

Managing Buffer Cache by Block Access Pattern

Reetu Gupta1, Urmila Shrawankar2

 1 Project Student M.Tech (CSE), G.H. Raisoni College of Engineering,

 Nagpur, India

2 G.H. Raisoni College of Engineering

Nagpur, India

Abstract
As buffer cache is used to overcome the speed gap between

processor and storage devices, performance of buffer cache is a

deciding factor in verifying the system performance. Need of

improved buffer cache hit ratio and inabilities of the Least

Recent Used replacement algorithm inspire the development of

the proposed algorithm. Data reuse and program locality are the

basis for determining the cache performance. The proposed

algorithm determines the temporal locality by detecting the

access patterns in the program context from which the I/O

request are issued, identified by the program counter signature,

and the files to which the I/O request are addressed. For accurate

pattern detection and enhanced cache performance re-reference

behavior exploited in the cache block are associated with unique

signature. Use of multiple caching policies is supported by the

proposed algorithm so that the cache under that pattern can be

best utilized.

Keywords: replacement algorithms; block access pattern;

program counter; reuse distance.

1. Introduction

Technical advancements have widened the speed gap

between the processor and storage devices. Buffer caches

are used to keep blocks, which are likely to be accessed in

the near future, thereby, enhancing the system

performance on increasing workload.

More bandwidth and reduced memory access time are the

demand of the modern multimedia and scientific

applications. These demands require effective utilization

of the available buffer cache space. By exploiting the

patterns exhibited in the I/O request, the temporal locality

of the blocks are determined by the replacement policies,

which are decisive in determining the blocks to be

replaced.

Due to the constant time and space complexity, and

straightforward realization, LRU (Least Recently Used) or

clock based approximation of LRU [1] has been widely

used in real time system [2], [3] for managing the buffer

cache. Conversely, recent studies revealed that there is

considerable scope for performance improvement in LRU.

Drawbacks as cache pollution and cyclic access to large

working sets [4] lead to inefficient utilization of the buffer

cache.

1.1 Causes of Inefficient Cache Utilization

Cache blocks with high temporal reuse, referenced after

regular interval significantly enhance the system

performance. Some problems identified in widely used

LRU and prior work [5] that lead to degraded performance

and increased cache miss ratios are discussed below.

Cache Pollution: The problem is identified in LRU and

situations wherein blocks visited only once evict the cache

blocks with high temporal reuse. This leads to cold blocks

occupying the cache for a significant amount of time

leading to the wastage of the memory resource.

Thrashing: When the cache is occupied by the blocks that

are referenced regularly after certain intervals, blocks try

to evict each other from the cache. Such situations are

found in multimedia and gaming applications that demand

high system performance.

Cyclic Access to Large Working Set: Such problem is

recognized in scientific applications and LRU when the

size of the frequently accessed blocks by the application is

large than the cache size. The blocks to be referenced in

near future are always evicted from the cache by LRU in

such situations.

1.2 Characteristics of Pattern Based Replacement

Schemes

Knowledge contained in the remarkable I/O request, made

by the programs, was used by the efficient replacement

schemes to overcome the above discussed problems. They

made use of the patterns in which the buffer cache blocks

were referenced. An automatic pattern based detection

scheme should satisfy the following three requirements to

efficiently exploit accessible the buffer cache space.

Accuracy: Precise detection of I/O access patterns is

important as it determines the locality of accessed block,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 381

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

decisive in concluding the block to be replaced and

regulating the cache accordingly.

Responsiveness: Different behaviors demonstrated during

the execution of a real time application reveal different

transitions of the reference patterns, which are required to

be adapted rapidly and sporadically by an efficient

replacement policy.

Stability: A pattern based replacement schemes partitions

the buffer cache based on the detected patterns and places

the blocks in the corresponding cache partitions. A stable

scheme should maintain the movement of blocks among

the partition in a manner that reduces the maintenance

overhead.

Section II gives a brief description about the types of

replacement policies and the level at which the access

patterns can be detected. Comparative study of the pattern

detection algorithm is given in section III. Section IV

introduces the program counter based technology in buffer

cache management. Proposed algorithm is described in

Section V followed by the expected result and conclusion.

2. Review of Existing Techniques

Replacement algorithms proposed to enhance the cache

performance are grouped into following categories based

on the phenomenon on which replacement decisions are

made.

2.1 Reference History Based Replacement Schemes

To avoid the drawbacks of LRU, these algorithms

examined the temporal locality of the cache blocks by

maintaining a deeper past information than LRU about the

accessed blocks.

LRU-K[6] replaced the block from the cache based on the

K-th last distance. It handled the problem of cache

pollution by adapting to the changing request of the

applications. But the method adopted by LRU-K had

logarithmic complexity.

To overcome the logarithmic complexity, 2Q [7] preserved

cold blocks and reoccurring blocks in separate queues.

Though it required tuning the parameters on per access it

had constant complexity.

Frequency and recency of the cached blocks were

combined by LRFU (Least Recently/ Frequently Used) [8].

The replacement decision was based upon the weights

assigned to each cache blocks and a tunable parameter λ.

Distance between the last and second-to-the-last time

references were preserved by LIRS [9] for estimating the

probability of the blocks that could be re-referenced.

Separate variable size LRU queues were used for

discriminating the hot and cold blocks. Upon cache miss

cold blocks were replaced.

Adaptive Replacement Cache (ARC) [10] and its variation

CAR (Clock with Adaptive Replacement) [11] were the

extensions to LRFU. Cache was divided into two queues

one for holding cold and other for frequently accessed

blocks. The partitions were managed as LRU in ARC and

as clock based LRU in CAR

The inherent disadvantage of the above techniques was

that they were not able to use the reference regularity

information exhibited in the I/O request.

2.2 Replacement Schemes Based on Application /

User Hints

Operating system makes use of the hints inserted by the

programmer into the application to know well in advance

the time and the blocks that would be accessed in future.

This requires a careful and detailed understanding of the

application behavior by the programmer. The replacement

decisions are then taken based on the hints.

Upon cache miss the global policy decided the application

and a local policy decided which block of the selected

application would be removed from the cache in

Application Controlled File Caching (ACFS) [12]. Hinted

prefetching and caching blocks and unhinted caching

blocks were placed in separate logical partitions allocated

to file buffers dynamically according to the estimated cost

in TIP [13].

Complier inserted hints [14] in the recompiled applications

were used by the OS to take replacement decision and

reduce the burden on the programmer. But I/O access

patterns exhibited at runtime could not be explored by

complier based techniques.

Neural networks and hidden markov models learning

algorithms were proposed in [15] to classify the access

patterns at runtime.

2.3 Access Pattern Based Replacement Schemes

Efficient algorithms that made replacement decisions,

based on the patterns of the blocks, accessed by the I/O

request, are classified into following three categories based

on the level at which the patterns are detected.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 382

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Application Level: Detection based Adaptive

Replacement (DEAR) [16], scheme proposed for buffer

cache management, based on, the periodic and dynamic

detection, of the reference pattern of the executing

applications applied diverse replacement policies

adaptable to diverse applications.

File Level: Unified Buffer Management (UBM) [17],

surmounted the incapability of LRU by utilizing the

regularities of block accesses made to files.

Program Context Level: By associating the Program

Counters (PC) of the call instructions that generated I/O

request with the program context in which they are issued,

program counter based schemes, Program Counter Based

Classification (PCC) [18] and Adaptive Multi Policy

Caching (AMP) [19] accurately classified the access

patterns.

Recent studies [20, 21] revealed that performance of buffer

cache can be enhanced by using the knowledge enclosed

in reference regularities of access pattern. In the technique

proposed in [22] reuse pattern of each block was updated

periodically to achieve high performance and take the

replacement decision.

The applications having working set larger than the cache

and those exhibiting mixed behavior by accessing some

blocks in frequent interval while some after a long time

were misclassified by the technique in [22].

Some of the techniques [20, 23, and 24] made changes in

the cache structure incurring the hardware overhead to

enhance the system performance and addressed the

drawbacks of LRU. Conversely later techniques [21, 22]

focused on analyzing the patterns on cache insertions

avoiding changes in the cache structure and incurring less

hardware overhead. Thus [20, 22] used reuse distance of

accessed blocks, while [24] predicted dead block to make

the replacement decision and enhance the performance.

3. Comparison of Pattern Detection Schemes

A file-level detection algorithm UBM [17] and two

program context level detection algorithm PCC [18] and

AMP [19] are discussed in the following section. The

pattern detection process, advantages and the limitations of

the techniques are described and compared.

3.1 Unified Buffer Management (UBM)

Working Steps:

 At file level it separates the I/O references according

to target files.

 Automatically classifies the I/O access pattern into

one of the three categories: sequential, looping and

others.

 The UBM scheme stores the detected block in

separate partitions of the buffer cache, managed by

appropriate management scheme based on the

detected pattern. Marginal gain function is used to

allocate the block among partitions.

 For blocks in the sequentially referenced partition,

MRU replacement policy is used. For periodic

partition, block with the longest period is replaced

first and MRU is used for the blocks with same

period. LRU is used for blocks belonging to other

reference pattern.

Advantages:

 The looping patterns are automatically detected and

managed by a period based replacement policy and

the buffer space is allocated, based on marginal gain.

 It also gave preferences to blocks belonging to

sequential references when replacement was needed.

Limitations:

 It considered only the past access behavior of the

block and worked at file level only.

 Significant amount of time was spent in training the

access pattern of new file.

3.2 Program Counter Based Classification (PCC)

Working Steps:

 At the program context level, PCC technique

exploited the virtual program counters exhibited in the

application’s binary execution codes to separate the

I/O references into sub streams according to their

Program Counter Signature (PCs).

 PCs are obtained by traversing the function stack

backward through main.

 PCC then classified the pattern based on virtual

program counter into the reference pattern categories

similar to UBM with same replacement policies.

Advantages:

 It can accurately predict the reference pattern of new

files before any access is performed, eliminating the

training delay.

 It can differentiate among multiple concurrent access

patterns in single file.

Limitations:

 Counters used to maintain block access information

do not accurately reflect the statistical status of each

PC process, resulting in the misclassification of the

access pattern.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 383

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 It only considers the relation between the last PC

and current PC that accessed the same data block.

3.3 Adaptive Multi Policy Caching (AMP)

Working Steps:

 It inherits the designs of PCC but measures the

recency by using a mathematical expression

 AMP differentiates the I/O request based on the

program contexts or code location according to the

comparison between static threshold and average

recency.

Advantages:

 Uses a new robust scheme for detecting looping

pattern in access streams.

 Low over-head randomized way of managing the

cache partition was adopted.

Limitations:

 It cannot detect the phenomenon of pattern sharing

among multiple PCs.

 Moreover pattern conflicts reduce detection

accuracy and increase management overhead.

 PC-based scheme cannot accurately distinguish

locality strengths.

4. Program Counter Based Buffer Cache

Management

Program counter based technique was proposed in [18] for

optimizing the buffer cache. Program counters of the call

instructions that issued the I/O request was utilized by the

operating system to correlate the I/O operation with the

program context in which they were issued.

Per PC-classification classifies the access patterns more

accurately compared to per-file and per-application

classification. Also as per-PC patterns are required to be

learned once, their response time is earlier compared to

prior classification technique.

By taking full benefit of temporal locality of the data

blocks, used for taking the block replacement decisions,

cache performance can be enhanced. Using this basic

concept many pattern detection algorithms PCC [18] and

AMP [19] examined the temporal locality obtained from

the previous access information of the cached blocks.

Based on the program counter concept in computer

architecture correlation between the previous accesses

with the future reoccurrences were obtained. It was

revealed that instructions identified by program counter

performed uniquely and behaved in same manner in future.

Thus these studies assumed that in future there is a high

probability that program counter would access the block in

the same manner as they did it in the past.

The working of PCC [18] and AMP [19] is depicted in the

following call graph shown in the “Figure 1”. Run time

relationships between program procedures are represented

by call graph where node represents the function and the

arcs describe the calling order.

Wrapper layer interprets the I/O instruction issued by

some function in the application layer hiding the

complexities and providing the flexible interface by

invoking the system call to access the data. Program

counter signatures, that are the sum of the entire program

counter of all functions along the I/O call path, are defined

for identifying the program context from which the I/O

request was issued.

Figure 1.Call Graph of Application.

5. Proposed Algorithm

Traditionally predictions based on program counter (PC)

were effectively and widely used in the field of computer

architecture. The proposed algorithm uses the concept of

PC for identifying the access pattern of buffer cache

blocks. Benefits of the proposed algorithm compared to the

previous pattern based algorithms are mentioned below in

“Table 1”.

Table 1: Comparison with Existing Pattern Detection Algorithm

UBM PCC and

AMP

Proposed

Algorithm

Works at
File
Level.

Works at
Program
Context Level.

Works at File and
Program Context
Level.

Classifies
based on
past
access
behavior.

Classifies
based on
Program
Context

Classifies based on
PC and past access
behavior of current
requested block

PC0: main()

PC1: fun # 1() PC2: fun # 2()

PC2: fun # 3()
Applications

I/O wrappers PC4: fscanf ()

System Call

PC6: read () PC7: sendfile ()

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 384

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Following section provides a in depth explanation of

proposed pattern based detection algorithm for managing

the buffer cache that predicts the future behavior of the

block by combing the significant features of file and

program context level techniques.

5.1 Modules in Proposed Scheme

The proposed pattern detection based algorithm is

composed of three modules as shown in “Figure.2”.

Detection Module: Dynamic and periodic detection of the

I/O access pattern is performed by this module, which

classifies the I/O request into defined patterns.

Replacement Module: This module manages the cache

under the respective partitions by applying specific

replacement policies that best utilize the cache under that

reference pattern.

Allocation Module: This module deals with efficient and

dynamic management of the areas allocated to respective

partitions and manages the movement of the blocks

between the partitions in a manner that will reduce the

cache maintenance overhead.

Figure 2. Modular Design of the Proposed Algorithm.

5.2 Types of I/O Access Patterns

Access patterns could be classified into following

categories

Sequential Reference: Blocks referenced only once and

never revisited would be considered to exhibit sequential

references.

Looping Reference: Blocks referenced at the regular

interval are classified as looping.

Others: If none of the above patterns are found.

5.3 Phases of the proposed Algorithm

The Algorithm works in three phases.

Phase I: For each block reference, initially the algorithm

updates the file table, containing the information about the

blocks belonging to respective files. The flowchart in

“Figure 3” explains the working of first phase. The block

sequence is identified using file descriptors such as

starting address and end block address. Loop time and

period are used for finding out the block access pattern.

Phase II: The second phase verifies that whether the block

is revisited or not by making use of signature based

approach as depicted by “Figure 4”. It keeps a record of

how many unique blocks each PC has accessed and how

many references each PC has issued to access blocks that

have been revisited previously in a program counter table.

“Figure.5” explains the process of updating the PC table.

Figure 3. Phase I Update File Table.

Third Phase: Pattern detection is the task of third phase

based on the results of file and program counter table.

Looping pattern is returned if the file table returns that

block is revisited. PC table is referred if file table fails to

find the corresponding block entry. The values of fresh

Not

Found

No

Block Request

File Table

inode Loop

time
Period End Start

Check

Entry
in File

Table

Update File Table Entry
Found

Check Current Block Address
Next

Address

Update File Table Sequence

Start New Sequence

Yes

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 385

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

and reuse counter are used for determining the access

pattern of revisited block.

Figure 4. Phase II Check Block Future Reference.

Figure 5. Phase III Update PC Table.

6. EXPECTED RESULT

The proposed algorithm would endeavor to satisfy the

properties of accuracy, responsiveness and stability to the

best of its ability. And by an attempt of precisely

estimating the sequential, looping, mixed reference

patterns the proposed algorithm would efficiently utilize

the strength of data locality, decisive in determining the

block to be replaced. The proposed algorithm is expected

to improve the cache hit ration on an average of 10% to

15% compared to LRU.

7. CONCLUSION

Patterns detection at file level and program context level

would enhance the performance of proposed algorithm

compared to the receny based algorithm. By exploiting the

reference regularities, such as sequential and looping

references, in the block access pattern buffer cache

performance shall be enhanced thereby significantly

improving the application response time.

REFERENCES
[1] R. W. Carr and J. L. Hennessy, “WSCLOCK - a simple and

effective algorithm for virtual memory management,” in

Proceedings of the eighth ACM symposium on Operating

systems principles (SOSP). New York, NY, USA: ACM

Press, 1981, pp. 87–95.

[2] M. J. Bach, The design of the UNIX operating system.

Upper Saddle River, NJ, USA: Prentice-Hall, Inc., 1986.

[3] A. S. Tanenbaum and A. S. Woodhull, Operating Systems

Design and Implementation. Upper Saddle River, NJ, USA:

Prentice-Hall, Inc., 1987.

[4] A. J. Smith, “Analysis of the optimal, look-ahead demand

paging algorithms,” vol. 5, no. 4, pp. 743–757, Dec. 1976.

[5] A.Jabeel, K.B. Theobald,”High performance cache

replacement using reference interval prediction”,in ISCA

2010.

[6] E. J. O’Neil, P. E. O’Neil, and G. Weikum, “The lru-k page

replacement algorithm for database disk buffering,” in

Proceedings of the 1993 ACMSIGMOD international

conference on Management of data. NewYork, NY, USA:

ACM Press, 1993, pp. 297–306.

[7] T. Johnson and D. Shasha, “2Q: A low overhead high

performance buffer management replacement algorithm,”

in Proceedings of the 20th International Conference on

Very Large Data Bases (VLDB). San Francisco, CA, USA:

Morgan Kaufmann Publishers Inc., 1994, pp. 439–450.

[8] D. Lee, J. Choi, J.-H. Kim, S. H. Noh, S. L. Min, Y. Cho,

and C. S. Kim,“LRFU: A spectrum of policies that

subsumes the least recently used and least frequently used

policies,” IEEE Transactions on Computer, vol. 50, no. 12,

pp. 1352–1361, 2001.

[9] J. Choi, S. H. Noh, S. L. Min, and Y. Cho, “An

implementation study of a detection-based adaptive block

replacement scheme,” in Proceedings of the 1999

USENIX Annual Technical Conference, Jun. 1999, pp.

239–252.

[10] N. Megiddo and D. S. Modha, “ARC: A self-tuning, low

overhead replacement cache,” in Proceedings of the 2nd

USENIX Conference on File and Storage Technologies

(FAST), Mar. 2003, pp. 115–130.

[11] S. Bansal and D. S. Modha, “CAR: Clock with adaptive

replacement,” pp. 187–200, Mar. 2004.

[12] P. Cao, E. W. Felten, A. R. Karlin, and K. Li,

“Implementation and performance of integrated

application-controlled file caching, prefetching, and disk

scheduling,” ACM Transactions on Computer Systems, vol.

14, no. 4, pp. 311–343, 1996.

[13] R. H. Patterson, G. A. Gibson, E. Ginting, D. Stodolsky,

and J. Zelenka,“Informed prefetching and caching,” in

Proceedings of the fifteenth ACM symposium on Operating

Yes

Future Reference

Refer

SCT

Table

Inserted Cache Block Revisited ?

Out-

com
e

Block Signa

-ture

Signature Counter Table

(SCT)

Hit

i. Update SCT Table

ii. Set Outcome = 1

Yes

Evict

Yes

Decrement SCT Entry
No

Miss

Found
Check

Outcome
No Future Reference

0

1

A

A

No

Increment Fresh Counter

Check
Revisited

Period PC Fresh

Program Counter Table (PCT)

Reuse

Current
Requested Block

i) Decrement Fresh Counter

ii) Increment Reuse Counter

Yes

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 386

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

systems principles (SOSP). NewYork,NY, USA: ACM

Press, 1995, pp. 79–95.

[14] A. D. Brown, T. C. Mowry, and O. Krieger. Compiler-

based I/O prefetching for out-of-core applications. ACM

TOCS, 19(2):111–170, 2001.

[15] T. M. Madhyastha and D. A. Reed, “Learning to classify

parallel input/output access patterns,” IEEE Trans. Parallel

Distrib. Syst., vol. 3,no. 8, pp. 802–813, 2002.

[16] J. Choi, S. H. Noh, S. L. Min, and Y. Cho, “An

implementation study of a detection-based adaptive block

replacement scheme,” in Proceedings of the 1999 USENIX

Annual Technical Conference, Jun. 1999, pp. 239–252.

[17] J. Choi, S. H. Noh, S. L. Min, E.-Y. Ha, and Y. Cho,

“Design, implementation, and performance evaluation of a

detection-based adaptive block replacement scheme,”

IEEE Trans. Comput., vol. 51, no. 7, pp.793–800, 2002.

[18] C. Gniady, A. R. Butt, and Y. C. Hu, “Program-counter-

based pattern classification in buffer caching.” in

Proceedings of 6th Symposium on Operating System

Design and Implementation (OSDI), Dec. 2006, pp.395–

408.

[19] F. Zhou, R. von Behren, and E. Brewer, “AMP: Program

context specific buffer caching,” in Proceedings of the

USENIX Technical Conference, Apr. 2005.

[20] M. Kharbutli and Y. Solihin. Counter-based cache

replacement and bypassing algorithms. In IEEE Trans.

Comput., volume 57, April 2008.

[21] C.-J. Wu and M. Martonosi. Adaptive timekeeping

replacement: Fine-grained capacity management for shared

CMP caches. In ACM Trans. Archit. Code Optim., volume

8, February 2011.

[22] A. Jaleel, K. B. Theobald, S. C. Steely Jr., and J. Emer.

High performance cache replacement using re-reference

interval prediction (RRIP). In Proc. of the 38th

International Symposium on Computer Architecture, 2010.

[23] H. Gao and C. Wilkerson. A dueling segmented LRU

replacement algorithm with adaptive bypassing. In Proc. Of

the 1st JILP Workshop on Computer Architecture

Competitions, 2010.

[24] S. M. Khan, D. A. Jiménez, D. Burger, and B. Falsafi.

Using dead blocks as a virtual victim cache. In Proc. of the

19th International Conference on Parallel Architecture and

Compilation Techniques, 2010.

Make SCT

Entry

Not

Found

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 2, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 387

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

