
Prioritizing Test Cases in Regression testing using

Fault Based Analysis

Ashima Singh

 IT Department, MM University, Mullana
133002,India

Abstract
Testing is an integral part of any software development
lifecycle. It takes considerable amount of time and capital
to generate test cases and apply testing. Genetic
Algorithms are proving to be great tool in optimizing
software testing. This paper uses the concept of Genetic
algorithms in optimizing software testing. In this paper,
we have analysed genetic algorithms and studied their
effectiveness to find the faults and time overhead-based
criteria to -prioritize test cases. The proposed approach is
providing the solution of test cases sequencing as well as
reduction by using an intelligent dynamic approach. The
proposed system will generate the test cases based on the
priorities, which are assigned by the algorithm to test cases
on the basis of some intelligent operations. A cumulative
mutation probability (CMP) metric is used to determine
the effectiveness of the new test case orderings
Keywords: Software Testing, Regression Testing,
Genetic, offspring, Prioritization.

1. Introduction

Software Testing means computing the system
with purpose of finding errors. It is an application for
a concerted action of a system under controlled conditions
and evaluating the results. Once system has been
developed, it must be tested before it implementation. It
is oriented towards Error-detection.

Software testing is one element of a broader topic that
that is often referred to as verifying and validating that a
software application or program. Software testing is
useful for finding the defects, fundamental weakness in
the application code that must be improved or checked.

 Software testing has three main purposes: verification,
validation, and defect:

• The process of verification confirms that
software meets its specifications. It ensures
that software correctly implemented for
specific function.

• Whereas the process of validation ensures that

the software meets the business requirements.
It provides the traceable activities to
customers.

• A defect is inconsistency among the
expected and actual result. The defect’s
ultimate source may be traced to a fault
introduced in the specification, design, or
development phases.

In development of software system, cost of testing a
program is associated [1]. Tester has to write test plan and
test cases, to set up the proper equipment, systematically
execute the test cases, and follow up on problems that are
identified also try to remove most of the faults. For faults
that are not discovered and removed before the software
has been shipped, there are costs. Some of these costs are
monetary, and some could be significant in less tangible
ways. Customers can lose faith in our business and can get
very angry. They can also lose a great deal of money if
their system goes down because of our defects. And,
software development organizations have to spend a great
deal of money to obtain specific information about
customer problems and to find and fix the cause of their
failures.

To minimize the costs associated with testing and with
software failures, a goal of testing must be to uncover as
many defects as possible with as little testing as possible.
In other words, we want to write test cases that have a
high likelihood of uncovering the faults that are the most
likely to be observed as a failure in normal use. It is
simply impossible to test every possible input-output
combination of the system; there are simply too many
permutations and combinations. As testers, we need to
consider the economics of testing and strive to write test
cases that will uncover as many faults in as few test cases
as possible.

2. Related Work

The process of software maintenance is an activity
which includes enhancements, error corrections,
optimization and deletion of obsolete capabilities. These
modifications in the software may cause the software to
work incorrectly and may also affect the other parts of the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 414

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

software. In order to prevent this Regression testing is
performed.

Regression testing is used to revalidate the
modifications of the software. Regression testing is an
expensive process in which the test suites are executed
ensuring that no new errors have been introduced into
previously tested code and after the modification the
software is working properly.

Regression testing is done in the maintenance phase of
the software development life cycle to retest the software
for the modifications it has undergone. Approximately
50% of the software cost is involved in the maintenance
phase so researchers are working hard to come up with
best results by developing new Regression Testing
techniques.

The most important concerns in the testing phase are
time and cost. Test Case Prioritization is a classification
type of Regression Testing that helps us to make the
process of testing a cost and time effective task. It also
increases the efficiency of the testing procedure by
prioritizing the test cases according to desired criteria.

Akira K. Onoma, Wei-Tek Tsai, Mustafa H.
Poonawala, and Hiroshi Suganuma [1998],"Regression
Testing in an Industrial Environment"- In this paper
author's discussed the issues such as test case revalidation,
test execution, failure identification, fault identification,
modification dependency, fault mitigation and test case
dependency are essential for an industrial environment in
applying regression testing. Most of these issues are easy
to address if one is dealing with small programs, but in a
large software house where multiple large programs are
being developed and maintained, they suddenly become
complicated and costly. Some of these issues are also
related to general software testing, however, these
problems become acute in regression testing because test
cases are repeatedly exercised in case of regression
testing.

Mark Last, Shay Eyal, and Abraham Kandel proposed a
new [2005],"Effective Black Box Testing with Genetic
Algorithms"- proposed a GA-based approach to generate
effective black-box test cases. From the case study, they
conclude that the Fuzzy- Based Age Extension of Genetic
Algorithm (FAexGA) is much more efficient for this
problem than the two other evaluated algorithms
(SimpleGA and GAVaPS). In this paper, they introduced a
new, computationally intelligent approach to generation of
effective test cases based on a novel, Fuzzy-Based Age
Extension of Genetic Algorithms (FAexGA). The basic
idea was to eliminate bad test cases that are unlikely to
expose any error. The promising performance of the
FAexGA based approach was demonstrated on testing a
complex Boolean expression.

Xiaofang Zhang, Changhai Nie, Baowen Xu, Bo Qu
[2007], "Test Case Prioritization based on Varying Testing
Requirement Priorities and Test Case Costs"- This paper
discusses prioritization of test cases in regression testing.
It schedules test cases in order of precedence that
increases their ability to meet some performance goals,
such as code coverage, rate of fault detection. In this
paper, basing on varying testing requirement priorities and
test case costs, we present a new, general test case
prioritization technique and an associated metric. The case
study illustrates that the rate of “units-of-testing-
requirement-priority-satisfiedper-unit-test-case-cost” can
be increased, and then the testing quality and customer
satisfaction can be improved.

Gaurav Duggal, Bharti Suri
[2008],"UNDERSTANDING REGRESSION TESTING
TECHNIQUES"- described Regression testing is done in
the maintenance phase of the software development life
cycle to retest the software for the modifications it has
undergone. Approximately 50% of the software cost is
involved in the maintenance phase so researchers are
working hard to come up with best results by developing
new Regression Testing techniques so that the expenditure
made in this phase can be reduced to some extent. This
paper discussed Regression Testing techniques and further
classified each one of them respectively as explained by
various authors, explaining Regression Test Selection and
Test Case Prioritization in detail with Search Algorithms
for Test Case Prioritization. Through this paper author
tried to, explain the complete structure of Regression
Testing, areas of Regression Testing to make researchers
understand its importance and scope and motivate new
researchers who are planning to start their research “to
work on it”.

Chen L., Wang Z., Xu L. [2010],"Test Case
Prioritization for Web Service Regression Testing"-
proposed a dependence analysis based test case
prioritization technique for Web Service regression
testing. First, they analyzed the dependence relationship
using control and data flow information in an orchestration
language: WS-BPEL. Then they construct a weighted
graph. After that, they prioritize test cases according to
covering more modification-affected elements with the
highest weight. Finally authors conduct a case study to
illustrate the applicability of method.

Hyunsook Do, Siavash Mirarab[2010], “The Effects
of Time Constraints on Test Case Prioritization: A
Series of Controlled Experiments”- Several series of
experiments are conducted to assess the effects of time
constraints on the costs and benefits of prioritization
techniques. Results of different experiments are:

• Manipulates time constraint levels and shows

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 415

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

that time constraints do play a significant
role in determining both the cost-effectiveness
of prioritization and the relative cost-benefit
trade-offs among techniques.

• Replicates the first experiment, controlling for
several threats to validity including numbers of
faults present, and shows that the results
generalize to this wider context.

• Manipulates the number of faults present in
programs to examine the effects of faultiness
levels on prioritization and shows that
faultiness level affects the relative cost-
effectiveness of prioritization techniques.

• If they are considered together the results have
suggestions about when and when not to
prioritize, techniques to be employed and how
differences in testing processes may relate to
prioritization cost-effectiveness.

Chen Zhang, Zhenyu Chen, Zhihong Zha[2010], “An
Improved Regression Test Selection Technique by
Clustering Execution Profiles”-This paper presents a new
regression test selection technique by clustering the
execution profiles of modification traversing test cases.
Cluster analysis can group program executions that have
similar features, so that program behaviours can be well
understood and test cases can be selected in a proper way
to reduce the test suite effectively. An experiment with
some real programs is designed and implemented. The
experiment results show that the approach can produce a
smaller test suite with most fault-revealing test cases in
comparison with existing selection techniques.

Anoj Kumar, Shailesh Tiwari, K. K. Mishra[2010],
“Generation of Efficient Test Data using Path Selection
Strategy with Elitist GA in Regression Testing”- It
presents a combined approach by which the stated
problems are resolved in effective manner. By this
approach, tester can identify the appropriate paths for test
case execution and also generate efficient test data using
elitist version of GA. The proposed approach enables
tester to execute the test cases in order to increase their
effectiveness to find faults taking minimum efforts. It can
be used in regression testing to choose an appropriate
subset of test cases by using elitist GA, among a
previously run test suite for a software system, based on
the information about the modifications made to the
system for enhancement.

3. Regression Testing

Regression Testing is an important strategy for
reducing side effects. We run regression testing every
time software experiences a change in form of bug fixes
or some additional functionality. It is done to ensure that
code had not an adverse effect to the other module or

any existing functions and it may not have produced any
defect.

The regression test suite contains three different
classes of test cases:

• A representative sample of tests that will exercise
all software functions.

• Additional test that focuses on software function
that are likely to be affected by change.

• Test that focus on components that have been
changed.

 A subset of the regression test cases can be set aside as
Smoke tests. A smoke test is a group of test cases that
establish that the system is stable and all major
functionality is present and works under “normal”
conditions.

 Smoke tests are often automated, and the selections of
the test cases are broad in scope. The smoke tests might be
run before deciding to proceed with further testing (why
dedicate resources to testing if the system is very
unstable). The purpose of smoke tests is to demonstrate
stability, not to find bugs with the system.

The most crucial phase in the software development life
cycle is maintenance phase, in which the development
team is supposed to maintain the software which is
delivered to the clients by them. Software maintenance
results for the reasons like error corrections, enhancement
of capabilities, deletion of capabilities and optimization.
Regression testing is defined as “The process of retesting
the modified parts of the software and ensuring that no
new errors have been introduced into previously tested
code”.

The various types of techniques for regression
testing are:

• Retest all: method is one of the conventional
methods for regression testing in which all the
tests in the existing test suite are re-runned. So
the retest all technique is very expensive as
compared to techniques which will be discussed
further as regression test suites are costly to
execute in full as it require more time and budget.

• Regression test selection: approaches attempt
to reduce the cost of regression testing by
selecting some appropriate subset of the existing
test suite .Test selection techniques normally use
the source code of a program to determine which
tests should be executed during the regression
testing stage .

• Regression test prioritization techniques
attempt to order a regression test suite so that
those tests with the highest priority, according
to some established criterion, are executed earlier
in the regression testing process than those with

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 416

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

lower priority. By prioritizing the execution of
a regression test suite, these methods hope to
reveal important defects in a software system
earlier in the regression testing process.

• Hybrid approach: also known as regression
test distribution is another alternative that can
make regression testing more practical by more
fully utilizing the computing resources that are
normally available to a testing team.

4. Proposed Approach

4.1 A New Prioritization Technique
Earlier work may take long time (may be month or

year) depending on the size of the test suite and how long
each test case takes to run. However through the use of an
effective prioritization technique, testers can re order the
test cases to obtain an increased rate of fault detection.

The technique presented in this paper presented a new
regression test suite prioritization algorithm that prioritizes
the test cases with the goal of maximizing the number of
faults that are likely to be found during the constrained
execution.

4.2 The Algorithm
1. Accept the N Test Cases in form of TestCost

Matrix
2. Define the Initial Population Size called

PopSize
3. Generated the Random Population Set to

represent the possible test sequences
4. Define Fitness Function
5. Select two Random Parents from Population

Set
6. Perform two point crossover to generate new

Child
7. Perform Mutation Operation
8. Add newly generated child to population
9. Return Optimized Test Sequence

The proposed approach is the try to reduce the test
cases and assigning a new prioritization sequence. We
need to define a database to maintain all the test cases
respective to the project. The data will contain different
kind of test respective to the criticality level. It will also
define the position of the test cases in the data flow over
the object. It also define either it is a function test or non
function test.

Once all the test cases are defined the next work is
assign the priorities to these test cases. The
prioritization should be assigned according to the
criticality of the test as well as the code on which the test
is occurred. It also defines how frequent the test is. After
considering an initial test cases sequence is generated.

We need to define the event that can affect the
available code or the related test cases. With each event
we define the affected test cases. The test cases affection
is represented as use case. It also defines as the event the
particular test cases will be required to perform or not. If
it is required it will check weather it will be uses in
same or some modification is required. After the use case
is assigned to the available test cases the next work is
to assign a new sequence of test case implementation.
This work will be performed dynamically by keeping the
existing test cases in mind as well as by observing the
criticality level as well the use cases of the particular test
case.

The fundamental mechanism consists of the following
stages :

1. Generate randomly the initial population.
2. Select the chromosomes with the best fitness

values.
3. Recombine selected chromosomes using

crossover and mutation operators.
4. Insert offspring into the population.
5. If a stop criterion is satisfied, return the

chromosome with the best fitness.
6. Otherwise, go to Step 2.

5. Computational Experimentation

We are defining a new approach to assign the priorities
to the test cases dynamically while performing the
regression testing using genetic approach. It will reduce
the cost thus assigning a new prioritization sequence. For
this purpose we have used MATLAB simulator because it
provides high-level technical computing language and
interactive environment for algorithm development, data
visualization, data analysis, and numeric computation.

To show the presented work we have estimate the cost
respective to number of test cases. The overall cost in case
of different test cases is given as under.
5.1 Genetics based Test Cost Analysis (100 Generations)

We have analysed these test cases based on the
cost of the test case. The cost depends on the occurrence
and the detection of the software fault in a particular
module. Here we have assigned the test cost in different
ways to perform the analysis. The basic parameters
defined while performing the Genetic Algorithm are:

Parameter Value

Number of Test Case 10

Test Cost 0 to 1

Generations 100

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 417

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Crossover PMX

Optimization Criteria Minimization

Figure 1. Test Cost Analysis (All Methods/100
Generations)

Figure 2. Test Cost Analysis (All Methods/200
Generations)

5.2 Cost Evaluation for Random Cost Assignment
As the general case we have assigned the random cost

to each test case and perform the analysis based on this
random cost assignment. The output driven based on this
assignment is shown as under.

a) The obtained Test Sequence of this random cost
assignment is given as
3 9 4 1 10 7 8 5 6 2

b) The Process cost driven from the genetic on
initial cost assignment is given as
Process Cost = 11.0547

c) The cost driven after implementation of
optimized test sequence is given as
Test Cost = 1.3207

5.3 Cost Evaluation in Ascending Order
As the general case we have assigned the cost in

increasing order of test cost to each test case and perform
the analysis based on this cost assignment. The output
driven based on this assignment is shown as under.

a) The obtained Test Sequence of this random cost
assignment is given as
 7 2 1 5 10 6 9 3 4 8

b) The Process cost driven from the genetic on
initial cost assignment is given as

 Process Cost = 9.5599
 c) The cost driven after implementation of

optimized test sequence is given as
Test Cost = 5.3

5.4 Cost Evaluation in Descending Order
As the general case we have assigned the cost in

decreasing order of test cost to each test case and perform
the analysis based on this cost assignment. The output
driven based on this assignment is shown as under.

a) The obtained Test Sequence of this random cost
assignment is given as
9 3 7 1 10 2 8 5 6 4

b) The Process cost driven from the genetic on
initial cost assignment is given as
Process Cost = 12.9098

c) The cost driven after implementation of
optimized test sequence is given as
Test Cost = 4.9

1. Cost Evaluation on Range Based
As the general case we have assigned the cost in
range between 1 and 10. Here the cost assignment
is developer assisted and the analysis is
performed on the basis on this cost assignment.
The output driven based on this assignment is
shown as under.

a) The obtained Test Sequence of this random cost
assignment is given as
7 3 4 6 2 8 10 1 9 5

b) The Process cost driven from the genetic on
initial cost assignment is given as
Process Cost = 10.4791

c) The cost driven after implementation of
optimized test sequence is given as
Test Cost = 24

6. Determining Test Suite Effectiveness

 6.1 APFD Average Percentage of Fault
Detection (APFD) Metric

To quantify the goal of increasing a subset of the test
suite's rate of fault detection, i use a metric called
APFD developed by Elbaum et al. that measures the
average rate of fault detection per percentage of test
suite execution. The APFD is calculated by taking the
weighted average of the number of faults detected
during the run of the test suite. APFD can be
calculated using a notation:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 418

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Let T -> The test suite under evaluation program under
test P
 n -> The total number of test cases and
TFi -> The position of the first test in T that exposed
fault i.
APFD = 1 – TF 1 + TF 2 + + TF m + 1
 Nm 2n
So as the formula for APFD shows that

calculating APFD is only possible when prior
knowledge of faults is available. APFD
calculations therefore are only used for
evaluation.

6.2. Experimentation and analysis

Following table shows the number of faults
detected by a test case in the test suite
and total time taken by each test case.

T1 T2 T3 T4 T5 T6 T7

F1 X X X

F2 X

F3 X

F4 X X

F5 X X

F6 X X

F7 X X

Number

of Faults

1 1 1 3 2 3 2

Time 5 7 11 4 10 12 6

6.3 APFD VALUE FOR NON PRIORITIZED
TEST SUITE:

m= number of faults=7

n= number of test cases=7
Test sequence= T1,T2,T3,T4,T5,T6,T7

Putting values in formula:

APFD = 1 – (1+4+7+5+3+4+4)/7*7 + 1/(2*7)
 = 0.50

Figure 3 APFD Analysis (Basic Test Sequence)

6.4 APFD VALUE FOR PRIORITIZED TEST SUITE:

The prioritized test sequence obtained after applying
Genetic Algorithm and its operators crossover and
mutation T4 T7 T1 T5 T3 T2 T6

Calculation on putting values:-
APFD = 1 – (3+1+2+4+5+1+1)/7*7 + 1/(2*7)

 =0.72

Figure 4. APFD Analysis (Prioritized Test Sequence)

6.5 Analysis of APFD
Results calculated by APFD proves that prioritized test

sequence is more effective in finding out the faults in less
time.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 419

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 5. Comparison Graph(Prioritized and non

Prioritized Sequence)

7. Discussion and Conclusion

In this present work we are defining a new approach to
find the optimal test sequence dynamically while
performing the regression testing. From this complete
work we can conclude the genetic can be used effectively
to perform the work on test case generation But it can be
used effectively if there is large number of test cases and
large number of possible test sequences. More the number
of possible test sequence more effective the result will be.
The conclusion driven here are

• In this work we find the effectiveness of genetic
optimization for regression testing.

• The obtained test sequence is less costly and less
critical then other.

• This paper proposed the Genetic Algorithm for
prioritization of test cases to improve the
regression Testing. Analysis is done for
prioritized and non prioritized cases with the help
of APFD metric .Graph proved that prioritized
case is more effective.

• We can use some other optimization approaches
such as ACO, Swarm based approach etc. to
generate the prioritized test sequence.

If we have a large test suite then we can implement the
clustering to categorize the faults and then perform the
cluster based prioritization approach.

References
[1] Gregory M. Kapfhammer [1968]-“Software Testing”.
[2] D. Richardson, O. O’Malley and C. Title [1989],

“Approaches to specification-based testing”.
[3] Wong W., Agrawal. H.[1997],” A Study of Effective

Regression Testing in Practice”.

[4] Akira K. Onoma, Wei-Tek Tsai, Mustafa H.
Poonawala, and Hiroshi Suganuma [1998],"Regression
Testing in an Industrial Environment".

[5] G. Rothermel, M. J. Harrold, J. Ostrin, and C. Hong
 [1998],“An empirical study of the effects of minimization on

the fault detection capabilities of test suites”.
[6] K. Onoma, W.-T. Tsai, M. Poonawala, and H. Suganuma

[1998], “Regression testing in an industrial environment”.
[7] M. J. Harold, J. A. Jone, T. Li, and D. Liang [2001],

“Regression test selection for java software”.
[8] Elbaum, Malishevsky, Rothermel [2002],"Test case

prioritization: a family of empirical studies".
[9] Y. Chen, R. Probert, and D. P. Sims[2002], “Specification-

based regression test selection with risk analysis”.
[10] David Leon, Andy Podgurski [2003],"A Comparison of

Coverage-Based and Distribution-Based Techniques for
Filtering and Prioritizing Test Cases".

[11] Mark Last, Shay Eyal, and Abraham Kandel proposed a new
[2005],"Effective Black-Box Testing with Genetic
Algorithms".

[12] H. Srikanth [2005], “Requirements-based test case
prioritization”.

[13] Xiaofang Zhang, Changhai Nie, Baowen Xu, Bo Qu [2007],
"Test Case Prioritization based on Varying Testing
Requirement Priorities and Test Case Costs".

[14] Gaurav Duggal, Bharti Suri [2008],"UNDERSTANDING
REGRESSION TESTING TECHNIQUES".

[15] C. Jones [2008], “Software quality in 2008: A survey of the
state of the art”.

[16] Srivastava P., Kim P.[2009], ”Application of Genetic
Algorithm in Software Testing”.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 6, No 1, November 2012
ISSN (Online): 1694-0814
www.IJCSI.org 420

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

