

Multilevel Queue-Based Scheduling for Heterogeneous Grid

Environment

Kumaresh.V.S#, Prasidh.S#, Arjunan.B#, Subbhaash.S# and Sandhya.M.K#

 # Department of Computer Science and Engineering, Meenakshi Sundararajan Engineering College

Chennai, Tamil Nadu, India

Abstract
Grid computing is the federation of pooling resources so as to

solve large-scale problems. Scheduling is the main issue in grid

computing and is the process of making scheduling decisions

over multiple grid resources. In this paper, we propose a

scheduling technique which classifies the subtasks based on the

priority assigned by the user. This is mainly applicable in places

where the high priority critical subtasks may need to be

scheduled prior to other low priority subtasks. We thus segregate

the subtasks into three queues based on their priority. Subtasks

within each queue are reordered based on two new parameters,

viz. complexity factor and realization factor, with computational

complexity defined as the time of computation of a process. We

evaluate the realization factor as the product of number of

operations per cycle per processor and the speed of the processor.

The subtasks are assigned high priority when both complexity

factor and realization factor are high. Once the processes are

classified into three queues we make use of a technique similar to

round robin that reduces starvation of low and medium priority

subtasks. The effectiveness of Starvation free (SF) Scheduling

algorithm is evaluated through simulation results.

Keywords: Grid Computing, Scheduling, Starvation, Multilevel

queue, heterogeneous systems.

1. Introduction

The popularity of the Internet and the availability of

powerful computers and high-speed networks as low cost

commodity components are changing the way we use

computers today. These have led to the possibility of using

geographically distributed and multi-owner resources to

solve large-scale problems in science, engineering and

commerce. Recent research on these topics has led to the

emergence of a new paradigm known as Grid Computing.

There are two advantages of the platform: easy access to

powerful computing facilities and effective use of the

distributed resources [1].

Computational grids are emerging as a new computing

paradigm for solving the new challenging applications in

science, technology and engineering. A computational grid

is a hardware and software infrastructure that provides

dependable, consistent, pervasive and inexpensive access

to high-end computational capabilities [2]. To achieve the

promising potentials of tremendous distributed resources,

effective and efficient scheduling algorithms are

fundamentally important. Unfortunately, the scheduling

algorithms in traditional parallel and distributed systems,

which usually run on homogeneous and dedicated

resources, e.g. computer clusters, cannot work well in the

new circumstances. Hence we propose the new dynamic

Starvation Free (SF) Scheduling algorithm.

2. Grid Architecture

A grid can be thought of as a distributed system with non-

interactive workloads that involve large number of files.

A distributed grid comprises of the following components

and is represented in Fig1.

Fig1. Grid Architecture

Computational grids involve the intersection of different

geographically distributed communities, resource users and

the resource-providers. Grid monitoring is required by

various super-sets of these communities as everyone wants

to know something about how the Grid is performing [4].

A Resource broker or resource matcher is used to find the

memory and complexity of an incoming process which can

be a program. It is also responsible for assigning the

computing nodes to a task. In other words the Grid

Resource Broker (GRB) is a grid portal that allows trusted

users to create and handle computational/data grids on the

fly exploiting a simple and friendly web-based GUI. GRB

provides location-transparent secure access to Globus

services, automatic discovery of resources matching the

user's criteria, selection and scheduling on behalf of the

user.

The Profiler in a grid environment can be used by the

monitor for predicting the parameters like CPU usage

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 245

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

memory requirement. The Storage Resource Broker is a

piece of software that sits in between users and resources

and provides a storage service by managing users, file

locations, storage resources and metadata information [5].

Fig2. Grid Scheduler

Finally comes the Grid scheduler or grid broker (Fig2)

that makes resource selection decisions in an environment

where it has no control over the local resources. The

resources are distributed, and information about the

systems is often limited or dated [1]. These interactions are

also closely tied to the functionality of the Grid

Information Services. This Grid scheduling approach has

three phases: resource discovery, system selection, and job

execution (Fig3). Let’s look the proposed scheduling

algorithm.

3. Related Work

The concept of computational grids, and grid computing in

general, is being studied by researchers in many fields,

including high-performance computing, networking,

distributed systems and web services. The modelling of

computational grids with heterogeneous resources is just

beginning to be explored [3]. Various algorithms have

been proposed to schedule grid resources efficiently. The

factors that these algorithms are based on vary as the

algorithms themselves. The major factors that have been

touched upon until now include time, performance criteria,

task priority and realization quotient. All these algorithms

do not take user priority into account. The Starvation free

scheduling algorithm has shown that by taking user priority

into account we can reduce starvation and thus in turn

increase the performance of the heterogeneous grid system

on the whole.

4. Proposed Starvation Free(SF) Scheduling

Algorithm

This dynamic (Starvation Free) scheduling algorithm is

primarily based on two factors, namely realization factor

and computational factor. Our aim is to provide the users

of a grid with a starvation free environment and hence we

have taken this as our performance metric. The realization

factor is calculated by considering the work factor, which

is dependent on two parameters namely, number of

operations per cycle and speed of the processor. This

makes sure that the subtasks are assigned to the resources

efficiently. The complexity factor is computed by

considering the waiting time and the computational

complexity of the subtasks in addition to the priority

assigned by the user.

The inclusion of waiting time in the proposed algorithm is

for the purpose of reducing the probability of occurrence

of starvation, thus enabling a good and efficient grid

environment. Both these factors are assigned with three

types of values namely, High, Medium and Low for each

of the subtasks. The overall priority of a subtask is

obtained by combining both these factors in such a way

that the one with both the factors as High is assigned the

higher priority and the one with both the factors as Low is

assigned the lower priority. After prioritizing, when a

collision occurs among subtasks with same priority, we

consider the one with higher user priority to be assigned to

a competing resource. If collision still exists, then the one

with the greater waiting time is considered and if collision

still persists, then the subtask with the better computational

complexity is chosen.

We now maintain three levels of queues for each of the

subtasks with user priority High, Medium and Low and

sort them with the above assigned priority. Now the

subtasks are assigned to the resources in a round-robin

fashion by selecting three subtasks at once from the High

priority queue along with two other subtasks from the

Medium priority queue and one subtask from the Low

priority queue. This ensures that subtasks with high user

priority are given higher preference over than the ones with

lesser priority and care is taken to provide a starvation free

environment. The algorithm is split into three modules as

follows.

STARVATION FREE (SF) Scheduling Algorithm

MODULE 1: Realization Factor assignment

For each of the resource available in the grid, a Work

Factor (WF) is assigned first, which is the product of the

number of operations per cycle and the speed of the

processor. Then the Min, Max and Mid ranges of this

factor are chosen by the user so that the subtasks are

assigned with three types of values namely, High, Medium

and Low as their Realization Factor (RF).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 246

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Assign Realization_Factor (ResourceList RL [])

 While (RL []! =NULL)

 For each RL[i] in RL []

 WF[i] =OC*SP

 /*WF=Work Factor

 OC = No. of operations per cycle per

processor

 SP = Speed of the processor */

 End while

Find the Max, Min & Mid ranges in WF []

 For each subtask in WF []

 If WF[i]>=Max

 RF[i] =High

 /*RF=Realization Factor*/

 Else if WF[i]>=Mid

 RF[i] =Medium

 Else

 RF[i] =Low

 End if

 End for

End Assign Realization_Factor

MODULE 2: Complexity Factor assignment

This subroutine considers two parameters namely, the

waiting time and the computational complexity of the

subtasks. The waiting time of the subtasks is multiplied

with a suitable coefficient ‘i’ (1, 2 or 3) according to the

value of user priority (Low, Medium or High). Then the

Waiting time- Computational complexity (WC) factor for

each subtask is computed by adding computational

complexity with the coefficient and multiplying the waiting

time of the subtasks. Further the Min, Max and Mid ranges

of this factor are chosen by the user so that the subtasks are

assigned with three types of values namely, High, Medium

and Low as their Complexity Factor (CF).

Assign Complexity_Factor (LocalList LL [])

 While (LL []! =NULL)

 For each subtask

 If (User_Priority[i] ==High)

 WC[i] =3*Waiting_Time[i] + Comp[i]

/*Comp[i] = Computational Complexity of the

subtask*/

 Else if (User_Priority[i] ==Medium)

 WC[i] =2*Waiting_Time[i] + Comp[i]

 Else

 WC[i] =Waiting_Time[i] + Comp[i]

 End if

 End while

Find the Max, Min & Mid ranges in WC []

 For each subtask in WC []

 If (WC[i]>=Max)

 CF[i] =High

 /*CF=Complexity Factor*/

 Else if (WC[i]>=Mid)

 CF[i] =Medium

 Else

 CF[i] =Low

 End if

End for

End Assign Complexity_Factor

MODULE 3: Calculation of Starvation Free priority

This takes into account the values of Realization Factor

(RF) and Complexity Factor (CF) for each of the subtask.

The Starvation Free Priority (SF_Priority) for a subtask is

assigned 1 (Highest) when both RF and CF are High and

9(Lowest) when both RF and CF are Low. Thus the

subtasks are sorted according to the value of SF_Priority in

the three levels of user-priority queues and allocated

resources by the scheduler in a round-robin fashion.

Assign SF_Priority (Local_List LL [])

 While (LL []! =NULL)

 For each subtask

If (CF[i] ==High AND RF[i] ==High)

 SF_Priority[i] =1

 /*SF_Priority=Starvation Free Priority*/

Else If (CF[i] ==High AND RF[i] ==Medium)

 SF_Priority[i] =2

Else If (CF[i] ==High AND RF[i] ==Low)

 SF_Priority[i] =3

Else If (CF[i] ==Medium AND RF[i] ==High)

 SF_Priority[i] =4

Else If (CF[i] ==Medium AND RF[i] ==Medium)

 SF_Priority[i] =5

Else If (CF[i] ==Medium AND RF[i] ==Low)

 SF_Priority[i] =6

Else If (CF[i] == Low AND RF[i] ==High)

 SF_Priority[i] =7

Else If (CF[i] == Low AND RF[i] == Medium)

 SF_Priority[i] =8

Else If (CF[i] ==Low AND RF[i] ==Low)

 SF_Priority[i] =9

End if

End while

End Assign SF_Priority

5. Performance Study

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 247

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

First Come First Serve (FCFS):

This scheduling algorithm schedules the subtask on a “First

Come First Serve” basis. This algorithm is simple and is

not based on any of the factors like complexity factor and

realization factor. It shows very low computation results

when compared to other scheduling algorithms since it

assigns resources for subtasks in the order of their arrival.

Shortest Subtask Fastest Node (SSFN):

The Shortest Subtask Fastest Node algorithm assigns the

subtask with a smaller value of computational complexity

to the fastest node available in the resource. Shortest

Subtask Fastest Node is a scheduling algorithm, which

tries to reduce the overall turnaround time of the subtask.

SSFN is more stable in handling subtask and hence

outperforms FCFS scheduling algorithm.

Longest Subtask Fastest Node (LSFN):

The scheduling algorithm, commonly used for the

assignment of complex subtasks to high efficiency

resources is the Longest Subtask Fastest Node (LSFN)

algorithm. Though there is room for improvement, it tries

to reduce the overall execution time of the subtask. From

the LSFN algorithm we can infer that LSFN outperforms

FCFS and the SSFN as the subtasks are assigned to faster

nodes in the resource which leads to shorter execution

time. All the above mentioned scheduling algorithms lead

to starvation of low and medium priority resources whereas

the proposed algorithm does not.

SF Scheduling algorithm:

The main focus of this algorithm is to provide a starvation-

free grid environment. This is done by considering the

waiting time as another main parameter in the scheduling

process in addition to the user-priority and computational

complexity of the subtasks. Thus the subtasks with high

values of waiting time, user-priority and computational

complexity are allocated to the fastest resource(s) first,

which prevents the problem of indefinite waiting. After

being assigned with priorities, the subtasks are now put up

in three different levels of queues namely, High, Medium

and Low user-priority. The scheduler is made to schedule

the subtasks in such a way that these subtasks are allocated

to the available resources in a round-robin fashion. For

instance, if there are six resources available at a time in the

grid and there are a long list of subtasks waiting for

allocation; then the SF algorithm is applied to classify

these subtasks in three levels of queues. Then the subtasks

are assigned to the six available resources by choosing

three from the High user-priority queue, then two more

form the Medium user-priority queue and finally one

subtask from the Low user-priority queue. Thus the

performance is really high here when compared to its

predecessors.

6. Conclusion

Multi-level queue based scheduling mechanism is put

forward along with the algorithm for reducing starvation.

The proposed Starvation Free (SF) Scheduling algorithm

can be applied widely and it helps in scheduling resources

efficiently, resulting in a starvation free grid environment.

Results from simulation experiments demonstrate that the

algorithm optimizes the resource nodes and resource

utilization rate gets a substantial increase. The multi-level

queue based scheduling algorithm for the heterogeneous

grid environment has high performance as compared to the

other scheduling algorithms for the grid environment. In

the future, our algorithm should be improved to be able to

broadcast and move waiting jobs into execution as soon as

resource has completed jobs, without having to wait for the

next scheduling event.

References

[1] Amir M Bidgoli, Zahra Masoudi Nezad: A new scheduling

algorithm design for grid computing tasks, 5th Symposium

on Advances in Science and technology, Iran.

[2] G.Sumathi, S.Sathyanarayanan, R.Santhosh Kumar

“MidSFN Local Scheduling for Heterogeneous Grid

Environment”, IJCSI, Vol.9, Issue 3, No.3, May 2012.

[3] Fangpeng Dong and Selim G. Akl, Scheduling Algorithms

for Grid Computing: State of the Art and Open Problems

[4] Cho-Chin Lin and Chun-Wei Shih, An Efficient

Scheduling Algorithm for Grid Computing with Periodical

Resource Reallocation.

[5] Economic-Based Modeling for Resource Scheduling in

Grid Computing, Proceedings of the 2012 IEEE 16th

International Conference on Computer Supported

Cooperative Work in Design.

Kumaresh V S is pursuing final year B.E. Computer Science and
Engineering in Meenakshi Sundararajan Engineering College,
Chennai, Tamil Nadu, India. He is a member of CSI and also an
Oracle Certified Professional - Java SE 6 Programmer. His
research interests include Scheduling in Grid, Design, Analysis
and Optimization of Scheduling algorithms and Stream Analytics
in Cluster Technology.

Prasidh S is pursuing final year B.E. Computer Science and
Engineering in Meenakshi Sundararajan Engineering College,
Kodambakkam, Tamil Nadu, India. He is a member of IEEE, CSI
and a Microsoft Student Partner. His research interests include
Cloud Computing, Big Data analytics, Parallel and Distributed
Systems.

Arjunan B is pursuing final year B.E. Computer Science and
Engineering in Meenakshi Sundararajan Engineering College,
Kodambakkam, Tamil Nadu, India. He is a member of CSI. His
research interests include Databases, Data mining and Grid
Computing.

Subbhaash S is pursuing final year B.E. Computer Science and
Engineering in Meenakshi Sundararajan Engineering College,
Kodambakkam, TamilNadu, India. He is a member of CSI. His
research interests include Grid Scheduling and Cloud Computing.

Sandhya MK received her Bachelor of Engineering in Computer
Science and Engineering from University of Madras and Master of
Engineering in Computer Science and Engineering from Anna
University. She is working as Assistant Professor in the
Department of Computer Science and Engineering in Meenakshi
Sundararajan Engineering College. She is currently pursuing
research in security issues in wireless sensor networks at Anna
University. She is a Life member of ISTE.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 248

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

