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Abstract 

 
Discovering protein sequence motif information is one of the 

most crucial tasks in bioinformatics research. In this work, we try 

to obtain protein recurring patterns which are universally 

conserved across protein family boundaries. In order to generate 

higher quality protein sequence motif information from Protein 

Sequence Culling Server (PISCES) dataset, we tried several 

different advanced clustering algorithms, such as hierarchical 

clustering, Self-Organizing Maps (SOM) etc. However, since the 

dataset itself contains more than 6, 60,000 segments where each 

segment contains 180 dimensions, any clustering algorithm 

required more than O(n) complexity is not applicable. Therefore, 

the very first step of our research is trying to reduce segments. 

The results suggest that the Singular Value Decomposition 

(SVD) computing technique is more suits for reducing segments. 

After that the reduced segments are followed by applying Rough 

K-Means clustering algorithm. Our experiments indicate that the 

Rough K-Means algorithm satisfactorily increases the percentage 

of sequence segments belonging to clusters with high structural 

similarity than K-Means. The experimental results suggest that 

the SVD with Rough K-Means algorithm may be applied to other 

areas of bioinformatics research in order to explore the 

underlying relationships between data samples more effectively. 

Keywords: Clustering, Motif, Protein Sequence, SVD, HSSP, 

DSSP, HSSP-BLOSUM62. 

1. Introduction 

Clustering is an active research topic in pattern recognition, 

data mining, statistics, and machine learning with diverse 

emphasis. Clustering algorithms are probably the most 

commonly used methods in data mining. Data mining is 

the process of extracting unknown but useful information 

which from mass of data that is incomplete, ambiguous, 

noisy and random. Data mining technology is used to 

detect large-scale database and find an unknown model [7]. 

Bioinformatics is the application of computer technology 

to the management of biological information [6]. 

Discovering protein sequence motif information is one of 

the most popular problems in bioinformatics research [2]. 

In this work, we try to acquire protein recurring sequence 

patterns which are universally conserved across protein 

family boundaries. Such conserved sequence patterns are 

denoted as sequence motifs. Our input dataset is too large; 

hence an efficient technique is required. 

 

The popular databases for sequence motifs are PROSITE 

[1], PRINTS [2], BLOCKS [3]. The commonly used tools 

for protein sequence motif discovery include MEME, 

Gibbs Sampling, and Block Maker. 

 

In this paper Protein sequences are converted into sliding 

sequence segments by applying sliding window technique 

on HSSP (Homology-derived Secondary Structure of 

Proteins) file [4]. Each sequence segment is represented by 

the 10×20 matrix. Ten rows represent each position of the 

sliding window and twenty columns represent 20 amino 

acids. The total sliding sequence segments are trim by 

Singular Value Decomposition (SVD) [15]. These sliding 

sequence segments are classified into different groups with 

the K-Means and Rough K-Means clustering algorithms. 

The structural similarity of these groups is evaluated using 

the secondary structure information obtained from the 

DSSP (Dictionary of Secondary Structure of Proteins) file. 

The recurrent groups with high structural similarity will 

become the candidate to generate sequence motifs 

representing common structure. Identified sequence motifs 

are represented by frequency profiles.    

 

This paper has been organized into five sections. In 

Section 2, various clustering approaches used so for are 

mentioned in brief. In Section 3, the experimental setup is 

explained. In Section 4, experimental results and 

discussion are presented. In section 5, conclusions and 

further research scope are presented. 

2. Clustering Techniques 

In this section, we review the K-Means and Rough K-

Means clustering algorithms. 

2.1 K-Means Clustering Algorithm 

K-Means algorithm [11] is a prototype-based, partitional 

clustering technique that attempts to find user-specified 

number of clusters, which are represented by their 
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centroids. In most of the cases Euclidean distance measure 

is chosen as a common measure. A set of n objects xi, i=1, 

2… n, are to be partitioned into K groups. The cost 

function, based on the Euclidean distance between a vector 

x in group j and the corresponding cluster centroid cj, can 

be defined by 

 

 

 

 

2.2 Rough K-Means Algorithm 

In rough clustering each cluster has two approximations, a 

lower and an upper approximation. The lower 

approximation is a subset of the upper approximation. The 

members of the lower approximation belong certainly to 

the cluster; therefore they cannot belong to any other 

cluster. The data objects in an upper approximation may 

belong to the cluster. Since their membership is uncertain 

they must be a member of an upper approximation of at 

least another cluster. 

2.2.1 Rough K-Means Algorithm 

Property 1: a data object can be a member of one lower 

approximation at most. 

 

Property 2: a data object that is a member of the lower 

approximation of a cluster is also member of the upper 

approximation of the same cluster. 

Property 3: a data object that does not belong to any lower 

approximation is member of at least two upper 

approximations. 

 

This algorithm can also be interpreted as two layer interval 

clustering approach with lower and upper approximation. 

The figure 1 shows Rough K-Means algorithm [9, 10]. 

 

----------------------------------------------------------------------- 

1. Select initial clusters of n objects into k clusters. 

2.  Assign each object to the Lower bound (L(x)) or 

upper bound (U(x)) of cluster/ clusters respectively 

as: 

For each object v, let d (v,xi) be the distance between 

itself and the centroid of  cluster xi. The difference 

between d (v,xi) / d(v,xj), 1≤ i, j ≤ k is used to 

determine the membership of v as follows:  

•  If d (v,xi) / d(v,xj) ≤ thershold, then v ∈U(xi) & v 

∈ U(xj). Furthermore, v will not be a part of any 

lower bound. 

•  Otherwise, v∈L(xi),such that d(v,xi) is the 

minimum for 1≤ i ≤ k. In addition, v∈U(xi). 

3. For each cluster xi re-compute center according to the 

following equations the weighted combination of the 

data points in its lower_bound and upper_bound. 

 

 
Where 1≤ j ≤ k. The parameters wlower and wupper 

correspond to the relative importance of lower and 

upper bounds. If convergence criterion is met, i.e. 

cluster centers are same to those in previous iteration, 

then stop; else go to step2. 

----------------------------------------------------------------------- 
Fig. 1 Rough K-Means algorithm 

 

3. Experiment Setup 

In this section, we introduce experimental parameters, the 

dataset; represent the sequence segments, distance measure 

and SVD. Finally we preserve Davis-Bouldin Index (DBI) 

and HSSP_BLOSUM62 measures in order to evaluate the 

performance of clustering algorithms. 

3.1 Experimental Parameters 

In this research, there are 1500 to 2000 initial clusters are 

chosen arbitrarily for the K-Means and Rough K-Means 

clustering algorithms. The each cluster interval is 100. The 

K-Means and Rough K-Means clustering algorithms are 

estimated to five times with different random starting 

points in each cluster interval. The result obtained by using 

city-block distance metric for calculating distance between 

segments and the centroid. 

3.2 Dataset 

Since the major purpose of this work is to obtain protein 

sequence motif information across protein family 

boundaries, the dataset of our work is supposed to collect 

all known protein sequences. However, without a 

systematic approach, it is very difficult to extract useful 

knowledge from an extremely large volume of data. The 

original dataset used in this work includes 4000 protein 

sequences obtained from Protein Sequence Culling Server 

(PISCES) [12]. No sequence in this database shares more 

than 25% sequence identity. The frequency profile from 

the HSSP is constructed based on the alignment of each 

protein sequence from the Protein Data Bank (PDB) where 

3000 sequences are considered homologous in the 

sequence database. 
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3.3 Representation of Sequence Segment 

The sliding windows with ten successive residues are 

generated from protein sequences. Each window 

corresponds to a sequence segment, which is represented 

by a 10 × 20 matrix plus additional ten corresponding 

secondary structure information obtained from DSSP. Ten 

rows represent each position of the sliding window and 

twenty columns represent 20 amino acids. For the 

frequency profiles (HSSP) representation for sequence 

segments, each position of the matrix represents the 

frequency for a specified amino acid residue in a sequence 

position for the multiple sequence alignment. DSSP 

originally assigns the secondary structure to eight different 

classes. In this work, we convert those eight classes into 

three classes based on the following method [14] : H, G 

and I to H (Helices); B and E to E (Sheets); all others to C 

(Coils). 

3.4 Distance Measure 

The city block metric is more suitable for this field of 

study since it will consider every position of the frequency 

profile equally. The city block metric is used for 

calculating the difference between a sequence segment and 

the centroid of a given sequence cluster. Han and Baker 

also chose the city block metric because of complications 

associated with the use of Euclidean metric for clustering 

algorithms [8]. The following formula is used to calculate 

the distance between two sequence segments: 

                            

 

   

 

   

 

Where L is the window size and N is 20 which represent 

20 different amino acids. Fk (i j) is the value of the matrix 

at row i and column j used to represent the sequence 

segment. Fc (i,j) is the value of the matrix at row i and 

column j used to represent the centroid of a give sequence 

cluster. 

3.5 SVD Entropy Based Segment Selection 

Technique  

In [15] SVD based entropy has been proposed for the first 

time to address the problem of selecting the significant 

segments in the area of protein sequence motif 

identification. The city block metric is used for calculating 

the difference between a sequence segment and the 

centroid of a given sequence cluster. The formula for 

calculating entropy each sequence segment is given here 

under. 

  =  
    

 
   

 

where    denotes singular values of the segment,   
  

denotes eigen values of the segment, w denotes the 

window size.  

 

The resulting SVD- Entropy is as follows 

 E= - 
 

       
     

 
    log (     ) 

1. E < m + n, features with high contribution.  

2. m + n  >  E  > m - n, features with average contribution. 

3. E < m - n, features with negative contribution.  

 

The segments obtained in the first group are said to 

relevant to our problem. The segments in the second group 

are said to be neutral and the third group segments will 

reduce total SVD entropy. In this work, we have selected 

only those segments which fall under the first category. 

These meaningful segments are then clustered by using 

traditional K-Means [9] and Rough K-Means clustering 

algorithms. The motif information obtained after the 

segment selection process is said to be more meaningful as 

well as DBI value considerably decreased after the feature 

selection process. 

3.6 Davis-Bouldin Index (DBI) Measure 

The DBI measure [13] is a function of the inter-cluster and 

intra-cluster distance. A good cluster result should reflect a 

relatively large inter-cluster distance and a relatively small 

intra-cluster distance. The DBI measure combines both 

distance information into one function, which is defined as 

follows: 

    
 

 
         

                       

             
  

            

 

            
         

  

   

  

                    

           

 

k is the total number of clusters,         and        denote 

the intra- cluster and inter-cluster distances respectively. 

   is the number of members in the cluster   . The intra-

cluster distance defined as the average of all pair wise 

distances between the members in cluster P and cluster P’s 

centroid    . The inter-cluster distance of two clusters is 

computed by the distance between two clusters’ centroids. 

The lower DBI value indicates the high quality of the 

cluster result. 

3.7 HSSP-BLOSUM62 Measure 

BLOSUM62 [5] (Fig. 2.) is a scoring matrix based on 

known alignments of diverse Sequences. 
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Fig. 2 BLOSUM62 Matrix 

 

By using this matrix, we may access the consistency of the 

amino acids appearing in the same position of the motif 

information generated by our method. Because different 

amino acids appearing in the same position should be close 

to each other, the corresponding value in the BLOSUM62 

matrix will give a positive value. Hence, the measure is 

defined as the following 

 

 
4. Experimental Results 

In this work, 3000 protein sequences are extracted from 

the Protein Sequence Culling Server (PISCES) as the 

dataset. In this protein database, the percentage identity 

cutoff is 25%, the resolution cutoff is 2.2, and the R-factor 

cutoff is 1.0. With these protein sequences, sliding 

windows with ten consecutive residues are obtained. Each 

window contains one sequence segment of ten continuous 

positions. This sliding window approach generates 6, 

60,364 segments. K-Means and Rough K-Means 

algorithms were applied to these segments and they are 

clustered between 1500 and 2000 clusters. The threshold 

value is set as 1, wlower= 0.7, wupper= 0.3 for Rough K-

Means algorithm. The secondary structure information is 

used as biological evaluation criteria. The higher 

HSSPBLOSUM62 value indicates more significant motif 

information. We also use DBI measure to identify the best 

cluster. The lower DBI value indicates the high quality of 

the cluster result. 

Table 1: Comparison of HSSP-BLOSUM62 measure and DBI measure 

belonging to K-Means clusters with high structural similarity. 

 

Number 

of 

Clusters 

Number of Iterations 5 

K-Means 

>60 >70 

Without 

SVD 

DBI 

Measure 

SVD 

Applied 

DBI 

Measure 

BLOSUM

62 

Measure 

1500 332 154 5.3377 5.1808 0.6822 

1600 349 166 5.2791 5.0809 0.6780 

1700 380 185 5.2369 5.1353 0.7328 

1800 403 190 5.1837 5.1055 0.6776 

1900 415 204 5.1464 5.1014 0.6585 

2000 441 214 5.1110 5.0359 0.7055 

 
 

Table 2: Comparison of HSSP-BLOSUM62 measure and DBI measure 

belonging to Rough K-Means clusters with high structural similarity. 

 

Number 

of 

Clusters 

Number of Iterations 5 

Rough K-Means 

>60 >70 

Without 

SVD 

DBI 

Measure 

SVD 

Applied 

DBI 

Measure 

BLOSUM

62 

Measure 

1500 337 152 4.9431 4.6565 0.6627 

1600 342 166 4.8771 4.7321 0.6461 

1700 382 200 4.8738 4.7099 0.6701 

1800 422 200 4.8220 4.5988 0.6008 

1900 455 198 4.7885 4.5916 0.6922 

2000 442 217 4.7436 4.6719 0.6153 

The following Figures 3 and 4 are interpreted from table 1 

and 2. 

 

Fig. 3 Comparison of K-Means DBI values of sequence segments 
belonging to cluster with high structure similarity 
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Fig. 4 Comparison of Rough K-Means DBI values of sequence segments 
belonging to cluster with high structure similarity 

The results of Table 1 and 2 with the figure 3 and 4 reveal 

that the quality of clusters improved dramatically by 

applying the SVD computing technique which utilizes K-

Means and Rough K-Means. In the Rough K-Means 

approach, the average percentage of clusters with 

structural similarity increased more. The DBI measure also 

successfully decreased, implying that our model not only 

generates more biologically meaningful results but that 

these results are supported by statistical/computer-science 

techniques. Also, the HSSP-BLOSUM62 measurement 

increasing proves that the motif information is more 

consistent and meaningful under the SVD computing 

strategy. 

4.1 Representation of Motif Patterns 

The table 3 to 8 illustrates six different sequence motifs 

generated by our method.  The following format is used 

for the representation of each motif table.  

• The first row represents the number of members 

belonging to this motif, the secondary structural 

similarity and the average HSSP-BLOSUM62 value. 

• The first column stands for the position of amino acid 

profiles in each motif with window size ten. 

• The second column expresses the type of amino acid 

frequently appearing in the given Position. If the amino 

acids are appearing with the frequency higher than 

10%, they are indicated by upper case; if the amino 

acids are appearing with the frequency between 8% 

and 10%, they are indicated by lower case. 

• The third column corresponds to the hydrophobicity 

value, which is the summation of the Frequencies of 

occurrence of Leu, Pro, Met, Trp, Ala, Val, Phe, and 

Ile. 

• The fourth column indicates the value of the HSSP-

BLOSUM62 measure. 

• The last column indicates the representative secondary 

structure to the position. 

  

Table 3: Hydrophobic Helixes motif 

Number of segments: 785 

Structure homology: 78.203822% 

Avg. HSSP-BLOSUM62: 0.598 

# 

Noticeable 

Amino 

Acid 

H B S 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

aSt 

Ap 

AskED 

AEd 

VLI 

aRK 

AKqE 

vA 

L 

arKE 

0.38 

0.46 

0.28 

0.38 

0.90 

0.36 

0.23 

0.55 

0.96 

0.26 

0.72 

-1 

-0.12 

-0.39 

2.38 

0.22 

0.16 

0.00 

4 

0.01 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

Table 4: Helices motif with conserved A 

Number of segments: 765 

Structure homology: 75.921569% 

Avg. HSSP-BLOSUM62: 1.738 

# 

Noticeable 

Amino 

Acid 

H B S 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Ae 

A 

A 

vLia 

Ad 

A 

vlA 

Ark 

A 

A 

0.36 

0.73 

0.71 

0.57 

0.40 

0.77 

0.52 

0.37 

0.45 

0.48 

-1 

4 

4 

0.64 

-2 

4 

-0.12 

-0.14 

4 

4 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

Table 5: Helixes-Coil motif 

Number of segments: 424 

Structure homology: 72.429245% 

Avg. HSSP-BLOSUM62: 0.804 

# 

Noticeable 

Amino 

Acid 

H B S 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

VL 

vL 

GA 

VLi 

STD 

vlApE 

AED 

qED 

A 

vLArke 

0.56 

0.46 

0.40 

0.54 

0.18 

0.51 

0.19 

0.12 

0.76 

0.46 

1 

1 

0 

1.87 

0.29 

-1.33 

0.35 

1.82 

4 

-0.96 

C 

C 

C 

C 

C 

H 

H 

H 

H 

H 
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Table 6: Helices-coil-sheet motif 

Number of segments: 844 

Structure homology: 73.388626% 

Avg. HSSP-BLOSUM62: 0.209 

# 

Noticeable 

Amino 

Acid 

H B S 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

ArKEd 

lAr 

G 

VLIA 

RKE 

VlI 

VLI 

VLia 

VLI 

STD 

0.26 

0.42 

0.03 

0.65 

0.25 

0.77 

0.68 

0.53 

0.69 

0.27 

-0.24 

-1.18 

6.00 

0.67 

1.09 

2.19 

2.18 

0.81 

1.90 

-0.01 

H 

C 

C 

C 

E 

E 

E 

E 

E 

C 

 

Table 7: Helices motif with conserved A 

 
Number of segments: 785 

Structure homology: 79.388535% 

Avg. HSSP-BLOSUM62: 1.501 

# 

Noticeable 

Amino 

Acid 

H B S 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Lar 

Ae 

A 

A 

vLia 

A 

A 

VLiA 

Are 

As 

0.40 

0.37 

0.71 

0.70 

0.52 

0.38 

0.84 

0.54 

0.37 

0.43 

-1.31 

-1.0 

4.0 

4.0 

0.65 

4.0 

4.0 

0.40 

-0.73 

1.0 

H 

H 

H 

H 

H 

H 

H 

H 

H 

H 

 
 

Table 8: Coils Sheets motif with conserved V L and I 

Number of segments: 381 

Structure homology: 79.317585% 

Avg. HSSP-BLOSUM62: 0.7340 

# 

Noticeable 

Amino 

Acid 

H B S 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Vl 

VLi 

VLI 

vlE 

VlI 

gEND 

Gd 

RKqE 

vLp 

VLI 

0.51 

0.55 

0.77 

0.42 

0.63 

0.08 

0.06 

0.18 

0.54 

0.71 

1.0 

1.90 

2.05 

-1.47 

2.27 

0.46 

-1.0 

1.15 

-1.19 

2.17 

E 

E 

E 

E 

E 

C 

C 

E 

E 

E 

5. Conclusion 

Proteins are involved in every body functions including 

nutrient transportation, muscle building, metabolism 

regulation, etc. Understanding the functions and structures 

of proteins encourages cellular process discovery. In this 

work we have obtained the data set from the Protein 

Sequence Culling Server (PISCES). The sliding windows 

with ten successive residues were generated from protein 

sequences. These sequence segments of ten continuous 

positions were clustered into different groups with K-

Means and Rough K-Means algorithms. Before clustering 

we try to reduce unwanted segments using SVD. The SVD 

resultant segments are then grouped using K-Means and 

Rough K-Means clustering with respect to similarity of 

secondary structure. Clusters with similarity higher than a 

pre-determined threshold are taken to obtain sequence 

motifs. The Rough K-Means clustering followed SVD 

technique is capable of decreasing time and space 

complexity, filtering outliers, and capturing better results.  

We believe some other bioinformatics research with large 

database may also adapt this SVD computing strategy to 

perform well. 
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