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Abstract 

This paper provides a robust method for solving transcendental 

equations. The approach, based on the Genetic Algorithm, is 

commenced with the evaluation of the mathematical equations 

by their fitness ratio. As the genetic algorithm is a 

computationally expensive process, the searching space for 

possible solutions is limited to possible chromosomes for which 

the function values are closest to zero. These chromosomes are 

then selected for the next generation using roulette wheel 

strategy. Thus, the required processing timing is greatly reduced. 

Experimental results demonstrate that this process works 

reliably and gives better results than the well-known False 

Position method and the Bisection method for the numerical 

solution of transcendental equations. 

Keywords: Genetic Algorithm, False Position, Bisection, 

Transcendental Equation, Cross-over, Mutation, Roulette Wheel 

Selection. 

1. Introduction 

Scientists and Engineers are often faced with the task of 

finding out the roots of the non-algebraic equations such as 

trigonometric, exponential, and logarithmic functions. 

These equations are known as transcendental equations[1]. 

 

Various approaches to find the roots of non-linear 

equations are made over the last few decades, such as 

direct analytical methods, trial and error methods, iterative 

methods [1], [2]. However, each of them imposes some 

constraints. Direct analytical method miserably fails to 

solve transcendental equations [2]. Trial and error methods 

suffer from the problem of convergence to local optima. 

This method involves a series of guesses for x, each time 

evaluating the function to see whether it is close to zero. 

Iterative methods, such as the Bisection method, the False 

Position method usually start with an appropriate value of 

the root, known as the initial guess, which is then 

successively corrected iteration by iteration [3]. So, these 

methods are also cumbersome and time consuming. 

Moreover, the accuracy of the results does not suit ideally 

to the requirements of many engineering and scientific 

problems. 

 

This research explores an efficient method for finding the 

roots of the transcendental equations with greater 

precision. Genetic Algorithms (GAs) belong to a class of 

stochastic search method employed by natural population 

genetics. They perform a highly parallel adaptive search 

process. GAs have been successfully employed in a wide 

variety of problems related to parameter optimization [4], 

[5], pattern recognition, image processing [6], [7] and so 

on. In this paper, an attempt has been made to solve 

transcendental equations using Genetic Algorithm and to 

compare its efficiency and accuracy with that of the 

traditional False Position and Bisection methods.  
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2. GA to Solve Transcendental Equations 

GA is a blind search technique applied to possible 

solutions to a problem on the mechanics of natural 

selection and genetics analogous to natural evolution [4], 

[8]. Central to the idea of GA is a population of individuals, 

each representing a possible solution to the given problem. 

Each individual, known as chromosome (usually 

represented by a bit string consisting of 0s and 1s), is 

assigned to a fitness value based on how good their 

solution to the problem is. The individuals then evolve 

through successive iterations called generations. During 

one generation, highly fit individuals are given the 

opportunity to mate with other individuals in the 

population. Since the least fit individual in the population 

are less likely to get selected for mating, they disappear 

from future generations. As a result, the population of 

individuals converges to an optimal solution to the 

problem. 

 

The GA starts with an initial set of random solutions called 

the population. Each chromosome is assigned a fitness 

value depending on how meaningful its solution to the 

problem is. On its fitness allotment, the natural selection  

 

 

 

 

 

 

 

 

 

 

 

 

gets executed and the ‘survival of the fittest chromosome’ 

can prepare to breed for the next generation. A new 

population is then generated by means of genetic 

operations: cross-over and mutation. This evolution 

process is iterated until a near-optimal solution is obtained 

or a given number of generations is reached. Different 

steps employed in the genetic algorithm towards solving 

transcendental equations is given below.  

2.1 Fitness Function 

In order to identify the best individual during the 

evolutionary process, a function needs a degree of fitness 

to each chromosome in every generation. In our problem, 

the transcendental equation x2-x-2=0 is taken. Thus, the 

fitness function 2)( 2 −−= xxxf  determines the 

fitness value of each chromosome. 

2.2 Selection 

Selection operator is a process in which chromosomes are 

considered a mating pool according to their fitness 

function. The chromosomes with fitness values closer to 

zero are treated as highly fit individuals for the next 

generation. The other chromosomes are maintained by a 

 

 

 

 

 

 

 

 

 

 

 

 

Fitness graph
Population Fitness 

Chromosome 1 15 
Chromosome 2 27 
Chromosome 3 6 
Chromosome 4 52 
Chromosome 5 11 

Chrom. 1 (15) 
14% 

Chrom. 2 (27)
24% 

Chrom. 3 (6) 
5% 

Chrom. 4 (52)
47% 

Chrom. 5 (11)
10% 

Fig. 1 Roulette wheel selection process

Chromosome 2 is selected Randomly generated number=21 
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Chromosome Length 8 bits 
Population Size 12 
Number of Generation 7 
Cross-over Probability, PC 0.7 
Mutation Probability, PM 0.01 

Table 1. Parameter settings for GA 
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 roulette-wheel selection process [8]. In roulette wheel 

selection, as shown in Fig. 1, each chromosome is given a 

slice of a circular roulette wheel. The area of the slice 

within the wheel equals the chromosome fitness ratio. 

 

To select a chromosome for mating, a random number is 

generated in the interval [0, 1]. It is like spinning a roulette 

wheel where each chromosome has a segment on the 

wheel proportional to its fitness. The roulette wheel is 

spun, and when the arrow comes to the rest on one of the 

segments, the corresponding chromosome is selected.  

2.3 Cross-over 

Cross-over operator randomly chooses a crossover point 

where two parent chromosomes ‘break’, and then 

exchanges the chromosome parts after that point. As a 

result, two offspring are generated by combining the 

partial features of two chromosomes. If a pair of 

chromosomes does not cross over, the chromosome 

cloning takes place, and the offspring grow as exact copies 

of each parent. Here we deals with single point cross-over, 

two point cross-over and uniform cross-over operators for 

8-bit chromosomes as shown in Fig. 2. The cutting points 

are selected randomly within the chromosome for 

exchanging the contents. 

 

 

 

 

 

 

 

 

 

2.4 Mutation 

Mutation, which is rare in nature, brings about a change in 

the gene and averts crisis in genetic diversity. Its role is to 

guarantee that the search algorithm is not trapped on a 

local optimum. 

 

This operator alters a randomly selected gene of 

chromosome with a very low probability, PM. For each 

chromosome generates a random value between [0, 1]. If 

the random value is less than PM, choose a bit at a random 

location to flip its value from 0 to 1, or 1 to 0. The 

fundamental steps employed in the genetic algorithm to 

solve transcendental equations are shown in Fig. 3. 

 

The parameter settings of the proposed approach is shown 

in Table 1. 

 

 

 

3. False Position Method 

The False Position method also known as the linear 

interpolation method states that if f(x) is real and 
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Fig. 3 Flowchart of the Genetic Algorithm
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Stop 

Start

No

Is the termination 
criteria satisfied? Yes

Calculate the fitness of each chromosome: 

         )(.......,),(),(),( 321 Nxfxfxfxf  

Select a pair of chromosomes for mating

With the crossover probability, exchange parts of the two 
selected chromosomes and create two offspring 

 
With the mutation probability, randomly change

the gene values in the two offspring chromosomes

 
Place the resulting chromosomes in the new population

Replace current chromosome population with new population

Is the size of the new
population equal to N?
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Generate a Population of chromosomes of size N:

Nxxxx ...,.........,,, 321  

 continuous in the interval a<x<b, and f(a) and  f(b) are of 

opposite sign, that is f(a).f(b)<0, then there is at least one 

root in the interval between a and b [1], [2], [3]. Take x1=a 

and x2=b. Let us join the points x1 and x2 by a straight line. 

This method defines the point intersection of this line with 

x-axis such that 
)()(

))((

12

121
10 xfxf

xxxf
xx

−
−

−= . This point 

is called the false position of the root. It then replaces one 

of the initial guesses (x1or x2) that has a function value of 

the same sign as f(x0). This process is repeated with the 

new values of x1 and x2. 

 

 

 

 

 

 

 

 

 

4. Bisection Method 

The Bisection method also known as binary chopping or 

half-interval method states that if f(x) is real and 

continuous in the interval a<x<b, and f(a) and  f(b) are of 

opposite sign, that is f(a).f(b)<0, then there is at least one 

root in the interval between a and b [1], [2], [3]. Take x1=a 

and x2=b. This method defines another point x0 such that 

2
21

0

xx
x

+
= . Now three situations arise: i) If f(x0)=0, 

we have a root at x0; ii) If f(x0).f(x1)<0,  
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Table 2. Comparison between search spaces for GA, False Position and Bisection methods 

Search Space 
GA Method False Position Method Bisection Method No. of 

Iteration Left 
bound 

Right  
bound 

Left 
bound 

Right  
bound 

Left 
bound 

Right  
bound 

1 1.000000 4.000000 1.000000 4.000000 1.000000 4.000000 
2 1.929412 2.047059 1.500000 4.000000 1.000000 2.500000 
3 1.985236 2.014302 1.777778 4.000000 1.750000 2.500000 
4 1.999712 2.006209 1.906977 4.000000 1.750000 2.125000 
5 1.999712 2.001267 1.962085 4.000000 1.937500 2.125000 
6 1.999712 2.000084 1.984718 4.000000 1.937500 2.031250 
7 2 (root) 1.993869 4.000000 1.984375 2.031250 
8   1.997544 4.000000 1.984375 2.007813 
9   1.999017 4.000000 1.996094 2.007813 

10   1.999607 4.000000 1.996094 2.001953 
11   1.999843 4.000000 1.999023 2.001953 
12   1.999937 4.000000 1.999023 2.000488 
13   1.999975 4.000000 1.999756 2.000488 
14   1.999990 4.000000 1.999756 2.000122 
15   1.999996 4.000000 1.999939 2.000122 
16   1.999998 4.000000 1.999939 2.000031 
17   2 (root) 1.999985 2.000031 
18     1.999985 2.000008 
19     1.999996 2.000008 
20     1.999996 2.000002 
21     2 (root) 

 

Fig. 5 Error versus iteration curves for solving
 the transcendental equation 

Fig. 4 Graph of the function, f(x)=x2–x–2
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there is a root between x0 and x1; iii) If f(x0).f(x2)<0, there 

is a root between x0 and x2. By testing the sign of the 

function at the mid point, we can conclude which part of 

the interval contains the root. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

In this paper, the False Position method and the Bisection 

method are applied to solve the same transcendental 

equation. The results are then compared with that of GA in 

Table 2. 
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Table 3. Iterations required for 
        different population sizes 

Population Size Iteration 

8 32 

10 11 

12 7 

5. Experimental Results 

The effectiveness of the GA method is justified with the 

transcendental equation, x2 - x- 2 = 0  (Fig. 4). Use is made 

of an approximation to ensure the existence of the root of 

the equation within the range between 1 and 4.  

 

Table 2 reveals the same level of accuracy. The False 

Position and the Bisection methods require at least 17 and 

21 iterations, respectively whereas the GA method needs 

only 7 iterations. On the other way, it can be said that it is 

possible to achieve higher accuracy using GA with the 

same number of iterations as False Position and Bisection 

methods. Therefore, GA is more time saving. Fig. 5 shows 

the change of errors in the solution of the transcendental 

equations for the three methods. It demonstrates that GA 

converges rapidly to optimum solution compared to the 

False Position and the Bisection methods. 

 

Experiments were performed in a Pentium IV 1.70 GHz 

using Microsoft Visual C++. The algorithm is examined 

using single point, two points, and uniform cross-over 

with population sizes: 8, 10, and 12, respectively. The 

number of iterations required for different population size 

is shown in Table 3. It reveals that larger population size 

offers better performance for uniform cross-over because 

of the larger pool of diverse schemata available in the 

chromosome. Therefore, we adopt uniform cross-over 

with a population size of 12 in our approach.  

 

 

 

 
 

 

 

6. Conclusion 

In this paper, we have proposed a robust method for 

solving transcendental equations based on genetic 

algorithm. The effectiveness of the algorithm is justified 

by applying it on a number of non-linear equations.  It has 

been observed that the algorithm is capable enough of 

finding the solution of transcendental equations with 

greater precision compared to the False Position and the 

Bisection methods. 
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