

RecRecRecReconceptualization of Classonceptualization of Classonceptualization of Classonceptualization of Class----bbbbased ased ased ased RepresentationRepresentationRepresentationRepresentation in UMLin UMLin UMLin UML

Sabah Al-Fedaghi

 Computer Engineering Department, Kuwait University

P.O. Box 5969, 13060, Kuwait

Abstract
The requirement phase in the software development process is

typically formulated using UML diagrams, including use cases

and conceptual class diagrams. It is claimed that UML is suitable

for modeling at the domain level; accordingly, many

enhancements to these diagrams have been proposed to achieve a

more comprehensive representation of functionality of the system

from the conceptual (computation-independent) point of view.

This paper proposes a uniform conceptual methodology that

integrates static and dynamic features to provide a foundation for

system design in the next phase of development. UML-based

modeling and this new methodology are contrasted in examples

that demonstrate the feasibility of the new approach for use in

formulating system requirements.

Keywords: Software development, requirement phase,

conceptual model, UML, conceptual class diagram.

1. Introduction

An information system serves a real application and

reflects the reality of the static structure and dynamic

activities of organizations. Consequently, the process of

developing an information system begins by drawing a

domain model of the enterprise as part of the real world.

The result is a conceptual description that does not include

computation-dependent aspects. It serves as a means of

communication and a guide for the subsequent design

phase.

Modeling is a fundamental instrument used in developing a

software system. In this context, many issues arise

concerning quality, accuracy, completeness, and

consistency of the model used. The Unified Modeling

Language (UML) [1, 2] is a visual modeling language that

is used to specify, construct, and document systems.

Researchers have examined and proposed extending the

use of object-oriented languages such as UML at the

conceptual level (e.g., [3, 4, 5]).

UML has been used for conceptual/domain modeling,

which is concerned with providing a representation of

“things” that exist and activities that emerge in a business

environment. According to current thinking, “UML is

suitable for conceptual modeling but the modeler must take

special care not to confuse software aspects with aspects of

the real world being modelled” [6]. The problem with

extending object-oriented models and languages is “that

such languages possess no real-world business or

organizational meaning; i.e., it is unclear what the

constructs of such languages mean in terms of the

business” [6]. The object-oriented design field deals with

objects and attributes, while the real-world domain is

formed from things and their interactions [7].

In UML, relationships identify the semantic ties between

model elements and include associations, dependencies,

generalizations, realizations, and transitions. With the

development of UML 2.0, “several new concepts and

notations have been introduced, e.g., exceptions, collection

values, streams, loops, and so on” [8]. UML 2.2 offers 14

types of diagrams, including activity, class, sequence, and

communication diagrams. These diagrams represent

multiple system viewpoints. In addition to their value in

documentation, the diagrams can be very effective for

communicating and facilitating understanding, and for

establishing a vision early in the design phase.

Specifically, requirements are formulated using use cases

and conceptual class diagrams. The class diagram is the

most fundamental and widely used UML diagram [9]. It

describes a static structure that includes objects and

relationships between them. It is also used for both

conceptual/domain modeling and detailed design

modeling, formulated using use cases and conceptual class

diagrams.

The class diagram is “a central modeling technique that

runs through nearly all object-oriented methods” [10].

According to Ambler [11],

UML 2 class diagrams are the mainstay of object-

oriented analysis and design. UML 2 class diagrams

show the classes of the system, their interrelationships…,

and the operations and attributes of the classes…

Class diagrams are typically used … to: explore domain

concepts in the form of a domain model, analyze

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 91

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

requirements in the form of a conceptual/analysis model,

and depict the detailed design of object-oriented or

object-based software. [11] (Italics added)

Such a claim reflects the main paradigm in development of

information systems where class diagrams (or similar

diagrams, e.g., entity-relationship diagrams) form the static

structure upon which all other aspects (e.g., dynamic,

constraints) are built. This paradigm may have originated

in the classic way of thinking about building a physical

system, starting with a static description that identifies

basic components and subcomponents and their

interrelationships and attributes. Though Amber [11]

mentions “operations” in the quote above, it seems that this

term does not mean the actual dynamic behavior of the

system. Behavioral aspects are emphasized in another type

of description such as activity diagrams.

The conceptual class diagram and its associated use cases

are “not rich enough for generating the prototype as it does

not provide information about the flow of interacting

events between the actors and the system when carrying

out a use case” [12] (Italics added). Conceptual class

diagrams represent concepts that “naturally relate to the

classes” with no regard for software implementation [10,

13]. It is not clear whether this means equating concepts

with classes. According to [10], “Unfortunately the lines

between the [conceptual, specification, and implementation]

perspectives [when using use class diagrams] are not sharp,

and most modelers do not take care to get their perspective

sorted out when they are drawing.” Generally, “the biggest

danger with class diagrams is that you can get bogged

down in implementation details far too early. To combat

this, use the conceptual [perspective]” [10].

Many proposals have been made for development of a

methodology to fill the need for more comprehensive

representation of functionality of the system from the

conceptual (computation-independent) point of view. For

example, according to [14],

Use cases are a notation not an approach. Their usage

is not systematic in comparison with systematic

approaches that enable identification of all system

requirements. Creation of use case models and

establishment of concepts and relations among them

are usually rather informal than semiformal… Use

cases’ fragmentary nature does not give any answer

to questions about identifying all of system’s use

cases, conflicts among the use cases, gaps in the

system’s requirements, how changes can affect

behavior that other use cases describe … Use cases

must be applied as a part of a technique, whose first

activity is a construction of a well-defined problem

domain model. [15]

Osis et. al. [14] use “a goal-based method” to define a use

case model and graph transformation from “topological

functioning modeling” to a conceptual class to enable “the

definition between domain concepts and their relations to

be established.” A conceptual class model is detailed to the

level where it uses only one type of object.

Another approach is to incorporate Object Role Modeling,

or ORM:

Despite its upcoming inception as the world standard

for expressing the results of the conceptualization and

specification of the aforementioned types of systems,

UML is considered to be : ‘incomplete, inconsistent

and unnecessarily complex’ [16].

According to Bollen [17],

This incompleteness, inconsistency and complexity,

however, can be avoided when a conceptual schema

design procedure from a fact-oriented modeling

approach will be applied on data use cases [16]. The

resulting conceptual schema will provide a ‘semantic-

rich’ starting point for the creation of a UML class

diagram. [17]

We claim that the conceptual class diagram in UML lacks

a fundamental notion, thus causing conceptual

fragmentation. Classes (objects) need a bonding

mechanism (e.g., flow among them) to capture static and

dynamic continuity in the total conceptual picture.

This paper proposes a new approach to the problem of

conceptual representation of functionality in the field of

object oriented software development. Instead of the

class/object-based description of requirements, the

methodology incorporates the dynamic aspects of the

system by adopting the notion of flow.

2. Motivational Example

Ambler [11] discusses the notion of “conceptual class

diagrams” in the example shown in Fig. 1 depicting the

conceptual model of a university.

I could have added an attribute in the Seminar class

called Waiting List but, instead, chose to model it as

an association because that is what it actually

represents: that seminar objects maintain a waiting list

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 92

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

of zero or more student objects. Attributes and

associations are both properties in the UML 2.0 so

they’re treated as basically the same sort of thing… I

prefer to keep my models simple and assume that the

attributes and operations exist to implement the

associations. [11]

The operation called enrolled would be engaged to

calculate a student’s average mark and provide information

about seminars taken.

There is also an enrolled in the association between

Enrollment and Seminar to produce a list of seminars taken.

{ordered FIFO} is a constraint on the association between

Seminar and Student.

Following a consistent and sensible naming

convention helps to make your diagrams readable.

Notice my use of question marks in the note. My style

is to mark unknown information on my diagrams this

way to remind myself that I need to look into it. [11]

While this brief description is not a complete account of

the example, it is sufficient for our purpose of showing the

general flavor of this methodology. It reflects a static

structure with strict exclusion of dynamic aspects that are

modeled by other diagrams.

Our strategy is to contrast this depiction of the involved

application of our flow-based conceptual picture on the

basis of a systematic method that integrates static and

dynamic features. To achieve this contrast, and to make the

paper self-contained, the next section briefly reviews the

basic concepts of the model, called the Flowthing Model,

used in this method as introduced in several papers [18, 19,

20, 21].

3. Flowthing Model

The Flowthing Model (FM) is a uniform method for
representing things that flow, called flowthings. Flow in
FM refers to the exclusive (i.e., being in one and only one)
transformation among six states (also called stages) of
transfer, process, create, release, arrive, and accept.

To exemplify FM, consider flows of a utility such as

electricity in a city. In the power station, electricity is

created then transferred to city substations through

transmission lines, where it arrives. The substations are

safety zones where electricity is accepted if it is of the

right type (e.g., voltage); otherwise it is cut off. Electricity

is then processed, as in the case of creating different

voltage values to be sent through different feeders in the

power distribution system. After that, electricity is released

from the distribution substation to be transferred to homes.

For the flowthing, in this case electricity, FM asserts that

only six mutually exclusive states exist: transferred,

arrived, accepted, processed, created, and released, as

shown in Fig. 2. This diagram is called a flowsystem.

All other states of flowthings are not generic states. For
example, we may have stored created flowthings, stored
processed flowthings, stored received flowthings, etc.
Flowthings can be released but not transferred (e.g., the
channel is down), or arrived but not accepted, … We use
Receive as a combined stage of Arrive and Accept
whenever appropriate, i.e., whenever arriving flowthings
are always accepted. The fundamental elements of FM are
described as follows:

Fig. 2 Flowsystem

Create

 Release Transfer

Process Accept Arrive

Enrolled
in

On waiting list
Instructs

Fig. 1 Initial conceptual class diagram (From [11])

Enrollment

Marks Received

Get Average to

Date

Get Final Mark

Student

Name

Address

Phone Number

E-mail Address

Student Number

Average Mark

Is Eligible to Enroll

Get Seminars Taken

Professor

Name

Seminar Number

Fees

Add student

Drop student

Seminar

Name

Seminar-

Number

Fees

1 1..* 1..* 1

0..* 0..*

0..* 0..1 {ordered FIFO}

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 93

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Flowthing: A thing (e.g., information, material, money,
shuttle, good) that has the capability of being created,
released, transferred, arrived, accepted, and processed
while flowing within and between systems.

A flow system (referred to as flowsystem), as depicted in

Fig. 2, comprises the internal flows (solid arrows) of a

system with the six stages and transactions among them.

Spheres and subspheres are the environments of the

flowthing, such as

- Computer electronics with signals as flowthings

- Human mind with information as flowthings

- Organization information system with records as

flowthings

A sphere (or subsphere) can incorporate many flowthings

into its flowsystems, e.g., a computer includes an

information (abstract objects) flowsystem and an electronic

signal (physical objects) flowsystem.

Triggering is a transformation (denoted by a dashed

arrow) from one flow to another, e.g., flow of electricity

triggers the flow of air.

Notice that we use a single rectangle when a sphere

comprises a single flowsystem.

3. Redrawing the Motivational Example

The conceptual landscape of Ambler’s [11] example

presents the hierarchy of the spheres, as shown in Fig. 3.

There are three main spheres: Student, Seminar, and

Instructor. The Student sphere has a Seminar subsphere

and an Information subsphere, and the Seminar sphere has

a Student subsphere and an Information subsphere.

The Seminar in Student (for simplicity’s sake, we do not

always repeat the “sphere” and “subsphere” qualifiers)

represents the Seminar from the point of view of the

Student. Let us denote this as Student.Sphere.

Student.Sphere includes all parts of the sphere known by

Student. In reality, student concern about a seminar covers

enrolment, waiting, instructor, marks, and information (e.g.,

title, prerequisites) about the seminar. We have included

Registration in the figure as a super-sphere of Enrolment

and Waiting because this seems to encompass the

functionality of these two concepts. Such an action is

analogous to a person conceptualizing a “sleeping place”

with “walk-in closet,” immediately bringing to mind the

word “bedroom” as an encompassing term.

Notice that we follow the original view of the example,

associating Student directly with Seminar and indirectly

with Instructor. Figure 4 shows a general picture of flows

among spheres and subspheres.

Student Seminar

Instructor

 Information

Student

Enrolment

 Waiting

Registration

Seminar

Enrolment

 Waiting

Registration

Marks

 Information

 Information

 Information

Instructor

Seminar

 Information

 Information

 Marks

Marks

Instructor

Information

Fig. 3 The spheres in the given example

Student Seminar

Instructor

 Information

Student

Enrolment

 Waiting

Registration

Seminar

Enrolment

 Waiting

Registration

Marks

 Information

 Information

 Information

Instructor

Seminar

 Information

 Information

 Marks

Marks

Instructor

Information

Fig. 4 Flows among spheres and subspheres

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 94

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 5 depicts the conceptual representation of the example.

Starting with circle 1 in Fig. 5, in the Student.Enrolment

flowsystem, enrolment is created that flows (2) to

Seminar.Enrolment, where it is processed (3) and stored

(4). It is also possible that, in Student.Enrolement, it is

required to access an already stored Enrolment. In this case,

Process (5) in Student.Enrolment with input Enrolment

identifier (ID) triggers (6) the retrieval of an Enrolment in

Seminar.Enrolment (7) that flows (8) to

Student.Enrolment, where it is processed.

To illustrate the essence of this methodology, imagine a

student registering for a seminar, then going through the

following possible phases:

1. At the beginning a screen appears that gives the

opportunity to select Student.Regisration.Enrolment

2. When Student.Enrolment is selected, the screen in Fig.

6(a) appears, giving a choice between new enrolment (1 in

Fig. 5) or Processing an already existing enrolment (5 in

Fig. 5).

3. Suppose that New is selected; the screen shown in Fig.

6(b) then appears, with the options to create, release, or

transfer a new enrolment.

Student
Seminar

Instructor

 Information

Fig. 5 FM conceptual representation of the example

Student

Receive

Transfer Enrolment

Waiting

Registration

Seminar

Create

Process
ID

Enrolment

Waiting

Registration

Marks

Transfer Process Transfer Release

Transfer Receive

Receive Transfer Process:Add Create Transfer Release

Process ID Process:

Delete

Transfer Release

Information

Transfer
Release

Information

Transfer

 Information

Transfer

Instructor
Seminar

 Information Transfer

Information

Transfer

Release

Transfer

Marks

Create

Transfer

Release

Marks

Transfer Receive

Transfer Receive

Receive Process

Receive Process

Receive Process

Instructor
Transfer Receive

Receive Process

Information

1 2 3

4 5
6

7

8

10

9

11

12

13
14

15

16 7

18

Waiting

list

19

20

22

21

23 24

25

27

26

Student.Seminar

Process

Seminar ID: List

Enrolment

 New

BACK

(a)

Fig. 6 Possible Screen operation in Student sphere

Student.Seminar

New Enrolment

 New

Create Release Transfer

BACK
(b)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 95

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4. Suppose that Create is selected; the screen shown in Fig.

7(a) then appears. A rolling window gives the capability of

selecting a seminar. Note that because of flow of

information from/to Student.Seminar, this set of screens is

additionally mapped to the two flows shown in Fig. 5:

- Retrieval of seminar information (9) that flows (10) to be

processed in Student.Seminar (11), and

- Retrieval of student information (12) that flows (13) to be

processed in Student.Seminar (14).

5. If Process in Fig. 6(a) is selected, the user then provides

the required seminar ID using List in the figure, which

gives a list of all available seminars. The screen in Fig. 7(b)

appears, where the name of the selected seminar appears

and a previous registration can be dropped.

Note the systematic mapping screens (Figs. 6 and 7)

reflecting the underlying flow (Fig. 5) and utilizing the

same basic FM flowsystems.

Returning to Fig. 5, Waiting (15) is modeled in a similar

manner to Enrolment; however, its processing (16) triggers

(17) the process of Delete (18), which in turn triggers (19)

deletion of an entry in the waiting list.

The Instructor sphere also receives information about the

Seminar (20), and information about Instructor flows to

Seminar (21) and Student (22). Note the information flows

that can be specified inside Release (23). For example,

Information about Instructor that flows to Student includes

only the name, while the information that flows to Seminar

may include other data. Also, in Fig. 5, it is assumed that

the Information about Instructor is already stored (23). It is

possible to add Create in Instructor.Information to build a

functionality (e.g., screen) that would enable a user of

Instructor to input data about instructors.

The FM representation maps flows of different flowthings,

analogous to a map of flows of rivers, streams, and

channels in an irrigation system. The model portrays basic

infrastructure over which constraints, rules, redirections

(e.g., logical operations: AND, OR, …; security;

synchronization, timing, and so forth) can be

superimposed.

Marks are created in Instructor.Marks (24) and flow to

Seminar (26) and Student (27). It is possible to redraw the

flow of Marks such that it does not flow directly to Student

but instead reaches Student through Seminar after

processing (e.g., checked first by Seminar user).

Contrasting the conceptual class diagram (Fig. 1) with the

FM representation (Fig. 5), it is clear that the FM diagram

is a purely conceptual depiction that is not infected with

data record–based thinking. Thus, it is a neutral picture

that can be used for general understanding among

technicians, administration, and users.

The FM depiction can easily be enriched with additional

agreed-on information regarding constraints, security, …

as an integrated part of the description (e.g., details within

process, create, … boxes), or as annotations over the map

since it a more comprehensive representation of

functionality of the system from the conceptual

(computation-independent) viewpoint.

The UML class diagram lacks a fundamental connecting

notion to act as a conceptualization instrument tying the

description together. In FM, flows tie spheres; thus, static

and dynamic aspects build the system. Class diagrams

reflect conceptual blurriness because of a static base; thus,

they obstruct the ability to differentiate types of flows (an

arrow can represent many things). The FM flow-based

description differentiates diverse types of flows.

3. Dynamic Modeling

Sequence diagrams, besides other diagrams, are used in

UML for capturing dynamic aspects. “Sequence diagrams,

along with class diagrams and physical data models are …

the most important design-level models for modern

business application development” [22].

Scott [22] gives Fig. 8 (shown partially), depicting a UML

sequence diagram for Enroll in the University use case. It

models the detailed logic at the object-level. Messages are

indicated as labeled arrows; when the source and target of

a message are an object or class, the label is the method

invoked. If either the source or target is a human actor, the

message is labeled with brief text. Return values are

optionally indicated using a dashed arrow. Stereotypes

throughout the diagram, e.g., <<UI>>, represent an actor, a

controller class, or a user interface (UI).

Fig. 7 Another possible Screen in Student sphere

Student.Seminar

New Enrolment

New Create

Seminar list

BACK

select

(a)

Student.Seminar

Enrolment

BACK

Process

Seminar information DROP

(b)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 96

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The creation and destruction of messages are denoted with

the stereotypes <<create>> and <<destroy>>, respectively.

Again, this brief description is not a comprehensive

account of the example, but it is sufficient for our purpose

of showing the general flavor of the methodology of

modeling dynamic behaviors of the system. We can

observe the abrupt change in diagrammatization style from

the class diagram to the sequence diagram, which also

involves classes and objects (top of Fig. 8). It seems that

the difficulty in following the sequence of events might

have motivated Scott [22] to write the events in semi-

pseudo language, as follows:

1. Student indicates wish to enroll

2. Student inputs name and number

3. System verifies student

4. System displays seminar list

5. Student picks seminar

6. System determines eligibility to enroll

7. System determines schedule fit

8. System calculates fees

9. System displays fees

10. System verifies student wishes to enroll

11. Student indicates yes

12. System enrolls student in seminar [22]

In contrast, the FM methodology provides a uniform

treatment in the modeling of a system’s dynamics.

Applying the same flow in a flowsystem as in Fig. 5, for

the process of enrolling in a seminar, Fig. 9 shows the

resultant FM representation.

A student

<<actor>>

:MainMenu

<<UI>>

:EnrollInSeminar

<<controller>>

:SecurityLogin

<<UI>>

:SeminarSelector

<<UI>>

:FeeDisplay

<<UI>>

Student :seminarSeminar :astudent

Student

Schedule :

StudentSchechule

StudenFee

Wish to enroll

<<create>>

name

student number

the student

isEligible(name, studentNumber)

the student

<<destroy>>

<<create>>

<<create>>

selection

isEligibleToEnroll(the student)

qualification

getScheduler

..
Fig. 8 Basic course of action for Enroll in Seminar use case (partial, from [22])

Process:

Receive Enrolment

Create:

Give name and Number

Enrolment

Transfer Transfer Release

Fig. 9 The FM representation of the flow for Enroll in a

seminar

1

 Information

Transfer

STUDENT SYSTEM

Information

Transfer
Receive

Process: pick

seminar

Release

Release

Receive Process

Eligibility

Process
Yes No

Schedule fit

Process
Yes No

Create

Fee

Transfer Release

 Fee

Transfer

Receive Process

Release Create

Transfer

Payment

Receive Transfer

Process:

verification

verification: NO YES

Enroll

REGISTRATION SYSTEM

2

3

4
5

6 7

8

9 10

11

12

13

14
15

16

17

18

19

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 97

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In Fig. 9, a student applies for enrolment giving his/her

name and Number (circle 1). These data flow (2) to the

system where they are received and processed (3).

Processing in the Enrolment flowsystem includes two

kinds of processes: verification and enrolment. Data

coming from Student are verified (4) and if data are okay

(Yes in the figure), it triggers (6) the retrieval of

information about Seminars that is then sent (7) to Student.

Here, it not clear from the original description what to do

when data are not okay (NO in process verification). The

modeler can make a response of NO trigger some type of

procedure such as sending of a message to Student.

When Student receives Seminar information and picks a

seminar (8), this selection of a seminar flows (9) to System

to be processed (10) and triggers a check for eligibility.

Here again, it is not clear what this eligibility check entails.

It might depend on information about the student (e.g.,

GPA); in this case, such information may be required to

complete the eligibility check. Or, eligibility may require

more information related to the seminar (e.g., prerequisite),

or both types of data. Consequently, we have left the

Eligibility details (and the next phase of Schedule fit)

without details. Nevertheless, Process in Eligibility results

in YES or NO. If YES (11), then this triggers (12) Process

in Schedule fit. Again it is not clear from the original

description what to do if NO occurs in Eligibility (13) or in

Schedule fit. We assume that everything is okay; hence Fee

data is calculated (14) and sent to Student. Upon the

processing (15) of Fee data, we assume that the student

makes (16) payment that flows (17) to the system. This

point is also not clear from the original description, and

has been added as a step. When payment is processed and

verified (18), this triggers actual enrolment of the student

(19).

Again it is sufficient to contrast the resulting representation

of the UML methodology and the FM-based depiction of

the same problems.

4. Conclusions

This paper has examined the problem of the need for

development of a comprehensive representation of

functionality of the system from the conceptual

(computation-independent) point of view. A new

methodology is proposed that uniformly integrates static

and dynamic features. It is contrasted with UML class-

based diagramming through examples that demonstrate the

feasibility of the new approach for formulating system

requirements.

We can observe that huge development efforts have been

invested in the UML methodology; nevertheless, this

investment should not discourage new research into

alternative methods. In any event, the FM modeling

technique is still in need of a great deal of work to reach a

mature level as a tool for use in developing software.

Further research will apply the FM methodology for other

areas such as various ULM diagrams [23], requirement

specification applications [24], and software Visualization

[25].

References

[1] UML 2.0 Superstructure Specification (formal/05-07-04).

Object Management Group, 2005.

[2] J. Rumbaugh, I. Jacobson, and G. Booch. The Unified

Modeling Language Reference Manual, Second Edition.

Addison-Wesley, 2004.

3] J. Brüning, M. Gogolla, and P. Forbrig, “Modeling and

Formally Checking Workflow Properties Using UML and

OCL,” in P. Forbrig and H. Günther (eds.), Proc. 9th Int.

Conf. Perspectives in Business Informatics Research, pp.

130–145, Berlin: Springer, LNBIP 64, 2010.

[4] I. Castillo, F. Losavio, A. Matteo, and J. Boegh,

“Requirements, Aspects and Software Quality: the REASQ

model”, Journal of Object Technology, Vol. 9, No. 4, 2010,

pp. 69–91.

http://www.jot.fm/issues/issue_2010_07/article4.pdf

[5] J. Evermann, and Y. Wand, “Towards ontologically based

semantics for UML constructs”, In H. Kunii, S. Jajodia, and

A. Solvberg, A. (eds.), Proceedings of the 20th international

conference on conceptual modeling, Yokohama, Japan 2001.

http://www.mcs.vuw.ac.nz/

~jevermann/EvermannWandER01.pdf.

[6] J. Evermann, “Thinking ontologically: Conceptual versus

design models in UML”, in M. Rosemann, P. and Green

(eds.), Ontologies and Business Analysis, Idea Group

Publishing, 2005.

http://www.mcs.vuw.ac.nz/~jevermann/EvermannChapter05.

pdf

 [7] E. Coatanéa, “Conceptual modelling of life cycle design: A

modelling and evaluation method based on analogies and

dimensionless numbers”, Doctoral dissertation, Helsinki

University of Technology, 2005.

http://lib.tkk.fi/Diss/2005/isbn9512278537/isbn9512278537.

pdf

[8] H. Storrle, and J. Hausmann, “Towards a formal semantics of

UML 2.0 activities,” German Software Engineering

Conference, 2005. http://wwwcs.uni-paderborn.de/cs/ag-

engels/Papers/2005/SE2005-Stoerrle-Hausmann-

ActivityDiagrams.pdf

[9] M. Szlenk, “Formal Semantics and Reasoning about UML

Class Diagram”, in Proceedings of the International

Conference on Dependability of Computer Systems, pp. 51–

59, IEEE Computer Society, 2004.

 http://staff.elka.pw.edu.pl/~mszlenk/pdf/Formal-Semantics-

Reasoning-UML-Class-Diagram.pdf

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 98

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.mcs.vuw.ac.nz/~jevermann/EvermannChapter05.pdf
http://www.mcs.vuw.ac.nz/~jevermann/EvermannChapter05.pdf
http://lib.tkk.fi/Diss/2005/isbn9512278537/isbn9512278537.pdf
http://lib.tkk.fi/Diss/2005/isbn9512278537/isbn9512278537.pdf
http://staff.elka.pw.edu.pl/~mszlenk/pdf/Formal-Semantics-Reasoning-UML-Class-Diagram.pdf
http://staff.elka.pw.edu.pl/~mszlenk/pdf/Formal-Semantics-Reasoning-UML-Class-Diagram.pdf

[10] D. Stotts, “Documenting an OO Design: Class Diagrams”,

2007.

http://www.cs.unc.edu/~stotts/145/CRC/class.html
[11] S. W. Ambler, “UML 2 Class Diagrams”, Ambysoft Inc.,

2003-2010.

http://www.agilemodeling.com/artifacts/classDiagram.htm#C

onceptualClassDiagrams

[12] Y. Wei, X. Li, Z. Liu, and J. He. Automatic Transformation

from Requirements Models to Executable Prototypes. UNU-

IIST Report No. 329.

http://iist.unu.edu/www/docs/techreports/reports/report329.p

df

[13] S. Cook, and J. Daniels, Designing Object Systems: Object-

oriented Modeling with Syntropy, Hemel Hempstead, UK:

Prentice Hall International, 1994.

[14] J. Osis, E. Asnina, and A. Grave, “Formal Computation

Independent Model of the Problem Domain within the

MDA”, ISIM 2007. http://ceur-ws.org/Vol-252/paper06.pdf

[15] S. Ferg, “What’s Wrong with Use Cases?” 2003.

http://www.jacksonworkbench.co.uk/stevefergspages/papers/

ferg--whats_wrong_with_use_cases.html

[16] T. Halpin, “Augmenting UML with Fact-orientation”, in

Workshop Proceedings: UML: A Critical Evaluation and

Suggested Future, HICCS-34 Conference, 2001.

[17] P. Bollen, “A Formal ORM-to-UML Mapping Algorithm”,

Research. Memoranda 015, University of Maastricht, The

Netherlands, 2002. http://arno.unimaas.nl/show.cgi?fid=465

[18] S. Al-Fedaghi, "Scrutinizing UML Activity Diagrams", 17th

International Conference on Information Systems

Development (ISD2008), Paphos, Cyprus, August 25-27,

2008.

[19] S. Al-Fedaghi, “Interpretation of Information Processing

Regulations”, Journal of Software Engineering &

Applications, Vol. 2, No. 2, pp. 67-76, 2009.

[20] S. Al-Fedaghi, “A Conceptual Foundation for the Shannon-

Weaver Model of Communication”, International Journal of

Soft Computing, Vol. 7, No. 1, 2012, pp. 12-19.

[21] S. Al-Fedaghi, “Awareness of Context and Privacy”,

American Society for Information Science & Technology

(ASIS&T) Bulletin, Vol. 38, No. 2, 2011.

[22] S. W. Ambler, UML 2 Sequence Diagrams, 2003–2010.

http://www.agilemodeling.com/artifacts/sequenceDiagram.ht

m

[23] R. Elmansouri, H. Hamrouche and A. Chaoui, “From UML

Activity Diagrams to CSP Expressions: A Graph

Transformation Approach using Atom Tool, International

Journal of Computer Science Issues, Vol. 8, Issue 2, March

2011.

[24] L. Raamesh and G. V. Uma, “Reliable Mining of

Automatically Generated Test Cases from Software

Requirements Specification (SRS)”, International Journal of

Computer Science Issues, Vol. 7, Issue 1, No. 3, January

2010.

[25] A. Anand Rao and K. Madhavi, "Framework for Visualizing

Model-Driven Software Evolution and its Application",

International Journal of Computer Science Issues, Vol. 7,

Issue 1, No. 3, January 2010.

Sabah Al-Fedaghi holds an MS and a PhD in computer science
from the Department of Electrical Engineering and Computer
Science, Northwestern University, Evanston, Illinois, and a BS in
Engineering Science from Arizona State University, Tempe. He
has published two books and more than 140 papers in journals
and conferences on Software Engineering, Database Systems,
Information Systems, Computer/information Ethics, Information
Privacy, Information Security and Assurance, Information Warfare,
Conceptual Modeling, System Modeling, Information Seeking, and
Artificial Agents. He is an associate professor in the Computer
Engineering Department, Kuwait University. He previously worked
as a programmer at the Kuwait Oil Company and headed the
Electrical and Computer Engineering Department (1991–1994)
and the Computer Engineering Department (2000–2007).
http://cpe.kuniv.edu/images/CVs/sabah.pdf

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 99

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.cs.unc.edu/~stotts/145/CRC/class.html
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://www.agilemodeling.com/artifacts/classDiagram.htm
http://iist.unu.edu/www/docs/techreports/reports/report329.pdf
http://iist.unu.edu/www/docs/techreports/reports/report329.pdf
http://ceur-ws.org/Vol-252/paper06.pdf
http://www.jacksonworkbench.co.uk/stevefergspages/papers/ferg--whats_wrong_with_use_cases.html
http://www.jacksonworkbench.co.uk/stevefergspages/papers/ferg--whats_wrong_with_use_cases.html
http://arno.unimaas.nl/show.cgi?fid=465
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
http://www.agilemodeling.com/artifacts/sequenceDiagram.htm
http://cpe.kuniv.edu/images/CVs/sabah.pdf

