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Abstract 
The Performance of field-programmable gate arrays 
used for Floating-point applications are poor due to 
complexity of floating-point arithmetic. 
Implementing floating-point units on FPGAs 
consume a large amount of resources. This makes 
FPGAs less attractive for use in floating-point 
intensive applications. There is a need for embedded 
FPUs in FPGAs. We proposed a flexible multimode 
embedded FPU for FPGAs that can be configured to 
perform a wide range of operations. The floating-
point adder and multiplier in embedded FPU can be 
configured to perform one double-precision operation 
or two single-precision operations in parallel. To 
increase flexibility, access to large integer multiplier, 
adder and shifters in the FPU is provided. Benchmark 
circuits were implemented on both a standard Xilinx 
Virtex-V FPGA and FPGA with embedded FPU 
blocks. We design modified to allow an unrounded 
product to be fed to the floating-point adder to 
minimize rounding error, like in a dedicated floating-
point MAC unit. 
Keywords: Very Large Scale Integration Embedded 
Floating Point Units, Virtual Floating Point Unit, 
FPGA. 
  

1. Introduction 

The term floating point refers to the fact that the radix 
point (decimal point, or, more commonly in 
computers, binary point) can "float"; that is, it can be 
placed anywhere relative to the significant digits of 
the number. This position is indicated separately in 
the internal representation, and floating-point 
representation can thus be thought of as a computer 
realization of scientific notation. Over the years, a 
variety of floating-point representations have been 

used in computers. However, since the 1990s, the 
most commonly encountered  
 
representation is that defined by the IEEE 
754 Standard[4]. 
 
The IEEE754 standard  floating-point format consists 
of three fields—a sign bit(s) , a biased exponent(e) , 
and a mantissa(f) . Single-precision numbers have a 
1-bit sign, 8-bit exponent, and 23-bit mantissa as 
shown in Fig. 1. Double-precision numbers have a 1-
bit sign, 11-bit exponent, and 52-bit mantissa as 
shown in Fig. 1. 

 

 

      Fig.1 IEEE  floating point formats. 

The three fields make up a floating-point number 
according to Eq.(1) single-precision and Eq.(2) 
double-precision. There is an implied “1” to the left 
of the binary point (except in the special case of 
denormal numbers) 
         X=(-1)s × 1.f × 2(e-127)          (1)                       
          X=(-1)s × 1.f × 2(e-1023)         (2)                      
 
Floating-point numbers have an advantage of being 
able to cover a much larger dynamic range compared 
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to fixed-point numbers. The disadvantage is that 
floating-point computations are much more complex 
to implement in hardware. 
 
2. Modelling 

 
The proposed architecture for the FPGA with 
embedded multimode FPUs is an island-style FPGA 
structure based on the Xilinx Virtex-V. The 
embedded FPUs would be distributed in a regular 
arrangement around the FPGA [2], surrounded by 
fine-grained configurable logic blocks (CLBs) as 
illustrated in Fig.2. 
 
The number and arrangement of the the embedded 
FPUs would be decided by the FPGA vendor and 
would depend on the size of the FPGA. In this work, 
embedded FPUs are placed evenly spaced in two 
columns near the center of the FPGA. 

 

 

Fig 2. Architecture of FPGA with embedded FPU 
blocks. 

3. Embedded FPU blocks 

The FPU block contains one floating-point multiplier 
and one floating-point adder. These can be used 
independently, or configured in a multiply-add 
configuration by enabling a bus connecting the output 
of the multiplier to an input of the adder. 
 
 
 

 
Fig 3. Structure of embedded FPU block 

 
 
 
Fig.3 shows the structure of the embedded FPU 
block. Optional registers are available at the inputs 
and outputs of the FPU block to allow for easy 
implementation of pipelined or multicycle circuits. 
To increase the usefulness of the floating-point units, 
several key integer components within the floating-
point units were made accessible. These components 
are as follows. 
 
 

 
1. Dual-mode 53 53-bit integer multiplier in 

the floatingpoint multiplier. Can be configured as two 
independent 24×24-bit multipliers. 

2. Dual-mode 53-bit integer adder in the 
floating-point adder. Can be configured as 
independent 27-bit and 26-bit adders. 
  3. The 106-bit right shifter in the pre-
alignment stage of the floating-point adder. Since 
maximum shift is 64 places, access is given to 64-bits 
of the shifter so that it appears to be a 64-bit shifter 
with maximum shift of 64 places. 
  4. The 54-bit left shifter in the normalization 
stage of the floating-point adder. Maximum shift is 
54 places. 
 
 
 
 
3.1 Floating Point Adder Datapath 

 
The conventional floating-point addition 

algorithm consists of five stages—exponent 
difference, pre-alignment, addition, normalization 
and rounding . 
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Fig 4..Floating point adder datapath. 

Given floating-point numbers X1=(s1,e1,f1) and 
X2=(s2,e2,f2) , the stages for computing  X1+X2 are 
described as follows. 

1) Find exponent difference d= e1-e2. If 
e1<e2 , swap position of mantissas. Set larger 
exponent as tentative exponent of result. 

2) Prealign mantissas by shifting smaller 
mantissa right by ‘d’ bits. 

3) Add or subtract mantissas to get tentative 
result for mantissa. 

4) Normalization. If there are leading-zeros 
in the tentative result, shift result left and decrement 
exponent by the number of leading zeros. If tentative 
result overflows, shift right and 
increment exponent by 1 bit. 

5) Round mantissa result. If it overflows due 
to rounding, shift 
right and increment exponent by 1 bit. 
 
Fig.4. shows the datapath for a floating-point 
addition. Only the main parts of the datapath are 
shown for clarity. The prealignment and 
normalization stages require large shifters. The 
prealignment stage requires a right shifter that is 
twice the number of mantissa bits (i.e., 48 bits for 
single-precision, 106 bits for double-precision) 
because the bits shifted out have to be maintained to 
generate the guard, round and sticky bits needed for 
rounding. The shifter only needs to shift right by up 

to 24 places for single-precision or 53 places for 
double-precision. 
 
The normalization stage requires a left shifter equal 
to the number of mantissa bits plus 1 (to shift in the 
guard bit), i.e., 25-bits for single-precision and 54-
bits for double-precision. 
 
The shift amount is determined by the leading one 
detector (LOD) circuit [7], which outputs the number 
of leading zeros before the first one in the bit string.  
 
The final stage of the floating-point adder is the 
rounding unit. It makes a rounding decision based on 
the rounding mode, the LSB of the mantissa, the 
round bit and the sticky bit. If rounding is necessary, 
“1” is added at the LSB of the mantissa. There are 
other variations of the conventional floating-point 
adder architecture that improve performance, such as 
the leading one predictor (LOP) architecture [8] and 
the dual-path architecture [9]. The tradeoff involved 
with these two architectures is that they require 
additional hardware and area for them added 
performance. The conventional architecture was 
chosen over the faster architectures for area savings 
and reduced complexity, which simplifies the 
conversion to a dual-precision structure. 

 
3.2 Floating Point Multiplier Datapath: 
  
Algorithmically, floating-point multiplication is 
much simpler than floating-point addition. However, 
a very wide integer multiplier is required. Given 
floating-point numbers X1=(s1,e1,f1) and X2=(s2,e2,f2), 
X P=X1+X2 
and , can be computed using, 
           

 SP=S1 S2                         (3) 

           ep=e1+e2-bias                       (4) 

         1.fp=1.f1×1.f2         
 (5) 
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Fig 5. Floating point multiplier datapath. 

Fig.5. shows the datapath for a floating-point 
multiplier. Only the main parts of the datapath are 
shown for clarity. If the result from the multiplier has 
two bits left of the binary point, the mantissa has to 
be shifted right to compensate and the exponent is 
incremented. If the rounding of the mantissa results 
in an overflow, the mantissa is shifted right by one 
and the exponent is incremented. Eq.(5) calls for a 
very wide multiplier—53×53-bit unsigned multiplier 
for double-precision and 24×24-bit for single-
precision. Therefore, an efficient multiplier must be 
employed. 

 
4. Multimode FPU: 
 
The multimode embedded FPU was designed to 
include a dual-precision floating-point multiplier and 
a dual-precision floating-point adder. They were 
designed to be IEEE754 compliant , except that 
hardware support for denormals was not included and 
only the IEEE754 default rounding mode (round-to-
nearest even) was implemented. 
 
The design can be easily modified to support the 
other rounding modes specified in IEEE754. The 
dual-precision FPU accepts 64-bit inputs, where 
double-precision operands occupy the full 64-bits and 
single-precision operands each occupy half of the 64-
bits as shown in Fig.6. 
 
The following two sub-sections explain the 
modifications made to a standard floating-point adder 
and multiplier to convert them into dual-precision 
versions capable of performing one double-precision 

operation or two single-precision operations in 
parallel. 
 

4.1 Dual Precision Floating Point Adder 

 

 
 

Fig.6. 2X 8-bit/1 X 16-bit adder—capable of 
performing two independent 8-bit additions in 

parallel or one 16-bit addition. 

The method for converting a standard 
floating-point adder into a dual-precision adder 
involves duplicating the data path for a single-
precision adder and then linking duplicated functional 
blocks together (and widen them where necessary) to 
accommodate double-precision. Multiplexers 
controlled by a mode signal (double) selects between 
single-precision mode and double-precision mode. A 
double-precision exponent is 11-bits, while a single-
precision exponent is 8-bits. For all the operations on 
the exponents that involve adding or subtracting, we 
use two 8-bit adders that can combine into one 16-bit 
adder fig7. 

 
Fig .7. Two single-precision numbers in one 64-bit 
word. 
 
5. Results 
 
5.1.FPU Double Top Module 
 
To evaluate the proposed FPGA architecture, Xilinx 
Virtex-V FPGA device is used. Xilinx ISE 9.2i(or 
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more) is used for synthesis and codings are done in 
verilog. Both single-precision and double-precision 
versions of each circuit were built in order to evaluate 
the multimode embedded FPUs in both precision 
modes. FPU double top level module is shown in the 
figure below, 

 
5.2.  Input Signals: 

1. clk (global) 
2. rst (global) 
3. enable (set high to start operation) 
4. rmode (rounding mode, 2 bits, 00 = nearest, 

01 = zero, 10 = pos inf, 11 = neg inf) 
5. fpu_op (operation code, 3 bits, 000 = add, 

001 = subtract, 010 = multiply, 011 = divide, 
others are not used) 

6. opa, opb (input operands, 64 bits) 
 

5.2. Operation and Rounding: 

FPU Operations (fpu_op): 

1. 0 = add 
2. 1 = sub 
3. 2 = mul  
4. 3 = div 
Rounding Modes (rmode): 

1. 0 = round_nearest_even  
2. 1 = round_to_zero  
3. 2 = round_up  
4. 3 = round_down  

 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
5.3. Simulation Results: 
 

 

 
6. Conclusions 

 
Flexible multimode embedded floating-point unit for 
FPGAs is designed. Each embedded FPU contains a 
dual-precision floating-point adder and multiplier, 
which can each perform one double-precision 
operation or two single-precision operations in 
parallel. To further increase flexibility of the 
embedded FPU, access to integer components of the 
FPU are provided. 
 
Different round of modes are added as per IEEE754, 
hence the round off errors are eliminated finally .This 
elimination will makes our  floating point unit faster 
and efficient when compared with existing 
architecture. Our design is synthesised and simulated 
using Xilinx ISE. 
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