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Abstract 
In this paper, we prove the existence of solutions to 
unilateral problems involving nonlinear operators of 
the formwhere  is unbounded function on  
and  is a Leray‐Lions operator from 

 into its dual . 
The nonlinearity  satisfies the following 
growth condition  with 

 and , and without assuming the sign 
condition on . The second term  belongs to  and 

. 
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1. Introduction 

Introduction 

The objective of this paper is to study the obstacle problem 
with  data associated to nonlinear operator of the form 

 

 (1.1) 
The principal part  is a differential parabolic operator of 
the second order in divergence form, acting from 

 into its dual , 
defined as: 
  

where  is a bounded subset of , , and  is 
an unbounded term.  is a nonlinear lower order term 
satisfying the following growth condition 
  
with  and . The data  and  
are, respectively, in  and . 
More precisely, this paper deals with the existence of 
solutions to the following problem 
 

 
                                         (1.2) 
where  a measurable function with values in  such 
that  and 
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, 

Our principal goal in this paper is to prove the existence 
result for the unilateral parabolic problem (1.2) without 
assuming any sign condition on  and the term 

 is an unbounded function. 
Porretta has proved in [15]  the existence result for 
the problem (1.1)  in the case of an elliptic equations 
with a measure right hand. Another result in this 
direction can be found i[2, 3, 6, 22]  where the 
problem (1.1)  is studied in elliptic case for inequality 
with . 
For the parabolic equations we list the works of 
Landes  [12]  with  and  and 

. A generalization of the 
last works in the case of  and  is 
treated in [13] (see also [8, 9, 10]  for related topics). 
In the case of  and  , see [17, 

18]. 
In the case of  is studied 
by H. Redwane in the classical Sobolev spaces 

 and Orlicz spaces , the assumptions for the 
parabolic part is inspired by [19, 20]. 
The plan of the paper is as follows: In Section 2 we 
make precise all the assumptions on 

 , and the statement of 
result. In section 3 we prove our main result. In 
section 4 we give an appendix. 

Assumptions on Data and statement of the 
result 

Throughout the paper, we assume that the following 
assumptions hold true. 
Assumption  (H1) see[19,20]. 

 is a bounded open set of  ( ),  is given 
and we set  
 

 (2.1.1) 
such that for every  is a strictly 
increasing . 
Next, for any , there exist  and functions 

 and  such that 
 

 (2.1.2) 

for almost every , for every  such that  , 

we denote by  the gradient of  

defined in the sense of distributions. 
 
 (2.1.3) 
for a.e. ,all , some function 

 and  
 

 (2.1.4) 
where  are strictly positive constant. 
Assumption  (H2).  
Furthermore, let

 be a 
Carathéodory function such that for a.e  and for 
all  the growth condition 
 
 (2.2.1) 
is satisfied, where  is a continuous positive 
function that belongs to , while  belongs to 

 
 

 
 (2.2.2) 
 
Finally let  be a measurable function with values in  
such that 
 
 (2.2.3) 
and let us define 
 

 (2.2.4) 
We recall that, for  and  in , the truncation is 
defined as, 

  

The aim of this paper is to prove the following 
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Proof of Theorem 0.1 

Approximate problem 

For  let us define the following approximation of 
 and : 

 

 (3.1.1) 
In view of (3.1.2),   is a Carathéodory function and 
satisfies (3.1.3),  there exist  and functions 

 and  such that 
 

 

  

 
 

 (3.1.4) 
 

 
 

 (3.1.5) 
 
Let us now consider the approximate problem: 
 
 

 (3.1.6) 
Note that  satisfies the following 
conditions 
 

 
For all . 
Moreover, since  then, for 
fixed  the approximate problem  (3.1.7) has at 
least one solution (see e.g [14]).  
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A priori estimate.   
Let , where 

 (the function  appears in (3.1.8)) 

and . Since  and for  
small enough, we have , thus  is admissible 
test function in (3.1.9),  then 
 

 

 

 
 

 

  

 
Then 
 

 

 

 
 

 
 
 

 
 

 

  

 
 
In view of (2.1.4)  we obtain 

 

 
 

 

  (3.2.1) 

 
 
where 

 

Due to the definition of  we have 

 

 (3.2.2) 
Using (3.2.3)  and  and 

 then we deduce that, 
 

 
where  is a positive constant not depending on . 
 
Consequently, we have. 
 

 

 

 
 
Thanks to (2.1.4)   for the left hand integral, (2.1.3)  
and Young’s inequality for the right hand, we deduce 

 

 (3.2.4) 
Since 

, 
hence 
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moreover, (3.2.5)  implies that, 

 (3.2.6) 

where  is a positive constant. 
On the other hand, taking

 as test function in 
(3.1.6). Similarly we obtain 

  (3.2.7) 

where  is a positive constant. 
Combining (3.2.8)  and (3.2.9),  we conclude 

  (3.2.10) 

where  is a constant positive. 
We deduce from that above inequality (3.2.1)  and 
(3.2.2)  that 
 

 (3.2.11) 
 
 
 
Then,  is bounded in , 
independently of  for any  
We deduce from that above inequality (3.2.1), (3.2.2)  
and (3.2.12) that 

  (3.2.13) 

Now we turn to prove the almost every convergence 
of  and . 
Consider now a function non decreasing  
such that  for  and  for 

. Multiplying the approximate equation by 
, we get 

 

 
 
 (3.2.14) 

where  

As a consequence of (3.2.15),  we deduce that  

is bounded in  and  is 

bounded in  Due to 
the properties of  and (2.1.2),  we conclude that 

 is bounded in  
which implies that  is compact in  
Due to the choice of , we conclude that for each , 
the sequence  converges almost everywhere in 

, which implies that the sequence  converges 
almost everywhere to some measurable function  in 

. Thus by using the same argument as in[4,5,21], 
we can show the following lemma. 
 

 
We now establish that  belongs to . 
Using (1)  and passing to the limit‐inf  in (3.2.16) as 

 tends to , we obtain that 

  for almost any  in 

. Due to the definition of  and the 
fact that  converges pointwise to 

 as  

tends to , shows that  belong to 
. 

 
Strong convergence of truncation. 
This step is devoted to introduce for  fixed a time 
regularization of the function  in order to perform the 
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monotonicity method. This kind of method has been first 
introduced by R.Landes (see Lemma 6 and proposition 
3,p.230, and proposition 4, p.231, in [12]. 
Let  be a sequence which converges 
strongly to  in . 
Set  where  is 
the mollification with respect to time of . Note 
that  is a smooth function having the following 
properties: 
 

 (3.3.1) 
as  
We will introduce the following function of one real 
variable , which is define as: 
 

 

where . 
Let , 

 is a test function in (3.1.6).  Then, we have 
 

 
 

 (3.3.2) 
Observe that 
 

 

 

 
We prove the following Lemma: 
 

 
Proof. Considering the following function 

 
for  large enough and  small enough, we can 
deduce that , and since  

 is a test function in (3.1.6).  Then, we obtain, 
 

 

 

 
 

 

  

Which gives, by setting 

 and from the growth condition(2.2.1), 
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which, thanks to (2.1.4) , gives: 
 

 
 

 (3.3.3) 
 
Since  , then by Lebesgue’s 
theorem the right hand side goes to zero as  and  
tend to infinity. 
Therefore, passing to the limit first in , then , we 
obtain from (3.3.4) 
 

 (3.3.5) 
On the other hand, consider the test function 

 in 
(3.1.6)  is cleary admissible, then 
  

 (3.3.6) 
Thus  Lemma 0.1  follows from (3.3.7) and (3.3.8). 
Thanks to Lemma 0.1   the third integral tend to zero 
as  and  tend to infinity, and by Lebesgue’s 
theorem, we deduce that the right hand side converge 
to zero as ,  and  tend to infinity. Since 
 

 
 

 
Let  various functions tend 
to zero as , ,  and  tend to infinity. 
The very definition of the sequence  makes it 
possible to establish the following lemma. 

 

 
Proof:  this lemma is  proved in [19]. 
On the other hand, the second term of left hand side 
of  (3.3.2)  reads as 
 
 

 

 

 
 

 
Since  on , one 
has 
 

 
 

 
 

 (3.3.9) 
In the following we pass to the limit in (3.3.10) :  first 
we let  tend to , then  and finally  tend to 

. Since  is 

bounded in , we have that 

 

 

strongly in  as  tends to infinity, it 

follows that 
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By letting , implies that 

  

Using now the term  of (3.3.11) one can easily show 
that 
 

 
 

 
  
 

 
 

 
 

 (3.3.12) 
We shall go to the limit as  and  in the 
three integrals of the last side. 
Starting with , we have by letting  
  (3.3.13) 
About , we have by letting  and using  (4) 
  (3.3.14) 
For what concerns  we can write 
 

 

By letting , implies that 

 

 (3.3.15) 

We then conclude that 
 

 
 

 
 

 
On the other hand, we have 
 

 
  
 

 
  
 

 
 

 (3.3.16) 
Since  and 

 for  large enough, we 
deduce from (3.3.17)  that 
 

 
  
 

 
  
 

 
It is easy to see that the last terms of the last equality 
tend to zero as  which implies that 
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Combining (Lemma 0.11), (3.3.8), (3.3.9), (3.3.10) , 
(3.3.11)  and (3.3.12)  we obtain 
 

 
 
 (3.3.18) 
To pass to the limit in (3.3.19) as  tend to 
infinity, we obtain 
 

 
 
 (3.3.20) 
On the other hand, take 

. 
This is a test function admissible in (3.1.6).  
Similarly, we can deduce as in (3.3.21) that 
 

 
 
 (3.3.22) 
Combining (3.3.23) and (3.3.24),  we conclude 
 

 (3.3.25) 
Which implies that , 
 

 (3.3.26) 
Now, observe that we have, for every  

 

 
then as a consequence of (3.3.27)  we also have, that 

 converges to  in measure and therefore, 
always reasoning for subsequence, 
  (3.3.28) 
Which implies that, 
 

 (3.3.29) 
Equi-integrability of the nonlinearity sequence. 
We shall now prove that 

 strongly in  
by using Vitali’s theorem. 
Since  

Consider now a function . 

On the one hand, let  Since 

 and ,  is an admissible test 

function in (3.1.6).  Then, 
 

 
Which implies that 
 

 
where  

using  (2.1.4)   and since 
 we get 
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using (2.1.4) , we obtain 
 

 

and since  see [7],  we deduce that 

 

 (3.4.1) 
On the other hand, let 

 and 

. Consider 

 Since 

 and ,  is an admissible 
test function in (3.1.6).  Then, similarly to (3.4.2),  we 
deduce that 

 

 (3.4.3) 
which implies, for  large enough and for a subset  
of , 
 

 

  

then we conclude that  is equi‐
integrale. Thus we have obtained that  
converge to  strongly in  . 
Consequently, by using (2.2.1) ,  we conclude that 
 

 (3.4.4) 
Passing to the limit. 
Observe that for any fixed  one has 
 

 

 

 
According to  (4) and  (3.3.17) , one is at liberty to 
pass to the limit as  for fixed  and to 
obtain 
 

 (3.4.5) 
Taking the limit as  in (3.4.6) and using the 
estimate Lemma 0.1 show that  satisfies 
 

 (3.4.7) 
 
 
On the other hand, let 

 
and Let  be a function in  such that  has 
a compact support. Let  be a positive real number 
such that supp . take 

 as a test function in (3.1.6).  We 
get, 
 

 (3.4.8) 
Where . 

In what follows we pass to the limit as  in 
each term of (3.4.9). 
 Since  is bounded and continuous, 

 implies that  
converges to  a.e in  and . 

Then  converges to  in  as  
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tends to . 
. Then 

 

 (3.4.10) 
 
 Limit of . 

Since supp , we have for  
 

 
The pointwise convergence of  and (4) as  
tends to  and the bounded character of  permit 
us to conclude that 
 

 (3.4.11) 
as  tends to .  has 
been denoted by  . 
 
 Limit of . 

As far as the ’energy’ term 
 

 
The pointwise convergence of  and 
(4)  as   tends to  and the bounded character of 

 permit us to conclude that 
 

 (3.4.12) 
Recall that 

 
 
 
 Limit of  

Since supp  and  (3.4.13), we have 
 

 (3.4.14) 
as  tends to . 
 
 Limit of  

Since  a.e in , we have 

 as  

 
To this end, firstly remark that,  being bounded, 

 is bounded in  Secondly, the 
above considerations on the behavior of the terms of 

this equation show that  is bounded in 

. As a consequence, 
an Aubin’s type lemma (see, e.g. [23] ) implies that 

 lies in a compact set of . 
It follows that on the one hand, 

 converges to 
 strongly in . On the other 

hand, the smoothness of  implies that
 in  we can pass to 

the limit in  (2). This completes the proof of Theorem 
0.1. 
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