
Multimode Multimode Multimode Multimode FPGAwith Flexible EFPGAwith Flexible EFPGAwith Flexible EFPGAwith Flexible Embedded mbedded mbedded mbedded FPUSFPUSFPUSFPUS

Dr. G. MURUGABOOPATHI1, S.HARIHARASITARAMAN 2 AND G.SANKAR3

1Head of Research & Development, Vel Tech Multi Tech Dr.Rangarajan Dr.Sakuntha Engineering College, Chennai, Tamil Nadu,

India.

2Assistant Professor,Department of IT , Kalasalingam University,
Srivilluputur, Tamil Nadu, India.

3Assistant Professor,Department of CSE, Vel Tech Hghi Tech Dr.Rangarajan Dr.Sakuntha Engineering College,

 Chennai, Tamil Nadu, India.

Abstract
The Performance of field-programmable gate arrays
used for Floating-point applications are poor due to
complexity of floating-point arithmetic.
Implementing floating-point units on FPGAs
consume a large amount of resources. This makes
FPGAs less attractive for use in floating-point
intensive applications. There is a need for embedded
FPUs in FPGAs. We proposed a flexible multimode
embedded FPU for FPGAs that can be configured to
perform a wide range of operations. The floating-
point adder and multiplier in embedded FPU can be
configured to perform one double-precision operation
or two single-precision operations in parallel. To
increase flexibility, access to large integer multiplier,
adder and shifters in the FPU is provided. Benchmark
circuits were implemented on both a standard Xilinx
Virtex-V FPGA and FPGA with embedded FPU
blocks. We design modified to allow an unrounded
product to be fed to the floating-point adder to
minimize rounding error, like in a dedicated floating-
point MAC unit.
Keywords: Very Large Scale Integration Embedded
Floating Point Units, Virtual Floating Point Unit,
FPGA.

1. Introduction

The term floating point refers to the fact that the radix
point (decimal point, or, more commonly in
computers, binary point) can "float"; that is, it can be
placed anywhere relative to the significant digits of
the number. This position is indicated separately in
the internal representation, and floating-point
representation can thus be thought of as a computer
realization of scientific notation. Over the years, a
variety of floating-point representations have been

used in computers. However, since the 1990s, the
most commonly encountered

representation is that defined by the IEEE
754 Standard[4].

The IEEE754 standard floating-point format consists
of three fields—a sign bit(s) , a biased exponent(e) ,
and a mantissa(f) . Single-precision numbers have a
1-bit sign, 8-bit exponent, and 23-bit mantissa as
shown in Fig. 1. Double-precision numbers have a 1-
bit sign, 11-bit exponent, and 52-bit mantissa as
shown in Fig. 1.

 Fig.1 IEEE floating point formats.

The three fields make up a floating-point number
according to Eq.(1) single-precision and Eq.(2)
double-precision. There is an implied “1” to the left
of the binary point (except in the special case of
denormal numbers)
 X=(-1)s × 1.f × 2(e-127) (1)
 X=(-1)s × 1.f × 2(e-1023) (2)

Floating-point numbers have an advantage of being
able to cover a much larger dynamic range compared

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 136

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

to fixed-point numbers. The disadvantage is that
floating-point computations are much more complex
to implement in hardware.

2. Modelling

The proposed architecture for the FPGA with
embedded multimode FPUs is an island-style FPGA
structure based on the Xilinx Virtex-V. The
embedded FPUs would be distributed in a regular
arrangement around the FPGA [2], surrounded by
fine-grained configurable logic blocks (CLBs) as
illustrated in Fig.2.

The number and arrangement of the the embedded
FPUs would be decided by the FPGA vendor and
would depend on the size of the FPGA. In this work,
embedded FPUs are placed evenly spaced in two
columns near the center of the FPGA.

Fig 2. Architecture of FPGA with embedded FPU
blocks.

3. Embedded FPU blocks

The FPU block contains one floating-point multiplier
and one floating-point adder. These can be used
independently, or configured in a multiply-add
configuration by enabling a bus connecting the output
of the multiplier to an input of the adder.

Fig 3. Structure of embedded FPU block

Fig.3 shows the structure of the embedded FPU
block. Optional registers are available at the inputs
and outputs of the FPU block to allow for easy
implementation of pipelined or multicycle circuits.
To increase the usefulness of the floating-point units,
several key integer components within the floating-
point units were made accessible. These components
are as follows.

1. Dual-mode 53 53-bit integer multiplier in

the floatingpoint multiplier. Can be configured as two
independent 24×24-bit multipliers.

2. Dual-mode 53-bit integer adder in the
floating-point adder. Can be configured as
independent 27-bit and 26-bit adders.
 3. The 106-bit right shifter in the pre-
alignment stage of the floating-point adder. Since
maximum shift is 64 places, access is given to 64-bits
of the shifter so that it appears to be a 64-bit shifter
with maximum shift of 64 places.
 4. The 54-bit left shifter in the normalization
stage of the floating-point adder. Maximum shift is
54 places.

3.1 Floating Point Adder Datapath

The conventional floating-point addition

algorithm consists of five stages—exponent
difference, pre-alignment, addition, normalization
and rounding .

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 137

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 4..Floating point adder datapath.

Given floating-point numbers X1=(s1,e1,f1) and
X2=(s2,e2,f2) , the stages for computing X1+X2 are
described as follows.

1) Find exponent difference d= e1-e2. If
e1<e2 , swap position of mantissas. Set larger
exponent as tentative exponent of result.

2) Prealign mantissas by shifting smaller
mantissa right by ‘d’ bits.

3) Add or subtract mantissas to get tentative
result for mantissa.

4) Normalization. If there are leading-zeros
in the tentative result, shift result left and decrement
exponent by the number of leading zeros. If tentative
result overflows, shift right and
increment exponent by 1 bit.

5) Round mantissa result. If it overflows due
to rounding, shift
right and increment exponent by 1 bit.

Fig.4. shows the datapath for a floating-point
addition. Only the main parts of the datapath are
shown for clarity. The prealignment and
normalization stages require large shifters. The
prealignment stage requires a right shifter that is
twice the number of mantissa bits (i.e., 48 bits for
single-precision, 106 bits for double-precision)
because the bits shifted out have to be maintained to
generate the guard, round and sticky bits needed for
rounding. The shifter only needs to shift right by up

to 24 places for single-precision or 53 places for
double-precision.

The normalization stage requires a left shifter equal
to the number of mantissa bits plus 1 (to shift in the
guard bit), i.e., 25-bits for single-precision and 54-
bits for double-precision.

The shift amount is determined by the leading one
detector (LOD) circuit [7], which outputs the number
of leading zeros before the first one in the bit string.

The final stage of the floating-point adder is the
rounding unit. It makes a rounding decision based on
the rounding mode, the LSB of the mantissa, the
round bit and the sticky bit. If rounding is necessary,
“1” is added at the LSB of the mantissa. There are
other variations of the conventional floating-point
adder architecture that improve performance, such as
the leading one predictor (LOP) architecture [8] and
the dual-path architecture [9]. The tradeoff involved
with these two architectures is that they require
additional hardware and area for them added
performance. The conventional architecture was
chosen over the faster architectures for area savings
and reduced complexity, which simplifies the
conversion to a dual-precision structure.

3.2 Floating Point Multiplier Datapath:

Algorithmically, floating-point multiplication is
much simpler than floating-point addition. However,
a very wide integer multiplier is required. Given
floating-point numbers X1=(s1,e1,f1) and X2=(s2,e2,f2),
X P=X1+X2
and , can be computed using,

 SP=S1 S2 (3)

 ep=e1+e2-bias (4)

 1.fp=1.f1×1.f2
 (5)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 138

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 5. Floating point multiplier datapath.

Fig.5. shows the datapath for a floating-point
multiplier. Only the main parts of the datapath are
shown for clarity. If the result from the multiplier has
two bits left of the binary point, the mantissa has to
be shifted right to compensate and the exponent is
incremented. If the rounding of the mantissa results
in an overflow, the mantissa is shifted right by one
and the exponent is incremented. Eq.(5) calls for a
very wide multiplier—53×53-bit unsigned multiplier
for double-precision and 24×24-bit for single-
precision. Therefore, an efficient multiplier must be
employed.

4. Multimode FPU:

The multimode embedded FPU was designed to
include a dual-precision floating-point multiplier and
a dual-precision floating-point adder. They were
designed to be IEEE754 compliant , except that
hardware support for denormals was not included and
only the IEEE754 default rounding mode (round-to-
nearest even) was implemented.

The design can be easily modified to support the
other rounding modes specified in IEEE754. The
dual-precision FPU accepts 64-bit inputs, where
double-precision operands occupy the full 64-bits and
single-precision operands each occupy half of the 64-
bits as shown in Fig.6.

The following two sub-sections explain the
modifications made to a standard floating-point adder
and multiplier to convert them into dual-precision
versions capable of performing one double-precision

operation or two single-precision operations in
parallel.

4.1 Dual Precision Floating Point Adder

Fig.6. 2X 8-bit/1 X 16-bit adder—capable of
performing two independent 8-bit additions in

parallel or one 16-bit addition.

The method for converting a standard
floating-point adder into a dual-precision adder
involves duplicating the data path for a single-
precision adder and then linking duplicated functional
blocks together (and widen them where necessary) to
accommodate double-precision. Multiplexers
controlled by a mode signal (double) selects between
single-precision mode and double-precision mode. A
double-precision exponent is 11-bits, while a single-
precision exponent is 8-bits. For all the operations on
the exponents that involve adding or subtracting, we
use two 8-bit adders that can combine into one 16-bit
adder fig7.

Fig .7. Two single-precision numbers in one 64-bit
word.

5. Results

5.1.FPU Double Top Module

To evaluate the proposed FPGA architecture, Xilinx
Virtex-V FPGA device is used. Xilinx ISE 9.2i(or

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 139

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

more) is used for synthesis and codings are done in
verilog. Both single-precision and double-precision
versions of each circuit were built in order to evaluate
the multimode embedded FPUs in both precision
modes. FPU double top level module is shown in the
figure below,

5.2. Input Signals:

1. clk (global)
2. rst (global)
3. enable (set high to start operation)
4. rmode (rounding mode, 2 bits, 00 = nearest,

01 = zero, 10 = pos inf, 11 = neg inf)
5. fpu_op (operation code, 3 bits, 000 = add,

001 = subtract, 010 = multiply, 011 = divide,
others are not used)

6. opa, opb (input operands, 64 bits)

5.2. Operation and Rounding:

FPU Operations (fpu_op):

1. 0 = add
2. 1 = sub
3. 2 = mul
4. 3 = div
Rounding Modes (rmode):

1. 0 = round_nearest_even
2. 1 = round_to_zero
3. 2 = round_up
4. 3 = round_down

5.3. Simulation Results:

6. Conclusions

Flexible multimode embedded floating-point unit for
FPGAs is designed. Each embedded FPU contains a
dual-precision floating-point adder and multiplier,
which can each perform one double-precision
operation or two single-precision operations in
parallel. To further increase flexibility of the
embedded FPU, access to integer components of the
FPU are provided.

Different round of modes are added as per IEEE754,
hence the round off errors are eliminated finally .This
elimination will makes our floating point unit faster
and efficient when compared with existing
architecture. Our design is synthesised and simulated
using Xilinx ISE.

 References
[1] Y. Dou, S. Vassiliadis, G. Kuzmanov, and G.
Gaydadjiev, “64-bit floating-point FPGA matrix

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 140

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

multiplication,” in Proc. ACM/SIGDA 13th Int.
Symp. Field-Program. Gate Arrays, 2005, pp. 86
[2]M. J. Beauchamp, S. Hauck, and K. S. Hemmert,
“Embedded floatingpoint units in FPGAs,” in
IEEE Symp. Field Program. Gate Arrays (FPGA),
2006, pp. 12–20.
[3] A. Akkas¸, “Dual-mode quadruple precision
floating-point adder,” in Proc. 9th Euromicro Conf.
Digit. Syst. Des. (DSD), 2006, pp. 211
[4] IEEE Standard for Binary Floating
Arithmetic,ANSI/IEEE Std754, 1985.

[5] P. C. Diniz and G. Govindu, “Design of a field
programmable dual-precisionfloating
unit,” in Proc. Int. Conf. Field Program.
(FPL), 2006.
[6] D. A. Patterson and J. L. Hennessy
Organization and Design”, 3rd ed. San Francisco,
CA: Morgan Kaufmann, 2005, ch. H.5.
[7] V. G. Oklobdzija, “An algorithmic and novel
design of a leading zero detector circuit: Comparison
with logic synthesis,” IEEE Trans. Very
Integr. (VLSI) Syst., vol. 2, no. 1, pp. 124
1994.
[8] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase,
K. Mashiko, and T. Sumi, “Leading
logic for high speed floating-point addition,”
Solid-State Circuits, vol. 31, no. 8, pp. 157
Aug. 1996.
[9] M. Farmwald, “On the design of high
performance digital arithmetic units,” Ph.D.
dissertation, Dept. Elect. Eng., Stanford Univ.,
Stanford, CA, Aug. 1981.
 [10] Xilinx, San Jose, CA, “Virtex-
FPGAs: Complete data sheet,” 2007. [Online].
Available:
http://www.xilinx.com/support/documentation/
data_sheets/ds031.pdf

Proc. ACM/SIGDA 13th Int.
Program. Gate Arrays, 2005, pp. 86–95.

[2]M. J. Beauchamp, S. Hauck, and K. S. Hemmert,
“Embedded floatingpoint units in FPGAs,” in Proc.
IEEE Symp. Field Program. Gate Arrays (FPGA),

mode quadruple precision
Proc. 9th Euromicro Conf.

Digit. Syst. Des. (DSD), 2006, pp. 211–220.
[4] IEEE Standard for Binary Floating-Point

,ANSI/IEEE Std754, 1985.

[5] P. C. Diniz and G. Govindu, “Design of a field-
ting-point arithmetic

Proc. Int. Conf. Field Program. Logic Appl.

[6] D. A. Patterson and J. L. Hennessy, “Computer
, 3rd ed. San Francisco,

CA: Morgan Kaufmann, 2005, ch. H.5.
, “An algorithmic and novel

design of a leading zero detector circuit: Comparison
IEEE Trans. Very Large Scale

, vol. 2, no. 1, pp. 124–128, Mar.

[8] H. Suzuki, H. Morinaka, H. Makino, Y. Nakase,
and T. Sumi, “Leading-zero anticipatory

point addition,” IEEE J.
, vol. 31, no. 8, pp. 157–1164,

[9] M. Farmwald, “On the design of high
performance digital arithmetic units,” Ph.D.

, Dept. Elect. Eng., Stanford Univ.,

-II platform
FPGAs: Complete data sheet,” 2007. [Online].

http://www.xilinx.com/support/documentation/

G.Murugaboop
the Undergraduate Degree in
Computer Science and
Engineering from Madurai
Kamaraj University, in 2000,

the Post Graduate degree in Digital Communication
and Network from Madurai Kamaraj University, in
2002 and Ph.D in Computer Science and Eng
at Bharath University, Chennai. He has more than 17
publications in National Conferences International
Conference and International Journal proceedings. He
has more than 10 years of teaching experience. His
areas of interest include Wireless Senso
Mobile Communication, Mobile Adhoc Networks
Computer Networks, Network Security, High Speed
Networks, Network and Data Security Cryptography
and network security DBMS and etc., He is currently
working as an Head R & D and Associate Professor
in the Department of Information Technology at Vel
Tech Multi Tech Dr.Rangarajan Dr.Sakunthala
Engineering College Chennai, India.

S.Hariharasitaraman
degree in Computer Science and
Engineering from Madurai Kamaraj
University, Tamilnadu
M.E. degree in Computer Science and
Engineering from Anna University,

Tamilnadu, India, in 2005. He
professor, in the Department of Information
Technology, Kalasalingam University y. His research
interests include Distributed Computing, Cloud
Computing. At present, He is engaged in the area of
Security Mechanisms in Cloud Computing.

 Mr.G.Sankar is working as Assistant
Professor in the CSE department of
EngineeringCollege,Chennai.Mr.Sankar
of engineering degree in computer science and
engineering from annamalai university, Master of
business administration in project management from
alagappa university and Bachelor of engineering
degree in computer science and engineering from
bharathidasanuniversity.Mr.sankar has over seven
and half years of teaching and research experience.
He has authored several research papers in national
and international Conference

G.Murugaboopathi received
the Undergraduate Degree in
Computer Science and
Engineering from Madurai
Kamaraj University, in 2000,

the Post Graduate degree in Digital Communication
and Network from Madurai Kamaraj University, in
2002 and Ph.D in Computer Science and Engineering
at Bharath University, Chennai. He has more than 17
publications in National Conferences International
Conference and International Journal proceedings. He
has more than 10 years of teaching experience. His
areas of interest include Wireless Sensor Networks,
Mobile Communication, Mobile Adhoc Networks
Computer Networks, Network Security, High Speed
Networks, Network and Data Security Cryptography
and network security DBMS and etc., He is currently
working as an Head R & D and Associate Professor
n the Department of Information Technology at Vel

Tech Multi Tech Dr.Rangarajan Dr.Sakunthala
Engineering College Chennai, India.

S.Hariharasitaraman received his B.E.
degree in Computer Science and
Engineering from Madurai Kamaraj
University, Tamilnadu, India, in 2003,
M.E. degree in Computer Science and
Engineering from Anna University,

Tamilnadu, India, in 2005. He is working as Assistant
Department of Information

Technology, Kalasalingam University y. His research
Distributed Computing, Cloud

Computing. At present, He is engaged in the area of
Security Mechanisms in Cloud Computing.

Mr.G.Sankar is working as Assistant
Professor in the CSE department of veltech Hightech
EngineeringCollege,Chennai.Mr.Sankar has Masters
of engineering degree in computer science and
engineering from annamalai university, Master of
business administration in project management from
alagappa university and Bachelor of engineering
degree in computer science and engineering from
harathidasanuniversity.Mr.sankar has over seven

and half years of teaching and research experience.
He has authored several research papers in national
and international Conference

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 3, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 141

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

