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Abstract
In this paper, we prove the existence of solutions to
unilateral problems involving nonlinear operators of
the formwhere b(z, u) is unbounded function on
and A is a Leray - Lions operator from
LP(0,T; W, 7(2)) into its dual LP' (0,7: W =1+ (£2)).
The nonlinearity H (. t. u, Du) satisfies the following
growth condition H (x.t,s.&) < y(x.t) + g(s) |€]” with
~v e LY(Q)and g € L'(R), and without assuming the sign
condition on H. The second term f belongs to L'(Q?) and
b(x.ug) € LY(Q).
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35K55; Secondary 34B1, 37F2.
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1. Introduction

Introduction

The objective of this paper is to study the obstacle problem
with L' data associated to nonlinear operator of the form

(. u

Sl }(ﬁ;f ) + Au+ H(z,t,u, Du) = f.

(1.2)
The principal part A is a differential parabolic operator of
the second order in divergence form, acting from
LP(0,T; W, P(Q)) into its dual LP'(0,7:W~17'(Q)),
defined as:

Au = =div(a(x, t,u, Du)),
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where €2 is a bounded subset of RY, N > 2, and b(x, u) is
an unbounded term. H is a nonlinear lower order term
satisfying the following growth condition

H(x,t,8,8) <v(x,t) + g(s) &P
with v € LY(Q) and g € L'(R). The data f and b(z, ug)
are,  respectively, in LYQ) and LYQ)
More precisely, this paper deals with the existence of
solutions to the following problem

( w>1 ae in 2 x(0,7).
Ti(u) € LP(0,T; W, P()),
b(x,u) € L™ ([0.7]. L'(2))

lim limsup / a(x,t,u, Du)Dudxdt = 0,
{m<|u|<m+1}

m—o0 n—oc .

/ Bg(x, ug)v(x, 0)dx —/ —85 x, u)dadt
0 0o Jod

N+ / S'(w)a(x, t, v, Du)Dvdadt + / S"(w)al(w, t, v, Du) Duvdzdt
Jg 4Q

H(z. t.u, Du)S' (v)vdedt < [ fS'(u)vdrdt,
Jo Jo

Vue K,NL¥(Q),

such Hun‘. S'(u)yv € LP(0,T; W, 1 ) Q).
YV SeW>¥R) with S has a compact support in R.

* Ob(x.
and Bs(z,r) = / ”(,70-)
Jo

— E ¥ (0,7, w1t v () with v(z,T)=0

S'(o)do,

do

(1.2) B
where 1 a measurable function with values in R such
that t € LP(0,T; W, (€2)) N L>(Q) and
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Ky = {r: € LPO0.T:WEP(Q)., u> ae in 2x(0, ‘1‘)}, for almost every « € Q, for every s such that |s| < £,
Our principal goal in this paper is to prove the existence we denote by D, (“”’—‘}) the gradient of ‘”’E};:"‘)

result for the unilateral parabolic problem (1.2) without
assuming any sign condition on H and the term

b(x, u) is an unbounded function.

Porretta has proved in [15] the existence result for
the problem (1.1) in the case of an elliptic equations
with a measure right hand. Another result in this k(z,1)
direction can be found i[2, 3, 6, 22] where the ) .
problem (1.1) is studied in elliptic case for inequality la(z.t,5.€) —a(a.t.s.n)](§—n) >0 forall (&.n) € RV x RY,

defined in the sense of distributions.
la(x,t,5,€)| < Blk(z,t) + |s[P~" + |€[P7Y,
(2.1.3)
fora.e. (z,t) € Q.all (s,£) € R x RV, some function
e L (Q)and 3 > 0.

with f € LY(Q). a(z,t,s,6). > alElP,
For the parabolic equations we list the works of (2.1.4)

Landes [12] with b(z,u) = wand H = 0 and where « are strictly positive constant.
fe LY (0,7; W1 (Q)). A generalization of the Assumption (H?2).

Furthermore, let

H(x.t.s.6): Qx[0.T]xRxRY —Rbea
Carathéodory function such that for a.e (x.t) € @ and for
all s € R, € RV, the grovvth condition

last works in the case of b(x, u) = uvand H # 0 is

treated in [13] (see also [8, 9, 10] for related topics).
Inthe case of f € L'(Q)and b(x,u) = u, see [17,

18]. |H(x,t,8,8)] <~(x,t) + g(s)|£]7,

In the case of H (z,t, u, Du) = div(¢p(u)) is studied (2.2.1)

by H. Redwane in the classical Sobolev spaces is satisfied, where ¢ : R — R™ is a continuous positive
W'»(02)and Orlicz spaces , the assumptions for the function that belongs to L!(R), while ~ (. t) belongs to
parabolic part is inspired by [19, 20]. LY(Q).

The plan of the paper is as follows: In Section 2 we

make precise all the assumptions on f is an element of L'(Q).

b, a, H, f and b(x,up), and the statement of b(z,up) is an element of L'(R).

result. In section 3 we prove our main result. In (2.2.2)
section 4 we give an appendix.

Assumptions on Data and statement of the Finally let ¢ be a measurable function with values in R

such that

result Pt e LP(0,T; I-'If"ul P(2)) N L>=(Q).
Throughout the paper, we assume that the following (2.2.3)
assumptions hold true. and let us define
Assumption (H1) see[19,20].
Q is a bounded open set of RN (V > 1), T > 0is given ) i el p ' .
and we set (2 =0 x (U.T}. ,ﬁ W = {'“- € L} (0. 1" I"i';() (SZ}). U 2 'fl,"fa' a.e in  x ([‘]-I )} .

(2.2.4)
b:2xR— R isa Carathéodory function. We recall that, for & > 1and s in R, the truncation is

(2.1.1) defined as,
such that for every = € 2, b(x,.)is astrictly S if |s| <k
increasing C'' — function with b(z,0) = 0. Ti(s) = {;‘ Sif s > k
Is] | "

Next, for any & > 0, there exist A\;, > 0 and functions

A € LY(Q)and By, € L*(12) such that The aim of this paper is to prove the following

A < ()b(‘.z’. 5) < Ap(x) and ’D‘!. (()b(...z’. “))‘ < Bi(x)
ds Js
(2.1.2)
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Theorem 0.1 Assume that the assumptions
(1?)- (?7) hold. Then, the following problem:
w> ae in Qx(0.7).
Ti(u) € LP(0,T; H-"'Ul P(Q). blz.u) € L (0.T], L'(Q))

M=00 e

o T g,
- [ Bs(;xr.'tz.g)'{-'{.'t“O](.’:zr—f [(_)—{Bg{(lf. u)dedt
Ja 0 Jo Ot

+ | S'(w)a(z,t,u, Du)D-:-'d.1‘rIi+/ S"(u)a(z, t, u, Du) Duvdzdt
Q JQ

+/ H(w,t,u, Du)S' (w)vdedt <
Q

lim limsup ] a(x, t,u, Du) Dudrdt = 0,
{m<|u|<m+1}

£8"(u)vdudt,
Q

VoveK.nL™ (Q) E LX(0,T; W=1(Q)) with v(z. T) =0
such !hu.t S'(u)v € LP(0,T; Vl[]l ")),
YV SeW>®(R) with S has a compact support in R,

Bg(x.r) = ﬁ" MS!{U}H’U‘ .
(1)

.

has at least one solution .

Remark 0.1 Let us remark that in the case of
0 = =00 Theorem 77 states the existence of so-
lution in the case of equation i.c. the following
problem

Telu) € IP(0.T:Wy *(). br,u) € L ([0.T), le})
lim lim ~||pj alx,t,u, Du) Dudedt =
{rrr(| |(rr1-|-1

U

/ Bs(x.up)v(z.0)dz —[ f Bs (. u)dudt

-'r[ S{ra]a{.r,f.u.Dre]Da'd,m'H[S”[_ui]f:[i.r.ﬁ it, Du) Duvdzdt
0 Q
+ [ H(z,t,u, Du)S'(u)vddt = f 18 (u)vdudt,

Yo e IP(0.T: W) ! ﬂ;]ﬂL‘(Q} e LZ(0,7:W=(Q) with vz, T) = 0

such that S{H]i e (0,7, *(),

Y SeW**(R) with ' has a compact support in B,
(1)

has at least one solution.
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Proof of Theorem 0.1
Approximate problem

For n > 0, let us define the following approximation of
l:)._ H . f and UQ:

by(x,1) =
(3.1.1)
In view of (3.1.2), b,, is a Carathéodory function and
satisfies (3.1.3), there exist \,, > 0 and functions
A, € LY(Q)and B,, € L?(£2)such that

1
—r for n>0.
n

b(a, T,(r)) +

by, (2, 8)

<
An < ds

< Ap(x) and

Dby, (x, .
D, (”(()7;“})‘ < Bulz) a.cin Q, s € R.
A

H(x,t,5,8)
+ L H(x,t,5,6)]

Haa.t,5.6) = -

fn € L;”(()) and f, = [ a.e in Q and strongly in L'(Q) as n — +0,
(3.1.4)
Uon € D(Q) b (2. won) |1 < ||b(2, u0)l| 11

bp (. upn) = bz, up) a.c in Q and strongly in L! (€2).
(3.1.5)

Let us now consider the approximate problem:

( uy € Ky,
T fap (o
[ <M,{u” - :'}> rf.m’.i‘--l-/ ala. o, Dy ) Dy, — v)dedt
0 ot W1 ()W #(Q) Q
4+ | Hyla,t,ug, Duy ) (uy, - darh‘< f,,(un v)drdt,
Q
Yo e K.
(3.1.6)
Note that H,,(x, t, s, £) satisfies the following
conditions

|Hp(x,t,8,8)| < H(x,t,8,8) and |Hy(x,t,8,8)| < n.

Forall u,v € LP(0,T; W, P(Q)).

Moreover, since f,, € L' (0, T: W' (Q)) then, for
fixed n € N the approximate problem (3.1.7) has at
least one solution (see e.g [14]).
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A priori estimate.
Let v = u, — nexp(G(un))Ti(u}t — ), where

G(s) = / % dt (the function g appears in (3.1.8))
J 0O

and 77 > 0. Since v € LP(0,T; W, *(£2)) and for 1
small enough, we have v > 1, thus v is admissible
test function in (3.1.9), then

©Ob, (x. Uy,
/ Muexp(G(u,,))Tk(u: — ¢ )dadt
0 ot

+/ a(w.t, uy, Dy ) D(nexp(G (un)) T (u, —0™))dodt
Q

Hy (2, t, tn, Dug )nexp(G (un)) Tk (u) — ) dzdt

Q
0 Funexp(G(un)) Ty (u)t — T )dadt
Then
/l Mexp(@(u”))ﬂ(u: — ) dxdt
o O

+/ a(x, t, w,, Du,)Du, g(:”](‘X[)(G(u,,))T}\.{u:'—-.;-'}+]zi;::ff!
Q :

+ / a(z,t, un, Duyp) D(Ty(ut = ))exp(G (uy,))dadt
Jo

< / = ., Dot e Ty -0 et / (6 Ty~ o,
¢

0

< ] 7z ) exp( Gy T =7 o+ ] () Doy exp( G ) i =0l
Q Q

frnexp(G(un))Ti(u, — ) dadt,
Q

In view of (2.1.4) we obtain
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(@, by gy, Dty ) D(Ty (gt =) )exp (G (uy,) dadt

/B}:.G(-"-'”::(T)M-'“‘Ff C
Jo Q

< ] '}'(;ar,e‘}nxp((?('u.“))T;,.('u.,f—'@-":+}d.:rdf.+/ Frexp(Gu)) T (u)f =4 )dadt
Q JaQ

—l—[Bif.G(:zf.ug,,)d:r, (3.2.1)
Ja

where
B} c(x.r) = [; Ti(s
Due to the definition of B}’ . we have

— ) exp(G(s)) Wn’s

. g _ .
0< ] By g, ugp)de < kexp (””LI[R}) ] |by (2, wgy )| de < 1C || bz, '“"}”L‘{!‘J .
t @ 0 :

(3.2.2)
Using (3.2.3) and B} (=, u,) > 0and

G(un) < "””i# then we deduce that,

] a(z, t, un. Dup) D(Ty(uw) =) )exp(G(uy))dzdt < 1k
Q

where c; is a positive constant not depending on .

Consequently, we have.

/ a(x,t, w,, Duy)Dutexp(G(u,)) dedt
{Jun =t |<k}

< [ a(z, t, u,, Duy,) Dy exp(G(uy,)) dedt+c k.
{|uy =t |<k}

Thanks to (2.1.4) for the left hand integral, (2.1.3)
and Young’s inequality for the right hand, we deduce

|Duf|P dzdt < cok + c3.
H{luy =t [ <k}

(3.2.4)
Since
{(z,t) € Q@ x (0,7T), |ut| <k} C {(z,t) € Q x
0.7), fuy =9 <k +[PF |} :
hence
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[|DT;-[H;]|P fﬂrf?f:[ Duf rf.r'rffﬁf D drdt
¢ HputI<k) {16 -* Kk o}

moreover, (3.2.5) implies that,
/ |\ DT (w))|P dodt < ey VE >0 (3.2.6)
S0

where c¢3 is a positive constant.

On the other hand, taking

v = u, + exp(—G(u,)) T} (u,, ) as test function in
(3.1.6). Similarly we obtain

/ DTy (u,, )P dedt < cqk (3.2.7)

where ¢4 is a positive constant.
Combining (3.2.8) and (3.2.9), we conclude

[ | DTy (un)|? dedt < ck (3.2.10)
Jo

where ¢ is a constant positive.
We deduce from that above inequality (3.2.1) and
(3.2.2) that

11

(3.2.11)

Then, Ty.(u,,) is bounded in L? (0, T; W, ?(Q2)),
independently of n for any & > 0.

We deduce from that above inequality (3.2.1), (3.2.2)
and (3.2.12) that

/ By q(@,un(7))dx < C k.
J 0

Now we turn to prove the almost every convergence
of u, and b, (x, uy,).

Consider now a function non decreasing w;, € C?(R)
such that wy,(s) = s for|s| < % and wy.(s) = k for
|s| > k. Multiplying the approximate equation by
wy.(un,), we get

(3.2.13)

OB} (x.uy,)

~ —div(a(z, t.w,, Duy)wh (u,)) a2t ., Duy)w) () Duy,
¢

+H,(z,t, up, Duy,)w). (1) = fnwh(u,)
(3.2.14)

where B} (x, z) = /U 95

= 9b,(x. s
Mw;\,(s)rﬂs.
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R ”-‘f”f_'c:«‘.] —_
Bl (r u,)de < kexp a (||.f||f‘|(Q;+”"’{-"- ”U)”Ll[m) =Ck.

As a consequence of (3.2.15), we deduce that wy,(u,,)
is bounded in L7 (0, T; Wi 7(€2)) and 2ZEL1n) s
bounded in L'(Q) + L¥' (0, T: W~1#'(2)). Due to
the properties of wy. and (2.1.2), we conclude that
derlun) s pounded in L1 (Q) + L (0.7 W1 (%)),
which implies that w.(u,, ) is compact in L' (Q).

Due to the choice of wy., we conclude that for each £,
the sequence 7. (u,,) converges almost everywhere in
(2, which implies that the sequence w,, converges
almost everywhere to some measurable function » in
Q). Thus by using the same argument as in[4,5,21],
we can show the following lemma.

Lemma 0.1 Let u,, be a solution of the approxi-
mate problem (?7). Then

Up = u a.e in Q, (1)

and
bo(z,up) = blr,u) ae in Q, (2)

we can deduce from (17) that,

Ti(un) = Ti(u) weakly in LP(0,T; Wy P(Q))
(3)

Which implies, by using (1?), for all k > 0 that
I '\'
there exists a function Ay € (Lf’ (Q)) . such that

’ ‘\.
alz, t, Ti(uy), DT (u,)) = A weakly in (L‘” (Q)) .
(4)

We now establish that b(x, u) belongs to L*(0.T;L'(1)).
Using (1) and passing to the limit - inf in (3.2.16) as
712 tends to +oo, we obtain that

1 .
T / Bi.c(z,u(t))dx < C, for almost any 7 in
1

(0,T). Due to the definition of By, (x, s) and the

fact that %Bg‘._(;(;:r. u) converges pointwise to

/ sgn(s) ()b(‘:rr. 9) exp(G(s))ds > |b(x,u)|,as k
JO d-‘i

tends to +oc, shows that b(z, u) belong to
L>°(0,7T; L' (£2)).

Strong convergence of truncation.
This step is devoted to introduce for & > 0 fixed a time
regularization of the function 7. () in order to perform the
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monotonicity method. This kind of method has been first
introduced by R.Landes (see Lemma 6 and proposition
3,p-230, and proposition 4, p.231, in [12].

Let ¢); € D(£2) be a sequence which converges
strongly to g in L(£2).

Set 'rr.-';'J = (T3 (u))p + e " Ty (i) where (Ty.(u)), is
the moIIification with respect to time of 7}.(u). Note
that w is a smooth function having the following

propertles.

du

()f = pu(Tp(u) —w p) wL(O) = T.(1;), ‘1;:;‘ <k,
wh, = Ti(u) in LP(0,T: Wy (),
(3.3.1)
as j1 — 0o.

We will introduce the following function of one real
variable s, which is define as:

1 if |s| <m

0 if [s| >m+1
hm (3) = e I |

m+1l—s ifm<s<m+1

m+14+s

where m > k.
Let v = uy, — nexp(G(un ) (Tr(uy) — w ] B (1),
v is a test function in (3.1.6). Then, we have

[ ab,,(il-'. un) ex
G-y O

+[ alx,t, wy, Duy ) D(Th(up) - w,
[Ty (un ':l—tt';', >0}

- [ exp(Glup) )alz, 1wy, Dy ) Duy (Ti(u,) = u‘L )*dudt
{m<u, <m+1}

if —(m+1)<s<-m

PG (un)) (T ) = Jr,,{u,,)fhd

P (0, ) et

g['}-‘(.-1-'.f)exp{G{-u.n)](T,L(un) ur (10 )t
Q

fn OX])(G(UH))(]}f(un) -
Jo
(3.3.2)
Observe that

“"L ) B () dzdt.

f expl(Glug ) )alx, t,uy,, Duy, ]UH”{T}..(H,,)—rr.':,}*'n‘.-:rdf
{m<un<m+1}

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

llgll .
< 2kexp LR / alx,t, uy, Duy) Du,dadt.
« “ {mgunﬁm+l}

We prove the following Lemma:

Lemma 0.1 Let u, be a solution of the approxi-
mate problem (7?7). Then

alx, t, u,, Duy) Duy,dedt = 0
(1)

lim limsup
M—+00  n_seac

./{m§|u,,|§m+1}

Proof. Considering the following function

— nexp(G(up)) Ty (ty — T (un)) T

for m large enough and 7 small enough, we can
deduce that v > 1, and since v € L?(0,T; W, (Q2)),
v is a test function in (3.1.6). Then, we obtain,

U= Up

— Ton(un)) T dadt

" ob, (., u,
/ Don (T Un) (G ot T

+f a(x,t, tn, Duy) D(exp(G(un) Ty (un — T (uy))T) dadt
Q

Hy(x,t, upn, Duy, )exp(G(uy, )T (uy, dzdt

Q

— T (’“n ))+

Fnexp(G (un) Ty (ty — Ty (un))t dadt.
@

Which gives, by setting

| Obn
B (z,r) = [T 28 exp(G(s))Ta (s = Ton(s))Fds,
and from the growth condition(2.2.1),

( )

exp(G(un) T1 (un = Ton(un))* dadt

/ B (. -n,,}('f')rf:::+/ ala,t, uy,, f)u,,)
Q Q

+/ a(x, t, ty, Duy )exp(G(un) DT (un — T (un)) " dadt
Q

< [ g(tn) | Dun|? exp(G (un) Ty (ttn =T (un)) T dadt
Jo
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+ / (foty (. 1)) exp(G ) T (=T () n".f'rff+[ B (e, ug)der,
JQ S0
which, thanks to (2.1.4) , gives:

[ B (&, un)(T)de+ f (.t . Dt Jexp(G (1) DTy (1 = Ty () vt

.‘?: IR) P )
<exp lol [{f,,+*_.[.r.tJJT1iu,,—L,[n,,}]er,a‘dH[ (B, ug)|dx |,
a JQ I |ug|>m
(3.3.3)

Since B!"'(x, u, )(T) > 0, then by Lebesgue’s
theorem the right hand side goes to zero as »n and m
tend to infinity.

Therefore, passing to the limit first in n, then m, we
obtain from (3.3.4)

m—00 n—o0

(3.3.5)
On the other hand, consider the test function
U= Uy + QXI’(_G('”-N))Tl('”-n — T (”'n)}_ in
(3.1.6) is cleary admissible, then

lim limsup / a(x, t, u,, Duy,)Du,dedt = 0,
J{m<u, <m+1}

M= pnaoo

(3.3.6)
Thus Lemma 0.1 follows from (3.3.7) and (3.3.8).
Thanks to Lemma 0.1 the third integral tend to zero
as n and m tend to infinity, and by Lebesgue’s
theorem, we deduce that the right hand side converge
to zero as n, m and g tend to infinity. Since

lim lim 5111)[ alx, t, ty, Dy ) Duydadt = 0.
{=(m+1)<up<—m}

[Tk(“n:’_“':;}Jrhm[“n:| - [_T;-{u}—:r'j,}fhm[u] weakly in L(Q), as n= o and

(T;;.('rr.)—-u.-:{)‘*h.m(-u] — 0 weaklyx in L>=(Q) as p — oc.

Let &/(n,m, pu,i) | =1,...,n various functions tend
to zero as n, m, ¢ and p tend to infinity.

The very definition of the sequence w;, makes it
possible to establish the following lemma.
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Lemma 0.1 For k>0 we have

[ M E’XI}(G[ iy }}{T,L.(!f” }_“':r”ﬂ m(”"]‘h.“[f 2 :_[”. m, i f]
{T(un)-wi >0} ot
(L)

Proof: this lemmais proved in [19].
On the other hand, the second term of left hand side
of (3.3.2) reads as

[ alx, b, uy, D'u-,,}D{T}Y(-u.”)—-n-';',)h.,,, () dadt
ST (wn ) —w}, >0}

= / ”(<*'< t, Ti[ U ). DTR{ ”JrJ }D[n'(“n }_“‘;r)h m( ”JI’)”"P“{f
(T (un ) —wf, 20, |un | <k}
— / a(x, t, uy, Duy, )D'u.rL B (wy, )dadt.
ST (wn ) =w, >0, Jun | >k}

Since m > k. hy,(u,) =00n {|u,| > m+ 1}, one
has

/ a(z, b, un, D'U.H)D(T;‘-(-u-n)_“"L)h'”f(""ﬂ)‘h"“
5 {T;,[u,,)—ﬂ‘;,zo}

/ alx.t, Te(un), DT;..('rr,r)}D{TL-(u,,)—-u::'!)hm(“”)dl,.ﬂr_!
H{Te(un)—w), >0}

— / alz, b, Tt (i) DTy () ) Dwy by (uy Jdawdt = Jy+J5.
N T lutn) =), 20, Jun |2k}

(3.3.9
In the following we pass to the limit in (3.3.10) : first
we let n tend to 400, then g and finally m, tend to
+00. Since a(x, t, Tyr1(ty ), DT a1 (uy)) is

! ‘\—
bounded in (LP (Q)) , we have that
G.(.;T-. t, Tm+1(un)- DTmH (un))hm ('U-n)X{|un >k} - J"xm X{|u|>k}hrn (U)

! ‘\— - - . -
strongly in (LP (Q)) as n tends to infinity, it
follows that
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We then conclude that

Jo =/ AmDm:,f'.'.m (w) X {ju|>k}drdt+e(n) .
{Th(u)—w}, >0} [ alz t, Th(un ). DT (un)) V(i (wn ) =wp ) o (ug ) dadt
Tk (un) =i, >0}

= [ ;\m[D'I';,.(-u},,—f'_”'DT},.{t_.-",-}]hm(rr.)_\{|“|>k}n’.a'f!’f+.-:(u).
S{Te(u) =y, 20} = f [ra(.r'.e‘..'fl-(“u}- DTy (un)) — ala, t, Ti(un), DT‘L(“))]
{Ty(un)—wj, >0}

By letting 1« — +oc, implies that

Jo = / A DT (u)dxdt + e(n, p). X [DTi(uy,) — DTy (w)] hon (wy, )dxdt + £(n, ).

Q
Using now the term .J; of (3.3.11) one can easily show On the gther hand, we have

/ [!‘!(.‘:-,f"“;('gin)- “'“(“””_”(.'E'.f.’“‘ {.”“}_D .ﬁ{”))]
{.r;.'(”u]—”'j'._}[)} 1

[ alz.t, Ty(uy), DTy (un ) D(Th(w,) - wL Vo (0 )t
{T(un )}, >0} x [DTy(u,,) — DTy (u)] dadt

= / la(e, 8, Ti(un), DTy(u,)) — ala, 8, Ty (uy ), DT5(u))]
= [ [a(z.t. Ty(un), DTk (uy)) = alz.t, T (uy), DTy (u))] AT (un) — ), 20}
{Ti(un) - 20}

X [DTy.(up) — DTy (w)] hop (wy, )dadt
X [DTy.(up) — DTy (w)] hop (wy, )dadt

i f U(.E'. t, Tk(“n}» DTL‘(”N }](DTk[“rr)_Dn‘(“”(l_h ru{“rr)}d'rdt
+ [ ala, b, Tl ), DT (u)) (DT ()= DTy () )y (1, ) dadt {Tilun )=}, >0}
ST ) —wj, 20}

- [ ala.t, Ty ), DT ) (DT )= DTy () ) (1= ()l
{Ti(un :l—u'j‘ >0}

(3.3.16)
Since hy, (u,) =1 in {|u,| <m}and
_ {|u,| <k} C {|u,| < m}for m large enough, we
- -/{"I),lu,.';—u-;,zu} alw,t, Tlun ) DTi(tn ) Dyl (s )dvdt = Ky+ Ko+ K3+ K. deduce from (3317) that
(3.3.12)
We shall go to the limit as n and H— 4+ in the / lala.t, Ti(un), DTi(un)) — ale,t, Ti(, ). DT (u))]
three integrals of the last side. T 200
Starting with K5, we have by letting n — +oc
Ks =¢(n). (3.3.13)
About 3, we have by letting n — +oc and using (4)
Ky = E('H). (3.3.14) = f{T;-(u”J—u-" o) [a(@ t, Ti(wn), DT (un)) — al@ t, Th(tn), DTi(u)))

For what concerns i, we can write

+ / a(x,t, Ti(un)s DTy (uy )) DT (w) by () deedt
{Tk(ura}'_“';;zﬂ}

x [DTy(uy) — DTy(u)] dadt

X [DTy(uy,) — DTy(w)] o (wy, ) dadt
Ky=— / _ A;\.Durih,,,_('u.)d:rdﬁ + e(n),
] {T"'(")_w;‘z(_}} . —l—/ ala, t, Tty ), DT (w)) DT (u) (L=l (uy ) ) daxdt.

By letting ;« — +oc, implies that (T () =}, 0. Jun| >k}

Ka=- /Q A DTy (u)dxdt + &(n, ). It is easy to see that the last terms of the last equality

(3.3.15) tend to zero as n — +oo, which implies that
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/{ 00 T, DT () = e, Tu(n). DT ) meas{ (z,t) € @ x [0.1]: |Du, - Du| > o} < meas{(z,t) € x [0.T) : [Duwy| > k}
Tyl )—wl, >0

X [DTy(un) — DT.(u)] dzdt measf(z,t) € Dx [0.T] :[uf > k}
+meas{(2,1) € Qx [0.T]: (DT (uy) = DT (u)| > o}

- / la(z.t. Ty (un). DTk (un)) — ale. t. Ty (un). DTi(u))]
{7 (un ) —wj, >0}

then as a consequence of (3.3.27) we also have, that

X [DTy(up) — DTy (w)] o (uy, )dadt 4+ £(n) Du,, converges to Du in measure and therefore,
Combining (Lemma 0.11), (3.3.8), (3.3.9), (3.3.10) , always reasoning for subsequence,
(3.3.11) and (3.3.12) we obtain Du, = Du a.e in Q. (3.3.28)

Which implies that,

/ _ [z, t, Th(un), DTy (un)) — ala, b, Th(un ), DTy ()] .
{ Tk (un)—w), >0} . - - . ! N

alz, t, Ty (up ), DTy (uy)) = alz,t, Ty.(u), DTi(u)) in (L"' (Q)) .

X [DTy.(upn) — DTy (u)] dedt < 2(n, p,m) (3.3.29)

(3.3.18) Equi-integrability of the nonlinearity sequence.
To pass to the limit in (3.3.19) as n, and m tend to We shall now prove that _
infinity, we obtain H,(x.t.u,, Du,) — H(x.t,u, Du)strongly in L'(Q)

by using Vitali’s theorem.
Since H, (x,t, u,, Du,) — H(x,t,u,Du) a.e in Q,

i by by LRty Jo "ra._--‘-< Al ) 4L i i N — [0
lim [{m"”]_wm} [alz.t, T (un), DTy (un)) — al@.t, T(uy), DTx(u))] Consider now a function py, () _.O‘L‘ (V)X {p<—nydv.
On the one hand, let v = u,, + ] 9(8)X {s<—nyds. Since

X [DTy(un) — DTy (u)] dedt = 0. v e LP(0,T; W, P(2))and v > ¢, v is an admissible test
(3.3.20) function in (3.1.6). Then,
On the other hand, take
1 = 1 &) — i i —_ iy— i I.I[”.'. n . . P W7
t _ f-:"n + exp( G_(H::.)))(Tf-'_(‘-‘n ) w,u) B (). —] Mpxp[—(.‘l_rr,,]3;‘:;.L'u”_|r1'rr1r‘+[rulu,,.DrrnﬁUf,—vxpi—(:'(u,._l_lp;,iu,,Hn’.m‘f:—
This is a test function admissible in (3.1.6). o O Q

Similarly, we can deduce as in (3.3.21) that + [ Hi(tt, Dy ) (= expl(=G i, ))on (1)) d.i'dfﬁ[f,.L'—expﬂ—(-'[u,,]]p;illui.i}n’.a‘d{.
i Q

lim_ [ [a(z, b, Ty (un), DT (un)) — alz b, T (uy), DTy (u))]
n=20 Ty (un)—wi, <0} Which implies that

. — . . _ . . -0
X [DT'I"(“'”) DTL'(”)] dedt = 0. [ By (w1, ) (T)dx + / a(u,,.D-u,,)f)rr,,‘![”") exp(—Gluy,)) / 9(8)X fsc—nydsdudt+
(3322) 40 ) JQ & S
Combining (3.3.23) and (3.3.24), we conclude + /Qu{uu.nu.,}vm, exp(—G(un))g(tn) X u, <—nydrdt

~ ]
r < | ylx t)exp(—Glu,)) 18X fee —prdsdrdt
/ [a(z,t. Teluy ). DTy, )) - ale, £ Ty ), DTy ()] % [DTi () - DTy(u)] ddt = 0. ‘/Q / et

lim
m

n Jo [ P s /U . .
+ [ glun) [Dug | exp(—=Glun)) [ 9(s)X{ec—nydsdedt
(3.3.25) , | | oo
- - - () o
Which implies that - f,,{‘xp(—(?[rr,,}l)] _q{s)_\{,<_;,}r.f:.-d,rrh‘+/ BY (. wgn )d.,
Jo i 0

Ti(u,) — Ti(u) strongly in LP(0,T; W'Ul P(Q)) Vk.
(3.3.26)
Now, observe that we have, for every o > 0

where B} (x, z) = f(]“ %bn(2,5) exp(—G(s))(—pn(s))ds

s

using (2.1.4) and since
[E? 9(8)X{s<—n}ds < j__;; g(s)ds, we get
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5‘“"—-3

alty, Dty ) Duy exp(—Glup ) )glun ) x {1 <—JJ}EL!I|{£!

o0

—h ||!f||L'i;"

) (] y{x]n"ﬁ) oxp (Tﬂ (”MJ._ o)l gy + Il ) + I|fre||L|[f)J)
—h gl 1=y

< (/ ,f,f{.s'Jdﬂ) exp (Tl (”"?“thtaa Al + “h{'n.”"}”Ll[m)

o0

using (2.1.4) , we obtain

—h
/ g(uy) |[Duy | dedt < C/ g(s)ds
HHun<—h} —0oo

and since g € L*(R), see [7], we deduce that
lim sup / g(un) |Duy | dedt = 0.
{un<—h}

h—o0 nelN

(3.4.2)
On the other hand, let
M = exp(=G(u)) [ g(s)ds and
h > M + [[{)|| L (q) Consider
—exp(G(un)) [5 9(s)X{s>nyds. Since
v e LP(0,T; W,y *(2))and v > 1, v is an admissible
test function in (3.1.6). Then, similarly to (3.4.2), we
deduce that

lim sup / g(uy,) | Duy,|? dedt = 0.
{un>h}

v = Uy,

h—o0 peN
(3.4.3)
which implies, for & large enough and for a subset £

of Q,

lim / gluy) | Duy,|” dedt < ||g]| lim / | DT, ()| dadt
Je .

meas( E)—0 meas(E)—=0 g
+ g(uy,) | Du,|” dzdt
{lun|>h}
then we conclude that g(u,,) | Du,,|” is equi -
integrale. Thus we have obtained that g(u,,) | Du,|”
converge to g(u) | Dul” strongly in L*(Q).
Consequently, by using (2.2.1) , we conclude that

H, (2.t up, Duy) — H(x.t,u, Du) strongly in LY(Q).
(3.4.4)

Passing to the limit.

Observe that for any fixed m > 0 one has

[ alz.t.uy. Duy) Du, = [ ale, b g, Dug ) (DT (1t )= DT (1))
{m<|up|<m+1} Q
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=/!T[-f'-I-Trn+l1“nF-DTmH{“n]]DTuJ:—l[“»]_[ “[-"-f-I-m[“rr]-D-lr‘m[“n]]D]-m[“rr]‘
Q

Q

According to (4) and (3.3.17), one is at liberty to
pass to the limit as n — oo for fixed m > 0 and to
obtain

lim f alz.t, uy, Duy ) Duydedt
it {m<un|[<m+1}

:fra{,r',f.Tr,,*][rr].Dlr,.,_]|:u]]DE.,*]{u]rJ',r'u'?—[rai,r'.f.Tr,,[rr}.UT,,.I:tt:HUT,r,f,u]fI.nIr‘.
Q Q

= f ala,tou, Du) Dudrdt.
{m<Ju[<m+1}

(3.4.5)
Taking the limit as »n — +oc in (3.4.6) and using the
estimate Lemma 0.1 show that u satisfies

lim / a(x,t,u, Du)Dudzrdt = 0
{m<|ul<m+1}

m—r+0o0

(3.4.7)

On the other hand, let

@ € K, n L*Q). & €
LY (0, T; W= (Q)) with ¢(x,T) =0

such that S'(u)e € LP(0.T: W, P(Q))

and Let S be a function in W2 (R) such that S’ has
a compact support. Let M be a positive real number
such that supp(S’) C [~ M, M]. take

v =u, — S'(u,)y as a test function in (3.1.6). We
get,

ty, € Ky,

}z-
/ B (. ttno) (i, 0)der —[ / % Be o, wy )dadt
o Ot

/ S )alx, b, 1y, Du”)thffI-i-/

Q

S"(upyalx, . Dy, ) Dy pdadt

[ H{x, t, 1y, Duy)S (uy )pdrdt < /-f.‘_'a"‘(u,l )epdadt.
JQ Jid

(3.4.8)
Where B, (z.r) = [, db':}:! S'(1)dl.

In what follows we pass to the limitas n — +ocin
each term of (3.4.9).

e Since S is bounded and continuous,

u, = u a.e in Qimplies that BZ(x. uy,)
converges to Bs(x,u)a.ein Qand L= weak — #.

Then 2258240 converges to 22524 in p/(Q) as n
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t_ends to +oc.
92 ¢ LV'(0,7; W~ (Q)). Then

./Q %BS.,, (z, up)dxdt — 0 %Bs(:ﬂ. u)dxdt.

(3.4.10)

o Limit of S’(uy,)a, (. t, u,, Duy,).
Since supp(S’) C [-M, M|, we have for n > M

S )an (w, by, Duy) = S'(ug)ala, £, Ty (un), DTy (uy)) ace in Q.

The pointwise convergence of u,, to wand (4)asn
tends to +oc and the bounded character of S’ permit
us to conclude that

] N
Sy an(x, by, Duy) — S'(w)alx, t, Tap(u), DTy (u)) in (L"{Q)) .

(3.4.11)
as n tends to +oc. S’ (u)a(x, t, Tar(u). DTy (u)) has
been denoted by S’(u)a(x, t, u, Du) .

o Limit of 5" (u,,)a(x, t, uy, Duy,)Du,,.
As far as the “energy’ term

Sﬂ[u,,}ﬂ[,r:f.ra,,.Dra,,:ll)u,. = S”[u,,]ﬂ[.rxl‘.TJ,;I:H,,:I, DTyl )) DTy, ) ae in Q.

The pointwise convergence of S'(u,,) to S'(u)and
(4) as n tends to +oc and the bounded character of
S” permit us to conclude that

()., D) D = 8" w)a(z., Toglu), Do) DTy () weakly i I! 10)

(3.4.12)
Recall that
S"(u)ypa(x,t, Trhr(u), DT (uw)) DTy (u) =
S"(u)pal(z, t,u, Du)Du a.e in Q.

e Limit of S'(u,)pH, (x,t, u,, Duy,).
Since supp(S’) C [-M, M]and (3.4.13), we have

S'(un ) Hy (2t un, Duy )dzdt = / S'(u)oH (x.t, u. Du)dxdt,
Q JQ
(3.4.14)
as n tends to +oc.

o Limit of 5" (u,,)@f,.
Since u,, — u a.e in @, we have

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

fQ S’ (un )@ frndrdt — IQ S'(u) fdxdt as n — +oc.

To this end, firstly remark that, .S being bounded,
Bié(x. uy,) is bounded in L>((). Secondly, the

above considerations on the behavior of the terms of
this equation show that Qﬁ% is bounded in
LY(Q) + L¥ (0, T; W1 ()). As a consequence,
an Aubin’s type lemma (see, e.g. [23] ) implies that
B%(x, uy,) lies in a compact set of C°([0, T, L*(£2)).
It follows that on the one hand,

Bé(x,u,)(t = 0) = Bé(x. uj) converges to
Bs(x,u)(t = 0) strongly in L!(£2). On the other
hand, the smoothness of .S implies that

Bg(x,u)(t = 0) = Bg(x,up)in £2. we can pass to
the limit in (2). This completes the proof of Theorem
0.1.
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