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Abstract 
Ensemble empirical mode decomposition (EEMD) is a noise-

assisted method and also a significant improvement on empirical 

mode decomposition (EMD). However, the EEMD method lacks 

a guide to choosing the appropriate amplitude of added noise and 

its computation efficiency is fairly low. To alleviate the 

problems of the EEMD method, the improved complementary 

EEMD method (ICEEMD) was proposed. Furthermore, the 

ICEEMD method was used to analyze realistic gearbox faulty 

signals. The results indicate that the ICEEMD method has some 

advantages over the EEMD method in alleviating the mode 

mixing and splitting as well as reducing the time cost and also 

outperforms the CEEMD method in alleviating the mode mixing 

and splitting. The paper also indicates that the ICEEMD method 

seems to be an effective and efficient method for processing 

gearbox fault signals. 

Keywords: Complementary Ensemble Empirical Mode 

Decomposition(CEEMD), Improved Complementary Ensemble 

Empirical Mode Decomposition(ICEEMD), Gearbox, Signal 

Processing. 

1. Introduction 

It is a challenging task to develop signal processing 

techniques for non-stationary and noisy signals, which has 

attracted considerable attentions recently [1]. Many 

methods, such as short time frequency transform [2] and 

wavelet transform [3] , have been proposed for solving the 

problem and proved useful in some applications. However, 

because these methods usually need a priori knowledge 

about the researched signals, they naturally lack the self-

adaption for the researched signals. The Wigner-Ville 

distribution has high time-frequency resolution, but its 

cross terms is unbearable [4]. Empirical mode 

decomposition (EMD) is a self-adaptive method and 

suitable to analyzing the non-stationary and nonlinear 

signals [4], which has been successfully applied to various 

fields [4]. Nevertheless, when the EMD algorithm is used 

to deal with a signal with intermittency, the mode mixing 

often emerges as an annoying problem [5-7]. To overcome 

the mode mixing problem, ensemble empirical mode 

decomposition (EEMD) is presented in place of EMD [8]. 

The EEMD method adds some white noise with limited 

amplitude to the researched signals, sufficiently taking 

advantage of the statistical characteristics of white noise 

whose energy density is uniformly distributed throughout 

the frequency domain, then projects the signal components 

onto the proper frequency bands and, finally, the added 

white noise can been counteracted by ensemble mean of 

enough corresponding components [8]. Therefore, the 

EEMD method is considered as a significant improvement 

on the EMD method and recommended as a substitute for 

the EMD method [8]. Indeed, the EEMD method has 

shown its superiority over the EMD method in some 

applications [9]. 

 

However, the EEMD method lacks a guide to how to 

choose the appropriate amplitude of the added noise and 

its computation efficiency is fairly low. As a result, the 

inappropriate amplitude of the added white noise for the 

EEMD method is going to cause the mode mixing and 

splitting that often exists in the EMD method [10, 11]. 

Although the reference [8] suggested that the amplitude of 

the added white noise should be about 0.2 times of the 

standard deviation of the investigated signal, unfortunately, 

with the suggested value, the decomposition results from 

the EEMD method often deviate from the realistic 

contents of the signals [11]. In addition, to further remove 

the residual of the added white noise and reduce a waste of 

time for the EEMD method, the complementary ensemble 

empirical mode decomposition (CEEMD) has been 

addressed to replace the EEMD method as a standard 

version of the EMD method [10]. Notwithstanding, the 

CEEMD method only partly enhances the computation 

efficiency of the EEMD method, and the above first 

problem regarding the EEMD method still remains 

untouched. Additionally, if the researched signal is a noisy 

signal in itself, its intrinsic noise will inevitably interact 

with the noise added through the EEMD method, which 

may further complicate the above first problem regarding 

the EEMD method. In particular, when the researched 

signals become very noisy, the above first problem 

regarding the EEMD method leaves a gap. 

 

This paper explores the above two problems concerning 

the EEMD method. Then, the improved CEEMD 

(ICEEMD) method was proposed. Applications to analysis 
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of defective gearbox signals proved the superiority of the 

ICEEMD method over the EEMD method.  

2. The EMD and its Several Variations 

2.1 The EMD method 

The EMD method can self-adaptively decompose any a 

non-stationary and nonlinear signal into a set of intrinsic 

mode functions (IMFs) from high frequency to low 

frequency, which may be written as  
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where ci(t) indicates the ith IMF and rN(t) represents the r

esidual of the signal x(t). An IMF is a function which mus

t satisfy the following two conditions: (1) the number of e

xtrema and the number of zero crossings either equal to e

ach other or differ at most by one, and (2) at any point, th

e local average of the upper envelope and the lower envel

ope is zero [8]. The residual rN(t) usually is a monotonic f

unction or a constant.  

2.2 The Ensemble EMD 

An annoying problem associated with the EMD method is 

the mode mixing due to intermittency, defined as either a 

single IMF consisting of widely disparate scales, or a 

signal residing in different IMF components. To alleviate 

the imperfection of the EMD method, the ensemble EMD 

(EEMD), a noise-assisted method, is proposed. The 

EEMD method can be stated as follows: 
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where x(t) is the original signal, wm(t) is the mth added 

white noise, xm(t) is the noisy signal of the mth trial, cm,i(t) 

is the ith IMF of the mth trial, L is the number of IMFs 

from the EMD method, and N is the ensemble number of 

the EEMD method. 

The EEMD method adds white noise with the finite 

amplitude to the signal, sufficiently taking advantage of 

the uniform statistic characteristics of white noise in the 

frequency domain, projects the different frequency signal 

components onto the corresponding frequency banks and, 

as a result, effectively overcomes the mode mixing due to 

the existence of intermittency [8]. Nonetheless, to totally 

clear the residual of the added white noise from the IMFs 

of the EEMD method, a large ensemble number is usually 

demanded, which will cause a tremendous waste of time. 

2.3 The Complementary EEMD method 

To better eliminate the residual of added white noise 

persisting in the IMFs of the EEMD method and raise the 

computation efficiency of the EEMD method, the 

complementary ensemble EMD (CEEMD) [10], a novel 

noise-enhanced method, is presented. The CEEMD 

method adds white noise in pairs with one positive and 

another negative to the original signal and then produces 

two sets of ensemble IMFs. Hence, two different 

combinations of the original signal and the added white 

noise can be obtained, i.e. 
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where x(t) is the original signal, wm(t) is the mth added 

white noise, xm
+(t) is the sum of the original x(t) and the 

mth added white noise wm(t), and xm
-(t) is the difference of 

the original x(t) and the mth added white noise wm(t). In 

light of (3) and (4), the original signal x(t) can be 

expressed as  
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where c+
m,i(t) is the ith IMF of xm

+(t) and c-
m,i(t) is the ith 

IMF of xm
-(t). Although the CEEMD method appears to be 

able to completely remove the residual of the added white 

noise persisting in the IMFs of the EEMD method, it still 

remains unsolved how to choose the appropriate amplitude 

of the added white noise for the EEMD method.  

3. The Improved CEEMD Method 

3.1 The Choice of Amplitude of the Added Noise 

The amplitude of the added white noise is a key parameter 

of the EEMD method, which will exert a decisive impact 

on whether or not the EEMD method can yield the 

reasonable decomposition results. If the added noise is too 

weak to bring the changes of extrema of the original signal, 

the EEMD method will degenerate into the EMD method. 

Conversely, if the added noise is too strong to reveal the 

original signal, the EEMD method will derive meaningless 

results which are mainly controlled by the added noise and 

scarcely associated with the original signal [11], whether 

or not the ensemble number is large enough. The reference 

[11] demonstrated that the decomposition results of the 

EEMD method varied with the different amplitude of the 
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added noise and considered it appropriate for the EEMD 

method to set SNR in the range of 50-60 dB. In fact, for 

the simple simulated example by which the conclusions 

were drawn in [11], when the amplitude of the added noise 

is set as 0.01, which is considered an optimal choice by 

[11], the SNR between the original signal and the added 

noise is approximately 37 dB which is outside the range of 

50-60 dB. Accordingly, the conclusions given by [11], 

relating to the choice of the amplitude of the added white 

noise of the EEMD method, is not entirely dependable. 

Then, the problem is further investigated in this paper 

using two simulated signals. Thus, the Pearson’s 

correlation coefficient (PCC) is used as a parameter to 

measure the performance of the EEMD method with 

different amplitude of the added white noise. Here, the 

ensemble number of the EEMD method is set as 100. 

 

First, a simple noiseless simulated signal was used to 

examine the choice of the amplitude of the added white 

noise for the EEMD method. The signal is a combination 

of a low-frequency sinusoid component x1(t) and a high-

frequency damped transient component x2(t), shown in Fig. 

1, and its formula can refer to [11]. The relationship 

between the PCCs and the amplitude of the added white 

noise is illustrated in Fig. 2. As shown in Fig. 2, when the 

amplitude of the added white noise is 0.0063, the two 

PCCs almost simultaneously reach their maximum values. 

Table 1 exhibits the average powers of two components of 

the signal and the square roots of the average powers. As 

seen in Table 1, the value of 0.0063 just equals to the 

square root of the average power of the weak transient 

component x1(t). As a result, the square root of the average 

power of the weak transient component apparently 

approximates the optimal amplitude of the added white 

noise.  
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Fig. 1  A simple noiseless simulated signal and two components. 
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Fig. 2 The relationship between the Pearson’s correlation coefficient 

(PCC) and the amplitude of the added white noise for the simple signal. 

Table 1: The average powers of two components of the simple noiseless 

simulated signal and the square roots of the average powers 

Parameter 

The two components of the 

simple signal 

1( )x t  2 ( )x t  

The mean power 4.0106×10-5 
0.5 

The square root of the 

mean power 
0.0063 0.7071 

Subsequently, a complex noiseless simulated signal was 

utilized to further verify the conclusion. The signal 

consisting of four components imitates realistic vibration 

signals of a rolling bearing, shown in Fig. 3, and its 

formula can refer to [11]. The relationship between the 

PCCs and the amplitude of the added white noise is 

illustrated in Fig. 4. As shown in Fig. 4, when the 

amplitude of the added white noise lies in the range of 

0.0085-0.0138, the four PCCs almost simultaneously 

reach their maximum values. Table 2 depicts the average 

powers of four components of the signal and the square 

roots of the average powers. As shown in Table 2, the 

value of 0.0085 is just equal to the square root of the 

average power of the weak sinusoid component x4(t) and 

the value of 0.0138 is just equal to the square root of the 

average power of the weak transient component x1(t). 

More generally, Fig. 4 indicates that an optimal internal 

of the amplitude of the added white noise for the EEMD 

method may lie between the square root of the average 

power of the weak sinusoid component and the square 

root of the average power of the weak transient 

component, which is in accordance with the conclusions 

drawn from the above simple example. 
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Fig. 3 A complexly-simulated signal and its four components. 
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Fig. 4 The relationship between the Pearson’s correlation coefficient 

(PCC) and the amplitude of the added white noise in a complex noiseless 

simulated signal. 

Table 2: The average powers of four components of the complex 

noiseless simulated signal and the square roots of the average powers 

Parameter 

The four components of the complex 

signal 

1( )x t  2 ( )x t  3 ( )x t  4 ( )x t  

The mean power 1.9032 1.9377 5.4450 0.7200 

The square root of the 

mean power 
0.0138 0.0139 0.0233 0.0085 

 

3.2 The improved CEEMD 

On the premise that the noise is neglected, the above 

section gives an optimal interval of the amplitude of the 

added white noise for the EEMD method. Actually, a 

realistic signal is usually contaminated by strong or weak 

noise. When the EEMD method is applied to a noisy 

signal, the intrinsic noise will inevitably interact with the 

added noise, which can make a great impact on how much 

extrinsic noise should be added. Although the reference [8] 

has suggested that the amplitude of the added white noise 

should be about 0.2 times of the standard deviation of the 

investigated signal, the conclusion is pretty rough and 

inappropriate in many cases [11]. To alleviate the problem 

existing in the EEMD method for analyzing a noisy signal, 

the improved CEEMD (ICEEMD) is proposed. First, the 

noisy signal is roughly decomposed using the CEEMD 

algorithm. Then, both the weak transient component and 

the weak sinusoid component are obtained. As a result, the 

optimal interval of the amplitude of the added white noise 

can be determined. In the end, with the amplitude of the 

added white noise lying in the optimal interval obtained in 

the previous step, the CEEMD method is again performed.  

4. Experiment verification 

To further assess its performance, the ICEEMD method 

was exploited to examine the gearbox vibration data 

provided by Kayvan J. Rafiee [12]. The gearbox was 

running by the driving gear meshing with the driven one. 

The rotation speed of the input shaft is 24.05Hz, the 

rotation speed of the output shaft is 29.06Hz and the 

meshing frequency is 697.5Hz [12]. The signals were 

measured from the driving gear. The normal gearbox 

signal and the broken-tooth gearbox signal are shown in 

Fig. 5. Subsequently, the EEMD method, the CEEMD 

method and the ICEEMD method were utilized to explore 

the two signals, and the corresponding HHT spectra are 

shown in Fig. 6, Fig. 7 and Fig. 8, respectively. As shown 

in Fig. 6(a), Fig. 7(a) and Fig. 8(a), there are no obvious 

periodic characteristics in the HHT spectra of the normal 

gearbox signal; conversely, as shown in Fig. 6(b), Fig. 7(b) 

and Fig. 8(b), there are obvious periodic characteristics in 

the HHT spectra of the broken-tooth gearbox signal. 

However, as seen in Fig. 6(b) and Fig. 7(b), none of other 

explicit information can be found, in addition to the 

frequency bands scattered nearly throughout the frequency 

range only at the instant when the shocks happen, which 

implies that there occurs the mode mixing or splitting in 

the two methods because of the inappropriate amplitude of 

the added noise. Instead, as seen in Fig. 8(b), in addition to 

the frequency bands scattered nearly throughout the 

frequency range only at the instant when the shocks 

happen, there is another an instantaneous frequency curve 

similar to a cosine curve (highlighted with the red curve) 

with the modulation frequency of 24Hz and the carrier 

frequency of about 4800Hz, where the frequency 24Hz 

almost equals to the rotation speed of the input shaft and 

the frequency 4800Hz approaches the twelve times of the 

meshing frequency, which denotes that there occurs a 

frequency modulation phenomenon in the broken-tooth 

signal. Consequently, the comparisons between the three 

HHT spectra from Fig. 6(b), Fig. 7(b) and Fig. 8(b) prove 

that the ICEEMD method greatly alleviates the mode 

mixing and splitting of the EEMD/CEEMD method and 
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can extract more and useful information from the faulty 

signals, which is essential for fault diagnosis of gearboxes. 

In addition, Fig. 9 presents that ICEEMD, comparable to 

CEEMD, can reduce a waste of time by 80% compared 

with the EEMD method. This indicates that the ICEEMD 

method is seemingly an effective and efficient method for 

gearbox fault signal processing. 
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Fig. 5 The two gearbox vibration signals: (a) The normal gearbox signal; 

(b) The broken-tooth gearbox signal. 
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Fig. 6 The HHT spectra of the two vibration signals using the EEMD 

method: (a) The normal gearbox signal; (b) The broken-tooth gearbox 

signal. 
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Fig. 7 The HHT spectra of the two vibration signals using the CEEMD 

method: (a) The normal gearbox signal; (b) The broken-tooth gearbox 

signal. 
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Fig. 8 The HHT spectra of the two vibration signals using the ICEEMD 

method (The red cosine curve is added to highlight the instantaneous 

frequency curve.): (a) The normal gearbox signal; (b) The broken-tooth 

gearbox signal. 
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Fig. 9 Comparisons of computing time between the three different 

methods for the broken-tooth signal. 

5. Conclusions 

The paper aims to provide guidance on choosing the 

appropriate amplitude of the added white noise for the 

EEMD method and reduce the tremendous time waste 

occurring in the EEMD method. To solve those problems, 

based on the CEEMD method, the ICEEMD method is 

addressed in this paper. Besides, the numerical examples 

and the experimental examples have tested the ability of 

the ICEEMD method. The comparisons with the EEMD 

and CEEMD methods show that the ICEEMD method 

outperforms the EEMD method in alleviating the mode 

mixing and splitting as well as reducing the time waste 

and also outperforms the CEEMD method in alleviating 

the mode mixing and splitting. This paper indicates that 

the ICEEMD method is seemingly an effective and 

efficient method for gearbox fault signal processing. In 

addition, combined with some other methods[13, 14], the 

ICEEMD method may achieve better results in analyzing 

gearbox faulty signals.  
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