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Abstract

More than ever, designing new types of highly scalable data
intensive computing is needed to qualify the new generation of
scientific computing and analytics effectively perform complex
tasks on massive amounts of data such as clustering, matrix
computation, data mining, information extraction ... etc.
MapReduce, put forward by Google, is a well-known model for
programming commodity computer clusters to perform large-
scale data processing in a single pass. Hadoop is the most
popular open-source implementation of the MapReduce model
which provides a simple abstraction for large-scale distributed
algorithm; it has become a popular distributed computing and
data analysis paradigm in recent years. While, Hadoop
MapReduce suits well for embarrassingly parallel problems, it
suffers significant troubles when dealing with iterative
algorithms; as a consequence, many alternative frameworks that
support this class of algorithms were created. In this paper, we
propose architecture for such configuration implemented in an
SPC (Scientific Private Cloud) prototype, using the Hadoop 2.0
next generation platform to allow the use of alternative
programming frameworks respecting a hybrid approach, while
retaining the scalability and fault tolerance of Hadoop
MapReduce. By adapting scientific problems to execute them in
our Scientific Cloud, experiments conducted show the
effectiveness of the proposed model and its impact on the ease of
frameworks handling.

Keywords: Scientific Cloud, Hadoop next generation, Hybrid
approach.

1. Introduction

Nowadays, the amount of data generated and stored by
scientific instrumentation/simulation (e.g., massive-scale
simulations, sensor deployments, high-throughput lab
equipment), businesses and industry (e.g., web-data, click-
stream, network-monitoring log), and Internet publishing
and archiving is growing exponentially. IDC (International
Data Corporation a market research, analysis and advisory)
predicts [1] that the "digital universe" — the total
aggregation of information and content created and
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replicated— will surpass 7ZB (7 trillion gigabytes) by
2015, growing by a factor of 9 in just five years.

The increase in the volume of data also increases the
amount of computing power needed to transform raw data
into meaningful information. In such situations, the
required processing power far exceeds the processing
capabilities of individual computers, leading to the use of
parallel/distributed computing strategies. Many research
works were conducted to design effective frameworks
providing the ability to analyze huge amounts of data in a
distributed and parallel environment across hundreds or
thousands of machines in a reasonable delay.

MapReduce is considered a high productivity alternative to
traditional parallel programming paradigms for enterprise
computing and scientific computing [2]. It was developed
first by Google in 2004 [3] as a parallel computing
framework to perform distributed computing on a large
number of commodity computers. As the Google
implementation is proprietary, several open-source
implementations of MapReduce model have emerged, the
most famous of which is Hadoop [4]. Hadoop was
primarily supported by Yahoo, and currently hosted as an
Apache project. Major stakeholders like Facebook, HP and
Ebay ...etc., are using Hadoop to perform various tasks
such as sorting, log analyzing, machine learning and so on.
Scientific computing is usually associated with complex
data-intensive computations such as high—dimensional
scientific simulations and requires a huge amount of
computer resources. Cloud Computing, with its promise of
provisioning virtually infinite resources, seems to be a
good alternative for solving these scientific computing
problems.

In the Cloud, Amazon ElasticMapReduce [5] offers
Apache Hadoop as a hosted service on the Amazon AWS
(Amazon Web Services) cloud environment that provides
resizable compute capacity.

Although Hadoop MapReduce, is widely used, many
works [2] [6] [7] [8] show that for specific configurations
and applications like processing iterative algorithms,
Hadoop MapReduce loses significantly its performance
and efficiency especially when the number of iterations is
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significant. Alternative MapReduce frameworks such as
Twister [7], Spark [6], and Haloop [8] are known for their
efficient implementations of the MapReduce paradigm that
work effectively over iterative algorithms.

In this paper, we adopt the next generation Hadoop 2.0 as
a principal component in our architecture to design a next
generation of scientific computing in the Cloud enabling a
hybrid approach that shall allow the utilizations of
alternative frameworks than Hadoop MapReduce.

The rest of the paper is structured as follows.

Section 2 discusses the related work. Section 3 introduces
the proposed architecture and describes the implemented
environment. Section 4 outlines the performances of our
system through two experiments. Section 5 concludes the
paper and describes the future research directions.

2. Related work

The parallel processing in Spark is based on the
MapReduce model with support of iterative applications,
Spark utilizes RDDs (resilient distributed datasets) [9] that
can be explicitly persisted in memory across the
computation nodes. However, Spark framework does not
support group reduction operation and only uses one task
to collect the reduced result, which can affect the
scalability of algorithms.

Twister is an alternative of Hadoop MapReduce, it allows
long-lived map tasks to keep static data in memory
between jobs in a manner of “configure once, and run
many times” [7], using publish/subscribe messaging
middleware system for command communication and data
transfers. The unique feature of Twister is to support
iterative MapReduce programming model. However,
Twister does not currently implement fault tolerance.
Saurabh Sehgal et al. [10] introduce SAGA (Simple API
for Grid Applications) — an API that support multiple and
independent distributed programming - to enable
interoperability for distributed scientific applications.

In the Cloud, Amazon ElasticMapReduce [5] offers
Apache Hadoop as a hosted service on the Amazon AWS
(Amazon Web Services) cloud environment. AppEngine-
MapReduce [11] is an open source library for
doing MapReduce-style computations on the Google App
Engine platform. However, none of them supports iterative
MapReduce.

Beside, many researches focus on the performance
improvement of aspects in Hadoop MapReduce such as
optimizing its job scheduling policy in a cloud
environment.

In academia, Open Cirrus [13] is an example of a closed
federation between universities and research centers in
order to aid research in design, provisioning, and
management of services in scale of multi data centers. We
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present in [12] the beneficial side effect of using Cloud
services for education and research purpose. Ali
Bagherinia et Al. [14] present a model to execute long
computations and other services in cloud computing.

3. Architecture and implementation

The section starts with introducing the architecture of a
next generation of Scientific Computing in the Cloud.
After providing a description of the small-scale Scientific
Private Cloud infrastructure, architectural details of
Hadoop 2.0 and Spark, the main components of our model,
are given.

3.1 The overall architecture

The overall architecture of our Scientific Private Cloud is
described in Fig 1. This architecture aims to help building
a next generation of Scientific Cloud infrastructure for
research purposes.

Scientific Applications

Computation Layer

Runtime

Infrastructure software

Hardware

Fig. 1: The overall architecture of our Scientific Private Cloud.

The proposed model has a layered architecture consisting
of 5 layers :

e The scientific applications layer aims to provide a
set of scientific primitives to the client.

e The computation layer is the most important and
innovative component in this architecture. It gives
the ability to use other programming frameworks
than MapReduce. Practically, the programming
framework used to develop a scientific
application is no more of big importance.

e The runtime layer is the core of computation. It is
responsible for managing aspects like scheduling,
jobs, tasks and fault tolerance. This layer is the
main container of the data-intensive scientific
application.
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Fig. 2: Infrastructure implementation of our Scientific Private Cloud.

e The infrastructure software layer is a low level
layer delivering a platform for server
virtualization and cloud computing by combining
the isolation and multi-tenancy capabilities
required to provide services over the cloud. This
layer is orchestrated by a massively scalable cloud
operating system which controls
provisioning/release of virtual resources.

e The hardware layer represents the hardware
infrastructure.

By relying heavily on virtualization technology, the
proposed model takes advantage of:

e The best use of distributed physical resources by
avoiding hardware re-initialization when starting
and stopping runtime environments in a VM

(Virtual Machine).

e The minimal effort needed to maintain physical
resources.

e The quick deployment of services and

applications.

e The use of highly customized environments by
enabling the simultaneous coexistence of different
runtime environments on the same physical
infrastructure.
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e The effective isolation of CPU and memory
performance between VMs.

e The enhanced flexibility and elasticity of the
Cloud Environment by permitting dynamic
migration of VMs running on physical servers of
the same resource pool.

3.2 Next Generation Hadoop 2.0 (MRv2 or YARN)

Considered as the main component of our architecture, the
next generation of Hadoop or MRv2 (MapReduce version
2) (out of Apache) allows building and developing
distributed applications using programming frameworks
other than MapReduce, through introducing a new aspect
of Hadoop called YARN (Yet Another Resource
Negotiator) technology. In this case, MapReduce is
considered just a computation layer on top of the scheduler
component and can be swapped out.

Hadoop 2.0 is based on two major functions, a single
Resource Manager and a per-application job life-cycle
management called Application Master. The Resource
Manager has two main services:
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e A pluggable Scheduler, which manages and
applies the resource scheduling policy in the
Hadoop cluster.

e An Applications Manager, which manages
running Application Masters in the cluster; this
component is responsible for starting and
stopping application masters and for monitoring
and restarting them on different nodes in case of
failure.

In addition, The Hadoop open source project of Apache
includes the following modules [4]:

e Hadoop Common: representing the core of
Hadoop, it is the common utilities that support the
other Hadoop modules.

e Hadoop Distributed File System (HDFS): The
distributed file system that provides high-
throughput access to application data.

e Hadoop YARN: A framework for job scheduling
and cluster resource management.

e Hadoop MapReduce: A YARN-based system
for parallel processing of large data sets; it is the
native implementation of the MapReduce
paradigm on Hadoop.

3.3 Spark framework

Spark is an alternative open source MapReduce framework
that supports applications based on iterative algorithms
which reuses a working set of data across multiple parallel
operations. The most important enhancement of Spark is
that it allows some data to be shared between the mappers
while they are computing, a fact that significantly reduces
required data over the network. Indeed, Spark framework
distinguishes between static data that not change during the
iterations and dynamic data which may change in the
course of each iteration. Spark overcomes this problem of
data reuse across iterations by providing a new storage
primitive called RDDs (resilient distributed datasets) [9],
which allows clients to store data in memory through
queries. This can be useful, for example, if each of the
mappers is looking for an optimal solution, and they all
want to share the current best solution and to eliminate bad
solutions early.

Spark framework is built on top of Mesos project [15]
[16]: a “cluster operating system” that permits multiple
parallel applications to entirely share a cluster and
provides an API for applications to launch tasks on a
cluster. To develop Spark applications faster, Spark
integrates Scala [17], a popular functional language for the
JVM; it allows developers to manipulate distributed
datasets (RDDs) like local collections.
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3.4 Experimental setup

To analyze the performance of our model for scientific
computing, we set up a small-scale private Cloud using
open source components on Hadoop 2.0 (YARN)
composed of one master acting as the Resource Manager
and 18 nodes, each node is a virtual machine with 2.4 GHz,
2 GB of RAM memory and 20 GB disk space allocated for
HDFS (Hadoop Distributed File System), making the total
size of 360 GB, these nodes are monitored through a Node
Manager service. In this work, we use XCP (Xen Cloud
Platform) [18] and OpenStack [19] to deliver Cloud
resources and services to the client, XCP is an open source
enterprise-ready server virtualization and cloud computing
platform, based on the Xen Hypervisor and support a wide
range of guest operating systems. While OpenStack is an
open source software for building private and public
Clouds, in our case it will orchestrate our Scientific Private
Cloud.
Fig. 2 depicts the physical infrastructure employed in the
implementation of our SPC, following a hybrid approach.
The infrastructure enables the building and deploying
distributed applications based on alternative frameworks
other than MapReduce, which is natively configured in
Hadoop, while using the next generation of Hadoop 2.0
platform. Indeed, clients can take full advantage of all
functionalities of the Hadoop 2.0 platform such as
scheduling, managing jobs and fault tolerance.
We decided to test the Spark MapReduce framework for
iterative algorithms, using a YARN implementation of
Spark [20] over the Hadoop 2.0 platform as a hybrid
approach. First, we assessed the easiness of switching from
a MapReduce framework to another (in this case the Spark
framework) in just few seconds while maintaining the same
virtual resources and retaining the scalability and fault
tolerance of Hadoop 2.0 platform. Then, we compared the
performances of our implementation through the proposed
Scientific Private Cloud respectively with three different
configurations, running applications into:

e The default framework MapReduce of Hadoop

2.0.
e An implementation of a YARN compatible
version of Spark over Hadoop 2.0.
e A simple Spark cluster.

4. Evaluation and performance

In this section, we present the evaluation of our Scientific
Private Cloud prototype. Actually, the two experiments
conducted on our next generation Scientific Cloud
prototype in a small-scale private Cloud, show the
efficiency of the proposed approach.
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Usually used for solving linear algebra required in
complex  scientific  applications, MM  (Matrix
Multiplication) and the CG (Conjugate Gradient) are the
two basic primitives implemented in these experiments.
The two experiments aim at demonstrating that our
prototype is suitable for this class of iterative algorithms
using the Spark framework as a computation engine over
the Hadoop 2.0 platform (Hadoop 0.23.1 version).

In this evaluation, we compare three different
implementations of Matrix Multiplication and Conjugate
Gradient algorithms, varying the matrix dimension from
100 to 8000. The first, MapReduce-Hadoop, uses the
native MapReduce framework as a computation layer of
the Hadoop 2.0 platform. The second configuration,
Spark-Hadoop, is an alternative implementation of the
Hadoop MapReduce computation layer; it uses a YARN
based version of Spark [20] over the Hadoop 2.0 platform
as a hybrid approach. And the third configuration uses a
basic Spark Cluster, we simply named it Spark.

4.1 experiment 1: Matrix Multiplication (MM)

For many data-intensive scientific applications such as
large-scale numerical analysis, computational physics, and
graph rendering, massive matrix computation is used as the
primary means. In this experiment we implement a simple
iterative approach of the matrix multiplication algorithm.
We assume that square matrix A and B are used for
multiplication in the following algorithm:
Adapting matrix multiplication to the MapReduce Model
The Mapper:
e  Map tasks will need the following inputs :
o The input files for A and B are streams
of (key,value) pairs in matrix format.
o Eachkey is a row index of B.
o Each value is the corresponding matrix
column vector of the row.
e Then, the map task multiplies all columns of i-th
row of A with the received column vector.
The reducer:
e The reduce task collects the i-th product into the
result matrix C=A*B.
After running the algorithm according to the three
configurations, the results are depicted in Fig. 3, Fig. 4,
and Fig. 5. The Fig. 3 shows the run times of the MM and
CG algorithms through MapReduce-Hadoop, while Fig. 4
and Fig. 5 represent respectively the run times of the MM
and CG algorithms through Spark-Hadoop and Spark
implementations.
The fact of using Spark over Hadoop permits to mitigate
the data locality problem of Hadoop, which explains the
comparable performance, as depicted in Fig. 4, of Spark-
Hadoop and Spark implementations.
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Fig. 3 Run times for MM and CG over MapReduce-Hadoop.

4.2 experiment 2: CG (Conjugate Gradient)

The Conjugate Gradient algorithm (CG) is an iterative
algorithm that is commonly used to solve systems of linear
equations in matrix form:
Ax=b

Where the A is a Known, square, symmetric, and positive-
definite matrix, b is a known vector and x is the solution
vector of the linear system.
CG is a relatively complex algorithm, insofar as, it is not
possible to directly adapt the whole algorithm to
MapReduce model. To deploy CG algorithm, first we have
to reduce matrix and vector operations to the MapReduce
model separately, indeed, operations needed to be adapted
are:

e  Matrix — vector multiplication

e Dot product

e Two vectors addition

e  Vector and scalar multiplication
Although, some minor computation is done outside of
these methods, the majority of the time is spent in these
operations above.
Fig. 3 shows the run times of the CG algorithm through
MapReduce-Hadoop implementation, and Fig. 5 depicts
the run times of the CG algorithm through Spark-Hadoop
and Spark implementations.
In both MM and CG implementations, comparing the
Spark-Hadoop and MapReduce-Hadoop run times clearly
shows that Spark-Hadoop is more efficient for iterative
algorithms. Spark-Hadoop implementation can solve larger
problem size in less time and for the same size problem it
is 3-7 times faster than MapReduce-Hadoop
implementation, when running on 18 nodes. The
significant advantages in using Spark over Hadoop come
from:

e [ts ability to keep static input data in memory

across iterations.
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e Using the Resource Manager of next generation
Hadoop which was revamped into an enhanced
scheduler and applications manager.

e  The strong fault tolerance of Hadoop
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Fig. 4 Run times for MM over Spark-Hadoop and Spark.
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Fig. 5 Run times for CG over Spark-Hadoop and Spark.

Although, Spark implementation, as depicted in Fig. 4 and
Fig. 5, performs much better for the iterative MM and CG
algorithms. It has several limitations for distributed
applications, first, when it comes to treating data intensive
tasks such as Terabytes of data (2 TB for example) Spark
would require more than 236 nodes with 8 GB of memory
each to only store the data into the memory, not to mention
the memory needed for the rest of the application, the
framework and the operating system.

4.3 Common performances

As described earlier, the Spark framework distinguishes
between static data that not change during the iterations
and dynamic data which may change in the course of each
iteration. This is the main characteristic ~which
distinguishes Spark from Hadoop MapReduce and explains
the efficient support for iterative algorithms by Spark
implementations in both experiments.
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In addition, we note the flexibility achieved when
swapping between the frameworks. Indeed, switching from
the first configuration where we used the default Hadoop
MapReduce framework, to the configuration implementing
Spark framework as a YARN based component while
using the same Hadoop 2.0 environment takes only 13
seconds in average (for all the eighteen-18 SPC nodes) to
deploy and configure all prerequisites to run scala
applications over Spark environment. However, to reset
and configure the overall environment (releasing virtual
resources, create new ones, initializing the runtime) to set
up a Spark Cluster takes approximately 22 minutes.

5. Conclusions and Perspectives

This work presents a next generation of Scientific
Computing in the Cloud using Hadoop 2.0 platform, By
adopting such architecture, it has been shown that Spark
can be a powerful complement to Hadoop for iterative
applications while retaining, on one hand, the same
runtime environment namely Hadoop 2.0 for scientific
applications, and on the other hand, the full performances
of Hadoop MapReduce known for working effectively
over embarrassingly parallel algorithms.

In future Work, we envision to deploy more frameworks,
such as MPI, Twister... and so on, over the next
generation of Hadoop 2.0 platform, and examine their
efficiency through the implementation of complex
algorithms using greater numbers of nodes. Also, we plan
to extend the proposed architecture to use Public Cloud
resources from providers like AWS or Google App
Engine.

Furthermore, we believe that the use of Hadoop platform
in scientific computation is even more promising than it is
narrated in the current distributed systems literature.
Therefore we will focus our work on this platform by
elaborating an abstract computation engine component
based on the YARN technology, enabling Hadoop users to
deploy straightforwardly multiple scientific applications
developed using multiple frameworks over the same
environment.
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