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Abstract 

Analytics technologies are becoming increasingly important 

for the organizations to mine and get insights into large amount 

of structured and unstructured data, and also to enable effective 

decision making for the management. One of the challenges for 

power industry is to estimate the Day-ahead power demand 

specifically to predict the peak and low demand periods. In this 

paper, the modeling techniques of analytics for forecasting are 

discussed. This paper  investigates application of ARMA and 

GARCH modeling techniques to fit the historical data and 

estimate the coefficients to predict the Day-ahead electricity 

demand. R-Programming is used to fit the models. 

Keywords: ARMA, ARCH, Electricity Demand, Estimation, 

Forecasting, GARCH, Modeling, R-Code. 

   

1.   Introduction 

The demand forecasting in electricity has become one of   

the most critical economy factors for many countries 

especially for those with scarce energy resources or high 

costs of generation of electricity.  The power industry 

requires forecasts for both short term such as hours or 

days ahead  and  long term like 5,10, 15 years ahead.  

The short-term forecasts are becoming increasingly 

important to manage the peak and low demand days 

efficiently and also for planning periodic monthly, 

quarterly, and yearly electricity demand. A unique 

feature of electricity is that unlike the manufactured 

goods which can be stored and utilized,  electricity is not 

storable which makes the supply and demand 

management very complex. 

  

There are various factors that influence daily electricity 

demand on a power system such as seasons, weather 

conditions, and other local variables like public holidays, 

economy situation (economic boom or recession period) 

in any country.  Many of these factors are different for 

each country depending on the geographical location, 

culture, and the country and/or state dependency on the 

resources of power generation. The electricity demand 

planning also needs to accommodate the additional 

demand due to the growth in new industries, residential 

and agriculture needs. 

 

The demand prediction methods and techniques are 

chosen based on the scenario, “One model fit for all” 

may not work  for  multiple scenarios across the 

countries as the conditions may not be same.  Sigauke 

and Chikobvu [1] predicted the daily peak electricity 

demand in South Africa using volatility forecasting 

models. They designed a hybrid regressive SARIMA 

(Seasonal Autoregressive Integrated Moving-Average) 

and GARCH (Generalized Autoregressive  

Heteroskedasticity) models to predict the daily demand 

with a Mean Absolute  Percent Error (MAPE) of 1.42%. 

Ching-Lai and Simon J Watson [2] worked on ARIMA 

(Autoregressive Integrated Moving Average) and 

GARCH models to forecast the daily load of electricity 

in UK with Mean Absolute Percent Error of 1-3%  for 

each month and analyzed the influence  of the climate 

change in the power demand. Nowicka-Zagrajck and 

Weron [3] studied electricity load patterns of California 

state and proposed ARMA (Autoregressive Moving 

Average) time series with hyperbolic noise. Reinaldo 

and Javier[4] have studied electricity prices in Spain and 

California and proposed GARCH model to predict the 

volatility of Day-ahead electricity prices.  Chengjun Li, 

Ming Zhang[5] compared the GARCH and ARMA 

models to predict the hourly electricity prices in  

California market. Ramakrishna and et al [6] proposed a 

Neural Network model to forecast monthly electricity 

load. They compared the ANN(Artificial Neural 

Networks) model with SARIMA. Some of the 

researchers indicated [7, 8, 9] that ANN may not always 

outperform as compared to  other forecast models due to 

the challenges in validations, and accurate systematic 

testing.    

 

The objective of this paper is to study the historical daily 

electricity load of Andhra Pradesh state, India and 

forecast the Day-ahead electricity demand using ARMA 

and GARCH models. R-Programming is used with step 

by step process to  fit the models. The data considered in 

this paper is from Andhra Pradesh Transmission 

Company, India. The R-Project is an Open Source 

Software. The R Notes [11] from R-Project is referred 

for R Programming syntax.  

 

2.  Data Preparation 
 

For the purpose of study, the data population of  375 

observations from Daily Electricity Load of Andhra 

Pradesh State, India between 2005 and 2006 is 

considered.  To identify and fit the model, 365 daily 

electricity observations of 2005 year are used for 

sampling and forecasting 10 days-ahead electricity 

demand. 10 observations of 2006 are considered for 

comparing  the predicted electricity demand. The fitted 

model can be applied to all the other years to validate the 

model. The  preliminary data analysis is indicated in the 

Table 1,  consists of the average daily load in each year,  
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year on year change in average daily load, minimum 

daily load in each year, and maximum daily load in each 

year.  
  Table 1: Data Analysis for 5 years  (Power Load in Giga Watts

 

The trend in the Table 1 shows that the average day 

minimum, and maximum day load increased 

years.   

Figure 1:  Time Series plot of the Daily Electricity   Load pattern

 

The   time series of daily electricity load

plotted in Figure 1. The data exhibits peaks and lows 

with increasing and decreasing trend of variances

is no consistent trend (upward or downward) over the 

entire time span considered.  The series appears to move 

up and down. In the case of annual data, the 

factors may not have significant influence on the 

variances. There are no outliers. It may be difficult to 

conclude from the above whether the variance is 

constant or not and needs to be tested with a sui

model. The data in Giga Watt is captured in

The data is loaded into R-Project from a flat file

converted to time series as follows: 

The step-wise methodology used in this paper is

model, estimate the coefficients, fit the sample 

forecast the predicted load. 

3. Time Series Model -ARMA   

3.1 Identification of the model  

The general ARMA statistical model is used to describe 

a time series that evolves over time.  

The ARMA(p, q) process for {xt} time series

represented as 

x t =  a0 + a1xt-1 + … + apxt-p + b1et-1 +  

… +  bqet-q + et       ….(1) 

year change in average daily load, minimum 

daily load in each year, and maximum daily load in each 

Power Load in Giga Watts)  

 

average day load, 

 across the 

 
Load pattern. 

daily electricity load of 2005 is 

1. The data exhibits peaks and lows 

variances.  There 

is no consistent trend (upward or downward) over the 

.  The series appears to move 

of annual data, the seasonal 

influence on the 

It may be difficult to 

the variance is 

tested with a suitable 

in a CSV file.  

from a flat file and 

 
paper is to identify a 

model, estimate the coefficients, fit the sample data and 

The general ARMA statistical model is used to describe 

time series is 

where a0 is set to zero if no intercept is included

autoregressive process order  and q is the moving 

average process order. 

The ‘Best-Fit’ p and q  order values of ARMA

can be determined by using the smallest AIC

Information Criterion) through the following

 

The above code compares the AIC of each iteration with

the previous iteration of ARMA function 

and q values. The output of the above code is 1

smallest AIC.  ARMA (1, 1) is the 

estimate the coefficients and fit the data to the model.

The Autocorrelation Function plot of the model in 

Figure 2 depicts that the Autocorrelation is decayed 

rapidly to zero after initial lags.  

Figure 2: ACF plot of the observations. 

 

3.2  Estimation 

 

The Estimation of coefficients for the identified model 

ARMA (1, 1) is done as follows:  

is set to zero if no intercept is included, p is the 

autoregressive process order  and q is the moving 

q  order values of ARMA  model 

can be determined by using the smallest AIC (Akaike 

through the following R-Code: 

 

compares the AIC of each iteration with 

function with changed p 

above code is 1, 1 with 

the identified model to 

estimate the coefficients and fit the data to the model. 

orrelation Function plot of the model in 

Autocorrelation is decayed 

 

The Estimation of coefficients for the identified model 
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The output of ARMA fit is shown in the 

consists of coefficients, p-values. ACF and PACF of 

residuals are plotted in the Figure 3 and 

respectively.  

 

Table 2:  ARMA (1, 1) Model Estimation  

 

Both AR and MA p-values are significant 

This implies the first order coefficients of AR and MA 

are sufficient to fit the model to the data. 

 

       Figure 3: ACF plot of residuals of Model ARMA (1

                

 
      Figure 4: PACF plot of residuals of Model ARMA (

There are no significant peaks in ACF and PACF plot

implies that there are no autocorrelations. The ACF plot

of squared residuals is shown Figure 5. 

 

 
ARMA fit is shown in the Table 2, it 

ACF and PACF of 

and Figure 4 

 

significant at 5% level.  

first order coefficients of AR and MA 

  
1, 1) 

                    
ARMA (1, 1) 

no significant peaks in ACF and PACF plots, 

The ACF plot 

Figure 5:  ACF plot of Squared Residuals

 

Except at the initial lags, all sample autocorrelations 

within the 95 % confidence bounds. The residuals appear 

to be random after initial spikes.  Ljung

to test the randomness on residuals 

for the lags till p-value 5% significance level

be achieved through the following R

 

 

The output of Ljung-Box test is shown in 

 

    Table 3:  Ljung-Box Test on the Residuals

 

Ljung-Box test has given p-values significant

from lag 7 onwards with a statistic value of 21.79 and 

degrees freedom of 22.  This implies that

autocorrelations in the initial lags and these vanish after 

 
:  ACF plot of Squared Residuals 

ll sample autocorrelations are 

. The residuals appear 

Ljung-Box Test is used 

 and test is carried out 

5% significance level. This can 

R-Code: 

 

test is shown in the Table 3.  

the Residuals series 

 

values significant at 5% 

with a statistic value of 21.79 and 

This implies that there are  some 

and these vanish after 
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lag 6. The ARMA(1,1) is adequate to fit this data. The  

number of predictions ahead  for  short duration  is  more 

accurate than that of long duration ahead in this model 

which is good enough for forecasting the Day-ahead 

electricity load for weekly planning.  

 

3.3   Forecasting of Day-ahead Electricity 

Demand 

 

The ARMA(1,1) model equation with the estimated 

coefficients is  

 

xt = 9.91 + 0.9285xt-1 +0.3161 et-1 + et             …(2)  

The R-Code to forecast 10 Day-ahead demand is as 

follows: 

 
 

The predicted values with 80-95% confidence bounds 

are captured in Table 4 along with the observed values 

of 2006 for comparison. 

 

Table 4:  ARMA(1,1) predicted values 

 
 

The predicted values of ARMA model are plotted in the 

time series in the Figure 6.   

 

 
Figure 6: Predicted Day-ahead Electricity Demand  

The above results show that ARMA(1,1) can  be used for 

forecasting Day-ahead electricity load. However to 

predict for longer periods and to improve the accuracy 

within the confidence bounds, it is necessary to test non-

linearity in the errors.  The  fitted model assumes 

constant variances i.e. homoskedasticity and the 

predictions become inaccurate with increase in the time 

lags  ,  in reality the variances  may not be constant. For 

example, electricity usage at nighttime may have more 

steady pattern compare to that of daytime usage i.e. the 

variances in nighttime may be lower than that during at 

daytime. Thus, the daytime usage plays a significant 

factor in the daily load variances. This behavior is called 

ARCH effect i.e. Autoregressive model with conditional 

heteroskedasticity (conditional on time).    McLeod test 

can be used to analyze if there is any conditional 

heteroskedasticity in the residuals i.e. ARCH 

(Autoregressive Conditional Heteroskedasticity) effect.  

 

3.4  Test for Heteroskedasticity in the residuals 

 

McLeod-Li test checks for the presence of conditional 

heteroskedasticity by computing  Ljung-Box  test with 

the squared data  or with the squared residuals from an 

ARMA model. The R-Code for the test is  

 

 
 

The test with 25 lags has given a statistic value of 61.13, 

degrees of freedom 22 with a p-value of 0.00002 at 5% 

level of significance. These results are depicted in the 

Figure 7. Thus the null hypothesis  stated “linear or 

constant variances” is rejected.  There is an ARCH effect 

in the daily electricity load variances across the days.  

 

 
Figure 7: McLeod Test results on the residuals 

 

Jarque-Bera Test is another popular test for testing 

simultaneously the  normality and homoskedasticity of 

residuals in a time series data. 
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This test has given a statistics value = 137.4599, 

of freedom = 2, and a p-value < 2.2e-16 at 5% 

significance. Thus, the null hypothesis 

residuals  are normal and homoskedastic” is rejected. 

Both the tests implied that there is a  volatility in the 

daily load and the variances may have stochastic pattern. 

Thus, the heteroskedasticity of  errors needs further 

analysis using a non-linear model such as 

where the variances themselves are modeled as AR(p)

(Autoregressive process of order p) model.

positive and negative changes are observed 

electricity load   this is another factor for considering 

nonlinear model to analyze the errors.  

4.  GARCH Model for the variances

4.1 GARCH Model 

GARCH, a non-linear model treats  heteroskedasticity as 

a variance to be modeled[11], for each error term a 

prediction is estimated for the variance apart from 

correcting the deficiencies of least squares. The GARCH 

model measures the  volatility like a standard deviation

which is used in the decision making where the 

differential values are critical  such as Electricity 

demand Day-ahead forecast, risk analysis, 

prices in the deregulated market, portfolio returns

stock market, etc. 

If a time series is defined as  

 yt  = µ  t   + ε t                                            

where  µ  t is the conditional mean, and  ε t is a

process with mean zero. 

The residuals are generated as  ε t = σ t  z t 

where zt is an identically distributed process 

independent  with mean 0 and variance 1. Thus, 

εt+h) =0 for all lags,  h  is not equal to zero 

residuals are uncorrelated. 

If  H t denotes   history of the process available at time t

then the conditional variance of  yt is 

Var(yt  | H t-1) =Var(ε t | H t-1) = E(ε
2
t | H t-1) = 

Thus in the squared residual process , conditional 

heteroskedasticity is equivalent to autocorrelation

The residual series is defined as 

  et  = yt   -  µ t
^   

                                           

The residuals are uncorrelated with mean zero when the 

autocorrelations in the series yt are included 

137.4599,  degrees 

at 5% level of 

 stated “the 

is rejected.  

Both the tests implied that there is a  volatility in the 

and the variances may have stochastic pattern. 

needs further 

such as  GARCH 

deled as AR(p) 

model. Since both 

are observed in the daily 

is another factor for considering a 

variances 

heteroskedasticity as 

, for each error term a 

prediction is estimated for the variance apart from 

. The GARCH 

volatility like a standard deviation 

used in the decision making where the 

differential values are critical  such as Electricity 

, risk analysis, Electricity 

portfolio returns in the 

                                          ….. (3) 

is a  residual 

identically distributed process and  

independent  with mean 0 and variance 1. Thus, E(ε t 

,  h  is not equal to zero and the 

history of the process available at time t 

) =  σ 
2

t  .. (4)  

, conditional 

edasticity is equivalent to autocorrelation.  

                                           ….(5)
 
 

The residuals are uncorrelated with mean zero when the 

included in the 

conditional mean model. The residuals can still be 

serially dependent. 

For Engle's ARCH test of autocorrelation in the squared 

residuals , the alternative hypothesis 

regression 

Hα :  e
2
t  = α0 + α1e

2
t-1    + …. + αm

where ut is a noise error process. The null hypothesis is 

H0 :  α0 =  α1 = …. = αm = 0   

Ljung-Box Q-Test can be  conducted  on the first m lags 

of the squared residual series to check  for serial 

dependence, this is an alternative to Engle’s ARCH 

effect. 

 

4.2 Estimation of Coefficients 

 

The GARCH( p, q) model is applied on the 

difference data to determine the  p 

is the order of GARCH term σ2 , standard deviation 

q is the order of ARCH term ε
2
, mean error.

to identify GARCH model & fit the model to the 

residuals data and predict the variances

 

The  p and q values are changed iteratively 

code. AIC, and  LM ( Lagrange Multiplier)

p-values  are captured for each iteration

 

Table 5: GARCH model with p, q values 

 

There are two cases of p , and q : 

low AIC within 2 decimals in the 

these can be considered as the best but

lower for (1,1), the best values of p

and 1. The LM test for GARCH(1,1) 

level of significance. Thus, the null hypothesis 

“no ARCH effect or no conditional heteroskedasticity

the residuals” is rejected.  

The  p-values  of residuals and squared residuals  of 

Ljung-Box  Q statistics  of GARCH(1,1) are 

Table 6. The p-values of residuals are 

significance which indicates 

conditional mean model. The residuals can still be 

autocorrelation in the squared 

he alternative hypothesis  is given by the 

m e
2
t-m  + ut          ….(6)              

is a noise error process. The null hypothesis is   

          …. (7) 

est can be  conducted  on the first m lags 

of the squared residual series to check  for serial 

an alternative to Engle’s ARCH 

 

) model is applied on the daily 

 and q terms where p 

, standard deviation and 

mean error. The R-Code 

fit the model to the 

residuals data and predict the variances is given below:   

 

iteratively in the above 

LM ( Lagrange Multiplier) ARCH  Test 

for each iteration  in the Table 5.  

 

q : (1,1) and (2,2) with  

low AIC within 2 decimals in the Table 5. Either of 

best but since  BIC is 

p and q  are taken as 1 

for GARCH(1,1) has p-value <5% 

the null hypothesis stated 

no conditional heteroskedasticity in 

residuals and squared residuals  of 

of GARCH(1,1) are given in the 

residuals are < 5% level of 

which indicates no presence of 
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autocorrelations, however  the squared residuals indicate 

some time dependency in the series and except at lag 15 

where there are no autocorrelations.   

 

Table 6: LB test of residuals using GARCH(1,1) 

 
  

The time series plot of residuals in Figure 8 has a few 

peaks beyond the boundaries and it is exhibiting 

volatility clustering. The peaks of residuals match with 

the peaks of standard deviation plotted in Figure 9  

 
Figure 8 :  Residuals plot of GARCH process. 

 
Figure 9:  Standard deviation plot 

The standard deviation of  GARCH process indicates 

that there is a high volatility in the middle and at the end 

of the year. The QQ plot is shown Figure 10. The ACF 

of standardized residuals is shown in Figure 11. The 

ACF plot of squared residuals is shown in Figure 12. 

 
Figure 10: QQ plot of GARCH model 

The QQ plot of GARCH indicates heavy tail.  

  
Figure 11: ACF plot of standardized residuals. 

 

 
Figure 12: ACF plot of Squared Standardized Residuals 

 

The ACF of residuals in the Figure 11 shows there are 

peaks i.e. autocorrelations but within  ACF boundary.  In 

the case of Squared residuals plot shown in Figure 12, 

some of these peaks are reduced. 

The coefficients of GARCH(1,1) model are estimated 

using the ‘garchFit’ function. The coefficients estimated 

for GARCH(1,1) are shown in the Table 7.   

Table 7 Coefficients of GARCH(1,1) model 
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4.3 Forecasting of Variances 

 

The GARCH(1,1) with the estimated coefficients 

represented as : 

σ 
2

t   = 0.00265  + 0.3786  x
2

t-1 +0.3966 σ
2

t-1   

The  following R-Code uses the above coefficients  for 

GARCH predictions. 

 

The  output of  R-Code is   the Predicted 

shown in the Table 8. 

Table 8: Predicted values using GARCH(1,1) 

 

The forecasted standard deviation(SD) is plotted in 

Figure 13. The variance in SD is high in the initial lags, 

it is flat i.e. constant after  20 lags.  

Figure 13: SD Forecast Plot from GARCH predictions.

 

The Mean Error (ME) plot of forecast in Figure

shows that it is in the range of 1-3.5%. 

 

Figure 14: Mean Error of forecast 

 

with the estimated coefficients  is 

1             ….(8) 

uses the above coefficients  for 

 
ed  variances, 

 

is plotted in 

The variance in SD is high in the initial lags, 

 
: SD Forecast Plot from GARCH predictions. 

Figure 14 

 

It is observed that the standard deviation and mean error 

values are equal in the predictions. Let us combine 

ARMA and GARCH for conditional mean and 

conditional variances and predicted 

follows: 

The predicted values are shown in 

forecast plot is shown in Figure

deviation of forecast errors is shown in 

Mean Error Forecast is shown in Figure

 

Table 9: Predicted values using ARMA+GARCH(1,1)

Figure 15: Mean forecast of ARMA+GARCH

The standard deviation and mean error have different 

values at lower decimal i.e. 4
th

 decimal digit

The mean forecast values are varied up to lag 10 and 

became steady after that. In this also, at lower decimals 

the values are changing steadily. As substantiated in the 

section 3.2 where the predictions for short term is more 

accurate than that for long term

variances are also more accurate in the initial lags

It is observed that the standard deviation and mean error 

values are equal in the predictions. Let us combine 

ARMA and GARCH for conditional mean and 

predicted the values as 

 

The predicted values are shown in Table 9. The Mean 

Figure 15. The standard 

deviation of forecast errors is shown in Figure 16. The 

Figure 17. 

+GARCH(1,1) 

 

 
15: Mean forecast of ARMA+GARCH 

The standard deviation and mean error have different 

decimal digit onwards.   

The mean forecast values are varied up to lag 10 and 

In this also, at lower decimals 

As substantiated in the 

section 3.2 where the predictions for short term is more 

accurate than that for long term, the conditional 

variances are also more accurate in the initial lags. 
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Figure 16: Standard Deviation of Forecast 

 

 
Figure 17: Mean Error Forecast  

 

Thus, the predicted Electricity Demand based on the 

ARMA(1,1) along with the non-linear behavior of 

variances improved the accuracy of  forecast.  

 

5. Conclusion 

In this paper , the ARMA and GARCH models are used 

to  forecast  the Day-ahead electricity demand. The 

ARMA(1,1) model has given predictions of  Day-ahead  

electricity demand with 80-95%  confidence bounds for 

short durations. However the assumption of constant 

variance of residuals is  not true in reality for various 

reasons as: there are always variances  in any annual 

data it could be daily electricity load data , daily 

electricity prices, returns and risk profile in stock market 

etc. The residuals are tested for ARCH effects i.e. 

conditional heteroskedasticity using McLeod and Ljung-

Box tests. The GARCH(1,1) model is identified and 

estimated the coefficients to fit the model to the residuals 

and predicted the conditional variances. From the results 

it is concluded that it is always a good practice to test the 

volatility of  variances  or errors and standard deviations 

after fitting the linear  models to improve the accuracy of 

predictions. The nonlinear issues of variances/errors can 

be handled appropriately through  GARCH model  

which provide flexibility to coexist with the other 

models. The combination of ARMA and GARCH 

models  is giving  accurate forecasting in  high  volatility  

scenarios.  R-programming is well suited for modeling 

and forecasting of electricity demand in this case. There 

is further scope to extend  the model by considering 

larger sample  with 2 to 3 years observations and 

compare the accuracy of the predicted  electricity 

demand. 
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