about {LEN(n)}/4 and 
others are about {LEN(n)} / 8. The total number of operations 
of Hwang et al. [10] method is 4 EMOD (d/4, n/4) + 8EMOD  
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(d/8, n/8) + 4[ADD(2048) + 2MUL(2048) + MOD(2048)] + 
4[ADD(1024) + 2MUL(1024) + MOD(1024)] + 2[ADD(4096) 
+ MUL(4096) + MOD(4096)] + ADD(4096) + 2MUL(4096) + 
MOD(4096). It takes 618359917 clock cycles.   

In our proposed method, 2n, 2n+2, 2m and 2m+2 (i.e., 2n, 
2(n+1),2m,2(m+1))can be factored into at least two numbers 
because 2 is a prime number and n may be prime or not a prime 
and (n+1) can be expressed as product of largest prime factor as 
mentioned by Hwang et al.[10].  Without loss of generality, in  

 

the research papers [5,6, 7, 12, 15] assumed that the bit length 
of the largest prime factor is about {LEN(n)}/8 and others are 
about {LEN(n)} / 16.  The total number of operations of our 
proposed method is 8 EMOD (d/8, n/8) + 16 EMOD (d/16, 
n/16) + 4[ADD(256) + 2MUL(256) + MOD(256)] + 
4[ADD(128) + 2MUL(128) + MOD(128)] + 2[ADD(512) + 
MUL(512) + MOD(512)] + ADD(512) + 2MUL(512) + 
MOD(512). It takes 2715648 clock cycles.   

 

                                                       

                                                       Table I  : The clock cycles for  MUL(x), MOD(x) and ADD (x) 

 

 

 

 

 

 

 

 

Bit length 
of  operand x 

 

 

8192 

 

4096 

 

2048 

 

1024 

 

512 

 

256 

 

128 

 

64 

 

32 

 
 
 

MUL (x) 
(clock cycles) 

 

 

76171 

 

24963 

 

8107 

 

2595 

 

811 

 

243 

 

67 

 

15 

 

1 

 

 
 
 

MOD (x) 
(clock cycles) 

 

 

147998 

 

47759 

 

15136 

 

4657 

 

1362 

 

363 

 

80 

 

11 

 

1 

 

 
 

ADD  (x) 
(clock cycles) 

 

 

256 

 

128 

 

64 

 

32 

 

16 

 

8 

 

4 

 

2 

 

1 
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5. Conclusion 

Security has become more important technique in many 
applications including electronic commerce, secure internet 
access, and virtual private network.  RSA cryptosystem is 
widely used for digital signature which provide privacy and 
authentication.  The basic operation of RSA cryptosystem is 
modular exponentiation which is achieved by repeated modular 
multiplications. RSA can be speeded up by using the Chinese 
Remainder Theorem (CRT) and using strong prime criterion. In 
this paper, we have proposed an efficient modulo n  
multiplication algorithm with reasonable factors of 2n and 
2n+2.  In this paper we have discussed decryption techniques 
in RSA cryptosystem. We have compared our technique with  
methods of traditional, CRT, and Hwang et al.. The speed of 
proposed method is faster than the decryption method on CRT 
and Hwang et al.[10] .  This new method can be applied to not 
only decryption operation but also signing phase of digital 
signature.  

This paper proposes an efficient modular multiplication 
algorithm. The proposed algorithm is based on the idea that the 
remainder for modulus n can be generated from the remainder 
with modulus 2n and the remainder with modulus 2n+2. The 
proposed algorithm greatly enhances the performance of RSA 
decryption, in addition to reducing the computational time of 
RSA encryption.  
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