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Abstract 
 
In this paper, based on the our previous researchs about 
generalized modus ponens with linguistic modifiers for If … Then 
rules, we propose generalized If…Then…Else inference rules 
with linguistic modifiers in linguistic many–valued logic 
framework with using hedge moving rules for approximate 
reasoning. 
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1.   Introduction  

Information science has brought about an effective tool 
to help people engaged in computing and reasoning based 
on natural language. The question is how to model the 
information processing of human? A method of 
computation with words (CWW) has been studied by Zadeh 
[1,2], with the construction of the fuzzy set representing the 
concept of language and the reasoning based on the 
membership function. In [3] N. C. Ho, Wechler, W. 
proposed hedge algebraic structures in order to model the 
linguistic truth value domain. Based on the hedge algebraic 
(HA) structures, N.C. Ho et al [4] gave a method of 
linguistic reasoning, but also posed further problems to 
solve.  

Studied in [10-15] are generalized If…Then…Else 
inference rules for approximate reasoning with fuzzy 
conditional proposition based on membership function of 
fuzzy sets. 

In [9,10], we studied generalized modus ponens with 
linguistic modifiers for If…Then rules in linguistic many 
valued-logic and its application for approximate reasiong. 

In this paper, following our previous works, we are 
studing generalized If…Then…Else inference rules with 
linguistic modifiers in linguistic many-valued logic, with 
using hedge moving rules and hedge inverse mapping to 
solve the problem of reasoning. 

The paper consists of five parts: the preliminaries 
followed by section 2, presenting basic knowledge serving 
as theoretical foundation for the research. Section 3 is for 
research in linguistic many-valued logic based on the 
linguistic truth value domain. Section 4 shows the 
generalized If…Then…Else inference rules  in linguistic 

many–valued logic framework with using hedge moving 
rules for approximate reasoning. The last section is the 
conclusion. 

2.   Preliminaries 

In this session, we would present some concepts, 
properties of the monotonous hedge algebra, hedge inverse 
mapping that have been researched in [3-5,8-10]. 

2.1 Monotonous hedge algebra 

Consider a truth domain consisting of linguistic values, 
e.g., VeryVeryTrue, PossiblyMoreFalse; etc. In such a truth 
domain the value VeryVeryTrue is obtained by applying the 
modifier Very twice to the generator True. Thus, given a set 
of generators G = (True; False) and a nonempty finite set H 
of hedges, the set X of linguistic values is {δc | c ∈ G, δ ∈  
H∗ }.  

Furthermore, if we consider True > False, then this 
order relation also holds for other pairs, e.g., VeryTrue 
>MoreTrue. It means that there exists a partial order > on 
X. 

In general, given nonempty finite sets G and H of 
generators and hedges resp., the set of values generated 
from G and H is defined as X = {δc | c ∈ G, δ ∈  H∗ }. 
Given a strictly partial order > on X, we define u ≥ v if u > 
v or u = v. Thus, X is described by an abstract algebra HA = 
(X, G, H, >). 

Each hedge h ∈ H can be regarded as a unary function 
h: X → X; x ⟼hx. Moreover, suppose that each hedge is an 
ordering operation, i.e., ∀h ∈ H, ∀x∈ X: hx > x or hx< x. 
Let I ∉ H be the identity hedge, i.e., Ix = x for all x ∈ X. 
Let us define some properties of hedges in the following 
definition. 

Definition 1 A hedge chain σ is a word over H, σ∈ H−. 
In the hedge chain hp… h1, h1 is called the first hedge 
whereas hp is called the last one. Given two hedges h; k, we 
say that:  

i) h and k are converse if  ∀x∈ X: hx > x iff  kx < x; 
ii) h and k are compatible if  ∀x∈ X: hx > x iff  kx > x; 
iii) h modifies terms stronger or equal than k, denoted by 

h  ≥ k, if  ∀x∈ X:  (hx ≤ kx ≤  x) or (hx ≥ kx ≥ x); h > 
k if h ≥ k and h ≠k; 
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iv) h is positive w.r.t. k if ∀x∈ X: (hkx<kx< x) or 
(hkx>kx> x); 

v) h is negative w.r.t. k if ∀x∈ X: (kx<hkx< x) or 
(kx>hkx> x). 

The most commonly used HA are symmetric ones, in 
which there are exactly two generators, like e.g., G = {True; 
False}. In this paper, we only consider symmetric HA. Let 
G = {c+ , c−}, where  c+ > c−.   c+ and  c− are called 
positive and negative generators respectively. The set H is 
decomposed into the subsets 𝐻+ = {ℎ ∈ 𝐻| ℎ𝑐+ > 𝑐+} and 
𝐻− = {ℎ ∈ 𝐻| ℎ𝑐+ < 𝑐+}. For each value x∈ X, let 
𝐻(𝑥)  =  {𝜎𝑥|𝜎 ∈ 𝐻∗}.  

Definition 2 An abstract algebra (X, G, H, >), where H 
≠ ∅, G = {c+, c−} and X = {𝜎𝑐|𝑐 ∈ 𝐺,𝜎 ∈ 𝐻∗}, is called a 
linear symmetric HA if it satisfies the following conditions: 

(A1) For all ℎ ∈ 𝐻+and 𝑘 ∈ 𝐻−, h and k are converse. 
(A2) The sets 𝐻+ ∪ {𝐼} and 𝐻− ∪ {𝐼} are linearly 

ordered with the least element I. 
(A3) For each pair ℎ, 𝑘 ∈ 𝐻, either h is positive or 

negative wrt k. 
(A4) If ℎ ≠ 𝑘and hx<kx then h’hx<k’kx, for all h, k, h’, 

k’ ∈ H and x∈ X. 
(A5) If  𝑢 ∉  𝐻(𝑣)and u < v (u > v) then u <hv (u >hv, 

resp.), for any h ∈ H.  
Example 1 Consider a HA  (X, {True; False}, H, >), 

where H = {Very,More,Probably,Mol}, and (i) Very and 
More are positive wrt Very and More, negative wrt 
Probably and Mol; (ii) Probably and Mol are negative wrt 
Very and More, positive wrt Probably and Mol.  

H is decomposed into H+ = {Very, More} and H-= 
{Probably, Mol}. In 𝐻+ ∪ {𝐼}we have Very > More > I, 
whereas in 𝐻− ∪ {𝐼}we have Mol> Probably > I. 

Definition 3 (Mono- HA) A HA (X; G;H;>) is called 
monotonic if each ℎ ∈ 𝐻+(𝐻−) is positive wrt all 𝑘 ∈
𝐻+(𝐻−), and negative wrt all ℎ ∈ 𝐻−(𝐻+). 

As defined, both sets 𝐻+ ∪ {𝐼}and 𝐻− ∪ {𝐼}are linearly 
ordered. However, 𝐻 ∪ {𝐼}is not, e.g., in Example 1 Very ∈ 
H+ and Mol ∈ H- are not comparable. Let us extend the 
order relation on 𝐻+ ∪ {𝐼} and 𝐻− ∪ {𝐼}to one on 𝐻 ∪ {𝐼}as 
follows. 

Definition 4 Givenℎ, 𝑘 ∈ 𝐻 ∪ {𝐼}, ℎ ≥ℎ 𝑘iff 
i) ℎ ∈ 𝐻+, 𝑘 ∈ 𝐻−; or 
ii) ℎ, 𝑘 ∈  𝐻+ ∪ {𝐼} and ℎ ≥ 𝑘; or 
iii) ℎ, 𝑘 ∈  𝐻− ∪ {𝐼} and ℎ ≤ 𝑘. ℎ >ℎ 𝑘iffℎ ≥ℎ 𝑘 and 

ℎ ≠ 𝑘 . 
Example 2 The HA in example 1 is Mono- HA. The 

order relation>h in𝐻 ∪ {𝐼}, is Very >h More >h I >h 
Probably >h Mol. 

Then, in Mono-HA, hedges are "context-free", i.e., a 
hedge modifies the meaning of a linguistic value 
independently of preceding hedges in the hedge chain. 

2.2  Inverse mapping of hedge 

In application of hedge algebra into direct reasoning on 
natural language [4], using hedge moving rule RT1 and 
RT2: 

RT1:
(𝑝(𝑥;ℎ𝑢),𝛿𝑐)
(𝑝(𝑥;𝑢),𝛿ℎ𝑐)

;                 RT2:
(𝑝(𝑥;𝑢),𝛿ℎ𝑐)
(𝑝(𝑥;ℎ𝑢),𝛿𝑐)

 

 

Example 3 Applying rule of hedge moving, there are two 
equal statements: “It is true that Robert is very old” and “It 
is very true that Robert is old”. It means that if the reliability 
of the sentence: “Robert is very old” is “True”, the 
reliability of the sentence: “Robert is old” is “Very True” 
and vice versa. 

However the above hedge moving rules are not applied 
in such case as from the true value of the sentence: “John is 
young” is “Very True” , we can not count the true value of 
the sentence: “John is more young”. To overcome the above 
weak point, in [5-7] inverse mapping of hedge is proposed. 

Definition 5 
Given𝑀𝑜𝑛𝑜 − 𝐻𝐴 = (𝑋, {𝑐+, 𝑐−},𝐻,≤) and hedge 

h ∈ 𝐻. We take AX=X∪{0,W,1} of which 0, W, 1 are the 
smallest, neutral, and biggest element in AX respectively. A 
mapping ℎ−: 𝐴𝑋 ⟶ 𝐴𝑋 is called inverse mapping of h if it 
meets the following conditions: 

i) ℎ−(𝛿ℎ𝑐) = 𝛿𝑐 of which 𝑐 ∈ 𝐺 = {𝑐+, 𝑐−}, 𝛿 ∈ 𝐻∗ 
ii) 𝑥 ≤ 𝑦 ⟹ ℎ−(𝑥) ≤ ℎ−(𝑦) of which 𝑥,𝑦 ∈ 𝑋 
In case of inverse mapping of a hedge string, we  

determine it, based on inverse mapping of single hedges as 
follows: 

(ℎ𝑘ℎ𝑘−1 … ℎ1)−(𝛿𝑐) = ℎ𝑘
−(… (ℎ1

−(𝛿𝑐) … ) 
Then the rule (RT2) is generalized as follows:  

GRT2: 
(𝑝(𝑥;𝑢),𝛿𝑐)

(𝑝(𝑥;ℎ𝑢),ℎ−(𝛿𝑐))
 

In [5-8], it is shown that inverse mapping of hedge always 
exists and inverse mapping value of hedge is not unique. 

3.  Linguistic many-valued logic 

3.1  Lingusitic truth valued domain 

In real life, people only use a string of hedge with finite 
length  for an vague concept in order to have new vague 
concepts and only use a finite string of hedges for truth 
values. This makes us think about limiting the length of the 
hedge string in the truth value domain to make it not exceed  
L – any positive number. In case that intellectual base has a 
value having length of hedge string bigger than L, we need 
to approximate the value having hedge string ≤ 𝐿. Based on 
monotonous hedge algebra Mono – HA, we set finite 
monotonous hedge algebra to make linguistic truth value 
domain. 
Definition 7 (𝐿 − 𝑀𝑜𝑛𝑜 − 𝐻𝐴) 𝐿 −𝑀𝑜𝑛𝑜 − 𝐻𝐴, L is a 
natural number, is a Mono – HA with standard presentation 
of all elements having the  length not exceed L+1. 
Definition 8 (Linguistic truth value domain) A linguistic 
truth value domain AX taken from a 𝐿 − 𝑀𝑜𝑛𝑜 − 𝐻𝐴 =
(𝑋, {𝑐+, 𝑐−},𝐻,≤) is defined as AX=X∪{0,W,1} of which 
0, W, 1 are the smallest, neutral, and biggest elements 
respectively in AX. 
Example 4  Given finite monotonous hedge algebra 
2 −𝑀𝑜𝑛𝑜 − 𝐻𝐴 = (𝑋, {𝑐+, 𝑐−}, {𝑉,𝑀, 𝑃},≤)(V=Very; 
M=More; P=Possibly) (𝑃 ∈ 𝐻−,𝑀,𝑉 ∈ 𝐻∓,𝑀 < 𝑉). We 
have the linguistic truth value domain AX = { 0, 
VVc−,MVc−, Vc−, PVc−, VMc−, MMc−, Mc−, PMc−, c−, 
VPc−, MPc−, Pc−,PPc−, W, PPc+, Pc+, MPc+, VPc+, 
c+, PMc+, Mc+,  MMc+, VMc+, PVc+, Vc+, MVc+, 
VVc+, 1}. 
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Propositions 1 If we have 𝐿 − 𝑀𝑜𝑛𝑜 − 𝐻𝐴 =
(𝑋, {𝑐+, 𝑐−},𝐻,≤), the linguistic truth value domain AX is 
finite to number of elements |𝐴𝑋| = 3 + 2∑ |𝐻|𝑖𝐿

𝑖=0  and 
elements of AX  is linearly ordered. (The symbol |𝐴𝑋| is the 
number of elements of AX and |𝐻| is the number of H  
hedges). 
Proof  Suppose that |𝐻| = 𝑛, we always have 3 elements 
0,1,W; 
With i=0, we have 2 more elements{𝑐+, 𝑐−}; i=1, we have 
2𝑛1 more elements; … with i=L we have 2𝑛𝐿 more 
elements.  
Then |𝐴𝑋| = 3 + 2(1 + 𝑛 + ⋯+ 𝑛𝐿) = 3 + 2∑ |𝐻|𝑖𝐿

𝑖=0  
According to the definition of linear order relation in 
monotonous hedge algebra 𝑀𝑜𝑛𝑜 − 𝐻𝐴, we see that, 
elements in AX are linearly ordered. ∎ 
Example 5  According to Example 4, we have the language 
true value domain (is linearly ordered) AX = {v1 = 0, v2 = 
VVc−, v3 =MVc−, v4 = Vc−, v5 = PVc−, v6 = VMc−, v7 = 
MMc−, v8 = Mc−, v9 =PMc−, v10 = c−, v11 = VPc−, v12 = 
MPc−, v13 = Pc−, v14 =PPc−,  v15 = W, v16 = PPc+, v17 = 
Pc+, v18 = MPc+, v19 = VPc+, v20 = c+, v21 =PMc+, v22 = 
Mc+, v23 = MMc+, v24 = VMc+, v25 = PVc+, v26 =Vc+, v27 
= MVc+, v28 = VVc+, v29 = 1}. 
We can determine the index of v by Algorithm 1: 
Algorithm 1 (Finding index) 
Input: Domain (Truth) of 𝐿 − 𝑚𝑜𝑛𝑜 − 𝐻𝐴 is 
AX, 
𝐻− = �ℎ−𝑞 , … , ℎ−1�,𝐻+ = �ℎ1, … , ℎ𝑝�     
𝑥 = 𝑙𝑘𝑙… 𝑙1𝑐 with 𝑐 ∈ {𝑇,𝐹}, 𝑘 ≤ 𝐿      
Output: Finding index so that 𝑣𝑖𝑛𝑑𝑒𝑥  =  𝑥 
Methods: 

M =  3 +  2 ∗  � (p + q)i
L

i=0
 

if x=0 then index=1; 
if x=W then index=(M+1)/2; 
if x=1 then index=M; 
index = (M+1)/2 + 1 + 𝑞𝐴𝑋1  
for i=1 to k-1 do 
{  find j such that 𝑙𝑖 =  ℎj  
   if j>0 then index =index+(𝑗 − 1)|𝐴𝑋𝑖| +
 𝑞|𝐴𝑋𝑖+1| + 1; 
   if j<0 then index = index-(|𝑗| − 1)|𝐴𝑋𝑖| −
 𝑝|𝐴𝑋𝑖+1| − 1; 
} 
 
find j such that 𝑙𝑘 =  ℎj /*j > 0 then 𝑙𝑘 ∈
H+, else 𝑙𝑘 ∈ H− */ 
if k<L then  
{  if j>0 then index =index+(𝑗 − 1)|𝐴𝑋𝑘| +
 𝑞|𝐴𝑋𝑘+1| + 1; 
   if j<0 then index = index-(|𝑗| −
1)|𝐴𝑋𝑘| −  𝑝|𝐴𝑋𝑘+1| − 1; 
} 
Else index =index+𝑗; 
if c=False then index = (M+1) - index 
return (index) 
{* �𝐴𝑋𝑖� = ∑ (𝑝 + 𝑞)𝑘𝐿−𝑖

𝑘=0  *} 
Based on the algorithm to identify the inverse map  
of hedge and properties studied in [8], we can establish 

the inverse map for 2 −𝑀𝑜𝑛𝑜 − 𝐻𝐴 = (𝑋, {𝑐+, 𝑐−}, {𝑉,𝑀,
𝑃},≤) with a note that, if ℎ−(𝑥) = 𝑊 with 𝑥 ∈ 𝐻(𝑐+) we 
can consider ℎ−(𝑥) = 𝑉𝑃𝑐+ the smallest value of 𝐻(𝑐+); if  
ℎ−(𝑥) = 1 with 𝑥 ∈ 𝐻(𝑐+) we can consider ℎ−(𝑥) = 𝑉𝑉𝑐+ 
the biggest value of 𝐻(𝑐+); If ℎ−(𝑥) = 𝑊 with 𝑥 ∈ 𝐻(𝑐−) 
we can consider ℎ−(𝑥) = 𝑉𝑃𝑐− the biggest value of 𝐻(𝑐−); 
if  ℎ−(𝑥) = 0 with 𝑥 ∈ 𝐻(𝑐−) we can consider ℎ−(𝑥) =
𝑉𝑉𝑐− the smallest value of 𝐻(𝑐−). The following is an  
example on inverse  
map of 2 −𝑀𝑜𝑛𝑜 − 𝐻𝐴 = (𝑋, {𝑐+, 𝑐−}, {𝑉,𝑀, 𝑃},≤): ( 
𝑘 ∈ 𝐻 ) (see Table 1) 

 
Table 1. Inverse mapping of hedges 

 𝑉− 𝑀− 𝑃− 
0 0 0 0 

𝑘𝑉𝑐− 𝑉𝑉𝑐− 𝑉𝑉𝑐− 𝑘𝑉𝑐− 
𝑘𝑀𝑐− 𝑉𝑉𝑐− 𝑘𝑉𝑐− 𝑀𝑐− 
𝑐− 𝑉𝑐− 𝑀𝑐− 𝑐− 

𝑉𝑃𝑐− 𝑉𝑀𝑐− 𝑃𝑀𝑐− 𝑀𝑃𝑐− 
𝑀𝑃𝑐− 𝑀𝑀𝑐− 𝑃𝑐− 𝑀𝑃𝑐− 
𝑃𝑐− 𝑀𝑐− 𝑃𝑐− 𝑃𝑐− 
𝑃𝑃𝑐− 𝑃𝑀𝑐− 𝑉𝑃𝑐− 𝑃𝑐− 

W W W W 
𝑃𝑃𝑐+ 𝑃𝑃𝑐+ 𝑃𝑃𝑐+ 𝑉𝑃𝑐+ 
𝑃𝑐+ 𝑃𝑐∓ 𝑀𝑃𝑐+ 𝑐+ 
𝑀𝑃𝑐+ 𝑀𝑃𝑐+ 𝑉𝑃𝑐+ 𝑀𝑐+ 
𝑉𝑃𝑐+ 𝑀𝑃𝑐+ 𝑉𝑃𝑐+ 𝑀𝑀𝑐+ 
𝑐+ 𝑉𝑃𝑐+ 𝑐+ 𝑉𝑀𝑐+ 

𝑘𝑀𝑐+ 𝑐+ 𝑘𝑀𝑐+ 𝑘𝑉𝑐+ 
𝑘𝑉𝑐+ 𝑘𝑀𝑐+ 𝑉𝑀𝑐+ 𝑉𝑉𝑐+ 

1 1 1 1 

3.2  Linguistic many – valued logic  

Many–valued logic is a generalization of Boolean logic. It 
provides truth values that are intermediate between True 
and False. We denote by N the number of truth degrees in 
many-valued logic. 

 
The linguistic truth value domain 𝐴𝑋 = {𝑣𝑖 , 𝑖 =

1,2, … ,𝑛} with 𝑣1 = 0 and 𝑣𝑛 = 1 in finite monotonous 
hedge algebra and linear order or 𝐴𝑋 = �𝑣𝑖 , 𝑖 =
1,2, … ,𝑛;  𝑣1 = 0, 𝑣𝑛 = 1   𝑎𝑛𝑑  ∀ 1 ≤ 𝑖, 𝑗 ≤ 𝑛: 𝑣𝑖 ≥  𝑣𝑗 ⟺
𝑖 ≥ 𝑗�.  

 
In linguistic many–valued logic, the truth degree of 

proposition is 𝑣𝑖 ∈ 𝐴𝑋. 
 
T-norms, T-conorm, implicators and negation operator 

are used as in Fuzzy logic. In many-valued logic, the 
aggregation functions of lukasiewicz are often used. In this 
context and with N truth degrees, they are difined by [9-11]: 

𝑇𝐿�𝑣𝑖 , 𝑣𝑗� = 𝑣𝑚𝑎𝑥(1,𝑖+𝑗−𝑁) 

𝑆𝐿�𝑣𝑖 , 𝑣𝑗� = 𝑣𝑚𝑖𝑛(𝑁,𝑖+𝑗+1) 

𝐼𝐿�𝑣𝑖 , 𝑣𝑗� = 𝑣𝑚𝑖𝑛(𝑁,𝑁−𝑖+𝑗) 
𝑁(𝑣𝑖) = 𝑣𝑁−𝑖+1 
𝑣𝑖 ∧ 𝑣𝑗 = 𝑣min (𝑖,𝑗) 
𝑣𝑖 ∨ 𝑣𝑗 = 𝑣max (𝑖,𝑗) 
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We can use T-norms, T-conorm, implicators, ∧, ∨ and 
negation operator above in linguistic many-valed logic with 
𝑣𝑖 , 𝑣𝑗 ∈ 𝐴𝑋. 

4. Generalized If…Then…Else inference rules 
with linguistic modifiers 

4.1  Generalized If…Then…Else rules 

One vague sentence can be represented by p(x;u), herein 
x is a variable, u is a vague concept. In general, by an 
assertion is one pair A=(p(x;u), δc) (Symbol: (P,v)), herein  
p(x;u) is a vague sentence, δc  is a linguistic truth value. 
One knowledge base K is a finite set of assertions. From the 
given knowledge base K, we can deduce new assertions by 
using on derived rules. In [4,5,6], the hedge moving rules 
are set: 

       RT1: 
(𝑝(𝑥;ℎ𝑢),𝛿𝑐)
(𝑝(𝑥;𝑢),𝛿ℎ𝑐)

; GRT2: 
(𝑝(𝑥;𝑢),𝛿𝑐)

(𝑝(𝑥;ℎ𝑢),ℎ−(𝛿𝑐))
 

And   
(p(x,NOT(u)), δc) ⇔(p(x,u),NOT(δc))       (RN) 
(p(x,NOT(δu))⇔(p(x, δ(NOT(u)))               (RNH) 

(with δ is the hedge string) 
In [9,10], the generalized modus ponens was proposed  

GMP:  
(𝑝(𝑥;𝑢)→𝑞(𝑦,𝑣),𝑣𝑖),(𝑝(𝑥;𝑢),𝑣𝑗)

�𝑞(𝑦,𝑣),𝑇𝐿(𝑣𝑖,𝑣𝑗�
 

EGMP:  
(𝑝(𝑥;𝑢),𝑣𝑖) → �𝑞(𝑦;𝑣),𝑣𝑗�,(𝑝(𝑥;𝑢),𝑣𝑘)

�𝑞(𝑦,𝑣),𝑇𝐿(𝐼𝐿(𝑣𝑖,𝑣𝑗�,𝑣𝑘)
 

Herein, EGMP is an extension of EGMP. 
From GMP, EGMP and RN, we have: 

NGMP:  
(𝑝(𝑥;𝑁𝑂𝑇(𝑢))→𝑞(𝑦,𝑣),𝑣𝑖),(𝑝(𝑥;𝑢),𝑣𝑗)

�𝑞(𝑦,𝑣),𝑇𝐿(𝑣𝑖,𝑁(𝑣𝑗))�
 

NEGMP:  
(𝑝(𝑥;𝑁𝑂𝑇(𝑢)),𝑣𝑖) → �𝑞(𝑦;𝑣),𝑣𝑗�,(𝑝(𝑥;𝑢),𝑣𝑘)

�𝑞(𝑦,𝑣),𝑇𝐿(𝐼𝐿(𝑣𝑖,𝑣𝑗�,𝑁(𝑣𝑘))
 

 
Let us consider the fuzzy inference in which the fuzzy 

conditional “If…Then…Else” is contained: 
(ITE): 

Antecedent 1:   If X is A Then Y is B Else Y is C 
Antecedent 2:      X is A’ 
Conclusion:                             Y is D 

 
Arcording to [12,13], “If-Then-Else” inferences rules 

may be a quite natural demand: 
 

Antecedent 1:   If X is A Then Y is B Else Y is C 
Antecedent 2:      X is A 
Conclusion:                             Y is B 

 
Antecedent 1:   If X is A Then Y is B Else Y is C 
Antecedent 1:      X is NOT A 
Conclusion:                                               Y is C 

When, “If-Then-Else” inferences rules can be divided 
into two subschemes, that is: 

 
(IT1): 

Antecedent 1:   If X is A Then Y is B 
Antecedent 2:      X is A’ 
Conclusion:                             Y is B’ 

(IT2): 
Antecedent 1:   If X is NOT A Then  Y is C 
Antecedent 1:      X is A’ 
Conclusion:                                       Y is C’ 

According to [12,13], the conclusion “Y is D” in the 
“If…Then…Else” inference scheme, should be “Y is B’” 
and “Y is C’”, that mean:  

If X is A Then Y is B Else Y is C ⇔ If X is A Then Y is B 
AND If X is NOT A Then  Y is C 

Therefore, the conclusion D in (ITE) is computed by 
aggregation Min of B’ in (IT1)  and C’ in (IT2). 

We can generalized (IT1) and (IT2) with linguistic 
modifiers following: 

Given 𝛼,𝛽, 𝛿,𝜃, 𝜕,𝛼′,𝛽′, 𝛿′, 𝜕′ is the hedge strings. Get 
𝛼 = ℎ1ℎ2 … ℎ𝑘, symbol 𝛼−1 = ℎ𝑘ℎ𝑘−1 …ℎ1. We have 
following propositions (Generalized If-Then-Else inference 
rules  with linguistic modifiers): 

Proposition 2  
( 𝑝(𝑥; 𝛿𝑢) → 𝑞(𝑦; 𝜕𝑣), 𝛼𝑐) 
(𝑝(𝑥; 𝛿′𝑢), 𝛼′𝑐) 

(𝑞(𝑦;𝜕𝑣),𝑇𝐿(𝛼𝑐, 𝛿−�𝛼′𝛿′−1𝑐�)) 
Proof 
According to RT1 we have: (𝑝(𝑥;𝑢),𝛼′𝛿′−1𝑐); 
Then, applying GRT2 we have:  

(𝑝(𝑥; 𝛿𝑢), 𝛿−(𝛼′𝛿′−1𝑐)); 
Finally, using GMP we have:  

(𝑞(𝑦; 𝜕𝑣),𝑇𝐿(𝛼𝑐, 𝛿−�𝛼′𝛿′−1𝑐�) ∎ 
Proposition 3 

( 𝑝(𝑥; 𝛿𝑢),𝛼𝑐) → (𝑞(𝑦;𝜕𝑣), 𝛽𝑐) 
(𝑝(𝑥; 𝛿′𝑢), 𝛼′𝑐) 
(𝑞(𝑦; 𝜕′𝑣), 𝜕′−(𝑇𝐿(𝐼𝐿(𝛼𝛿−1𝑐,𝛽𝜕−1𝑐),𝛼′𝛿′−1𝑐))) 

Proof: 
Applying RT1 we have: 

(𝑝(𝑥;𝑢),𝛼𝛿−1𝑐); (𝑞(𝑦; 𝑣), 𝛽𝜕−1𝑐);( 𝑝(𝑥;𝑢),𝛼′𝛿′−1𝑐); 
Then, using EGMP we have: 

(𝑞(𝑦; 𝑣),𝑇𝐿(𝐼𝐿(𝛼𝛿−1𝑐,𝛽𝜕−1𝑐),𝛼′𝛿′−1𝑐)); 
Finally, using GRT2 we have: 

(𝑞(𝑦; 𝜕′𝑣),𝜕′−(𝑇𝐿(𝐼𝐿(𝛼𝛿−1𝑐,𝛽𝜕−1𝑐),𝛼′𝛿′−1𝑐))) ∎ 

Proposition 4  
( 𝑝(𝑥;𝑁𝑂𝑇(𝛿𝑢)) → 𝑞(𝑦; 𝜕𝑣), 𝛼𝑐) 
(𝑝(𝑥; 𝛿′𝑢), 𝛼′𝑐) 

(𝑞(𝑦;𝜕𝑣),𝑇𝐿(𝛼𝑐,𝑁(𝛿−�𝛼′𝛿′−1𝑐�)) 
Proof 
According to RT1 we have: (𝑝(𝑥;𝑢),𝛼′𝛿′−1𝑐); 
Then, applying GRT2 we have:  

(𝑝(𝑥; 𝛿𝑢), 𝛿−(𝛼′𝛿′−1𝑐)); 
Finally, using NGMP we have:  

(𝑞(𝑦; 𝜕𝑣),𝑇𝐿(𝛼𝑐,𝑁(𝛿−�𝛼′𝛿′−1𝑐�)) ∎ 
Proposition 5 

( 𝑝(𝑥;𝑁𝑂𝑇(𝛿𝑢)),𝛼𝑐) → (𝑞(𝑦;𝜕𝑣), 𝛽𝑐) 
(𝑝(𝑥; 𝛿′𝑢), 𝛼′𝑐) 

(𝑞(𝑦; 𝜕′𝑣),𝜕′−(𝑇𝐿(𝐼𝐿(𝛼𝛿−1𝑐,𝛽𝜕−1𝑐),𝑁 �𝛼′𝛿′
−1
𝑐�))) 

Proof: 
Application RNH we have: 

𝑝(𝑥;𝑁𝑂𝑇(𝛿𝑢)) ⇔ 𝑝(𝑥; 𝛿(𝑁𝑂𝑇(𝑢))) 
Applying RT1 we have: 

(𝑝(𝑥;𝑁𝑂𝑇(𝑢)),𝛼𝛿−1𝑐); 
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 (𝑞(𝑦; 𝑣), 𝛽𝜕−1𝑐);( 𝑝(𝑥;𝑢),𝛼′𝛿′−1𝑐); 
Then, using NEGMP we have: 

(𝑞(𝑦; 𝑣),𝑇𝐿(𝐼𝐿(𝛼𝛿−1𝑐,𝛽𝜕−1𝑐),𝑁 �𝛼′𝛿′
−1
𝑐�)); 

Finally, using GRT2 we have: 

(𝑞(𝑦; 𝜕′𝑣),𝜕′−(𝑇𝐿(𝐼𝐿(𝛼𝛿−1𝑐,𝛽𝜕−1𝑐),𝑁 �𝛼′𝛿′
−1
𝑐�))) ∎ 

 

4.2  Deductive procedure besed on generalized 
“If…Then…Else” inference rules  

The deduction method is derived from knowledge base K 
using the above rules to deduce the conclusion (P,v), we can 
write 𝐾 ⊢ (𝑃, 𝑣). Let C(K) denote the set of all possible 
conclutions: 𝐶(𝐾) = {(𝑃, 𝑣): 𝐾 ⊢ (𝑃, 𝑣)}. A knowledge 
base K is called consistent if , from K, we can not deduce 
two assertions (P,v) and (┐P,v). 

Here, we build an deduction procedure (Algorithm 2) 
based on hedge moving rules and Proposition (2-5) for 
solving approximate reasoning. 
 
Problem Suppose that we have a given knowledge base K. 
By deduction rules, how can we deduce conclusions from 
K? 
Algorithm 2 (Deductive procedure) 
Input: Knowledge base set K; 𝐿 − 𝑀𝑜𝑛𝑜 − 𝐻𝐴 
Output: Truth value of the clause (𝑃, 𝑣) 
Method: 
Step 1: Using the moving rules RT1 and 

GRT2 to determine the dim 
unknown claims in the knowledge 
base. In the case of the 
linguistic truth value of the 
new clause does not belong to 
AX, or the hedge series length 
is greater than L, we must 
approximate the hedge series to 
hedge series of length L by 
removing the outside left hedge. 
(The outside left hedge of hedge 
series make little change to the 
semantics of linguistic truth 
value);  

Step 2: Finding the truth value 
expression of the conclusion 
using Proposition (2-5); 

Step 3: Transfering the truth value 𝛿𝑐 
in the expression found in Step 
2 into 𝑣𝑖: 𝑣𝑖 =  𝛿𝑐 (Algorithm 1) 

Step 4: Calculating the truth value 
expression based on T-norms, T-
conorm, implicators, negate and 
∧ (Min) operation was defined 
above an application inverse of 
hedge; 

Step 5: Making the truth value of 
conclusion clause.  

4.3  Examples 

Example 6  Given the following knowledge base: 

i) If a student studying more hard Then he will be a good 
employee is possibly very true Else he will be a good 
employee is possibly very false  

ii) Mary is studying very hard is more true. 
Find the truth value of the sentence : “Mary will be a good 
employee” 

We can be divided into two subschemes: 
(IT1): 

i) If a student studying more hard  then he will be a 
good employee is possibly very true.  

ii) Mary is studying very hard is more true. 
 (IT2):  

i) If a student studying NOT(more hard)  then he will 
be a good employee is possibly very false  

ii) Mary is studying very hard is more true. 
 
(IT1): 

By formalizing. (i) – (ii) an be rewritten by follow: 
1. (studying(x;MHard) → emp(x;good),PVTrue)) 

 (Base on the hypothesis(i)) 
   

2. (studying(Mary; VHard), MTrue) 
                         (Base on (ii)) 

Based on the knowledge base (i-ii) and Proposition 2, we 
have following result: 

(emp(x;good), 𝑇𝐿(𝑃𝑉𝑇𝑟𝑢𝑒,𝑀−(𝑀𝑉𝑇𝑟𝑢𝑒))) 
We have calculations: (Under Example 5, Table 1 and  T-

norms, T-conorm and implicators defined in Part 3) 
𝑀−(𝑀𝑉𝑇𝑟𝑢𝑒) = 𝑉𝑀𝑇𝑟𝑢𝑒 = 𝑣24 

𝑃𝑉𝑇𝑟𝑢𝑒 = 𝑣25 
 𝑇𝐿(𝑃𝑉𝑇𝑟𝑢𝑒,𝑀−(𝑀𝑉𝑇𝑟𝑢𝑒)) = 𝑇𝐿(𝑣25,𝑣24) = 𝑣20 

 
(IT2): 

By formalizing. (i) – (ii) an be rewritten by follow: 
1. (studying(x;NOT(MHard)) → emp(x;good),PVFalse)) 

 (Base on the hypothesis(i)) 
   

2. (studying(Mary; VHard), MTrue) 
                         (Base on (ii)) 

Based on the knowledge base (i-ii) and Proposition 4, we 
have following result: 

(emp(x;good), 𝑇𝐿(𝑃𝑉𝑇𝑟𝑢𝑒,𝑁(𝑀−(𝑀𝑉𝑇𝑟𝑢𝑒)))) 
We have calculations: (Under Example 5, Table 1 and  T-

norms, T-conorm, implicators and negation operator  
defined in Part 3) 

𝑁(𝑀−(𝑀𝑉𝑇𝑟𝑢𝑒)) = 𝑁(𝑉𝑀𝑇𝑟𝑢𝑒) = 𝑁(𝑣24) = 𝑣6 
𝑃𝑉𝑇𝑟𝑢𝑒 = 𝑣25 

 𝑇𝐿(𝑃𝑉𝑇𝑟𝑢𝑒,𝑀−(𝑀𝑉𝑇𝑟𝑢𝑒)) = 𝑇𝐿(𝑣25,𝑣6) = 𝑣2 
 
According to (IT1) and (IT2), we have the truth value of 

the sentence  “Mary will be a good employee ” is 
(emp(Mary; good), 𝑣20 ∧ 𝑣2 = 𝑣2 = 𝑉𝑉𝐹𝑎𝑙𝑠𝑒), which 
means Mary will be a good employee is  Very Very False.  

 
Example 7  Given the following knowledge base: 

i) If a student studying more hard is possibly true Then 
he will be a good employee is possibly very true Else 
Then he will be a good employee is possibly very 
false 

ii) Mary is studying very hard is more true. 
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Find the truth value of the sentence : “Mary will be a good 
employee” 
 
(IT1): 

i) If a student studying more hard is possibly true Then 
he will be a good employee is possibly very true  

ii)  Mary is studying very hard is more true. 
(IT2): 

i) If a student studying NOT(more hard) is possibly 
true Then he will be a good employee is possibly very 
false 

ii) Mary is studying very hard is more true. 
 
(IT1) 
By formalizing. (i) – (iii) an be rewritten by follow: 

1. (studying(x;MHard),PTrue) → emp(x;good),PVTrue)) 
 (Base on the hypothesis(i)) 

   
2. (studying(Mary; VHard), MTrue) 

                         (Base on (ii)) 
Based on the knowledge base (i-ii) and Proposition 3, we 

have following result: 
(emp(x;good),𝑇𝐿(𝐼𝐿(𝑃𝑀𝑇𝑟𝑢𝑒,𝑃𝑉𝑇𝑟𝑢𝑒),𝑀𝑉𝑇𝑟𝑢𝑒)) 

We have calculations: (Under Example 5, Table 1 and  T-
norms, T-conorm and implicators defined in Part 3) 

𝑃𝑀𝑇𝑟𝑢𝑒 = 𝑣21;  𝑃𝑉𝑇𝑟𝑢𝑒 = 𝑣25;𝑀𝑉𝑡𝑟𝑢𝑒 = 𝑣27 
𝐼𝐿(𝑃𝑀𝑇𝑟𝑢𝑒,𝑃𝑉𝑇𝑟𝑢𝑒) = 𝐼𝐿(𝑣21, 𝑣25) = 𝑣29 

𝑇𝐿(𝑣29, 𝑣27) = 𝑣27 
(IT2) 
By formalizing. (i) – (iii) an be rewritten by follow: 

1. (studying(x;NOT(MHard)),PTrue) → 
emp(x;good),PVTrue)) 

 (Base on the hypothesis(i)) 
   

2. (studying(Mary; VHard), MTrue) 
                         (Base on (ii)) 

Based on the knowledge base (i-ii) and Proposition 5, we 
have following result: 

(emp(x;good),𝑇𝐿(𝐼𝐿(𝑃𝑀𝑇𝑟𝑢𝑒,𝑃𝑉𝑇𝑟𝑢𝑒),𝑀𝑉𝑇𝑟𝑢𝑒)) 
We have calculations: (Under Example 5, Table 1 and  T-

norms, T-conorm and implicators defined in Part 3) 
𝑃𝑀𝑇𝑟𝑢𝑒 = 𝑣21;  𝑃𝑉𝑇𝑟𝑢𝑒 = 𝑣25 
𝑁(𝑀𝑉𝑡𝑟𝑢𝑒) = 𝑁(𝑣27) = 𝑣3 

𝐼𝐿(𝑃𝑀𝑇𝑟𝑢𝑒,𝑃𝑉𝑇𝑟𝑢𝑒) = 𝐼𝐿(𝑣21, 𝑣25) = 𝑣29 
𝑇𝐿(𝑣29, 𝑣3) = 𝑣3 

 
According to (IT1) and (IT2), we have the truth value of 

the sentence  “Mary will be a good employee ” is 
(emp(Mary; good), 𝑣27 ∧ 𝑣3 = 𝑣3 = 𝑀𝑉𝐹𝑎𝑙𝑠𝑒), which 
means Mary will be a good employee is  More Very False.   

5. Conclusion 

With the studies on finite monotonous hedge algebra as the 
linguistic truth value domain, the linguistic truth value 
domain is finite and the linear order organized elements can 
act as base value set for truth domain of logic system. In this 
paper, we studied generalized If…Then…Else inference 
rules with linguistic modifiers and building an deduction 
procedure and use it to solve the language deduction 

problem. In furture works, we would be to study an 
inference formalization for more complex rules.  
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