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Abstract 

The authors propose approximate algorithms for solving 

the problem of the minimal vertex cover of arbitrary 

graphs and the problem of minimal cover on the basis of 

their reduction, respectively, to the problems of quadratic 

and nonlinear Boolean programming, their specificity 

allowing to construct algorithms with time complexity not 

exceeding O (mn
2
), where in the case of solving the 

problem of minimal vertex cover of arbitrary graphs n is 

the number of vertices in the graph, m is the number of 

edges in the graph, and in the case of solving the problem 

of minimal cover n is the number of columns in the 

Boolean matrix, m is the number of rows in Boolean 

matrix. 

Keywords: vertex covers in graph, the minimal cover, 

Boolean matrix, time complexity. 

1. Introduction 

Problem on the minimal vertex cover (MVCP) and 

problem on the minimal cover (MCP) have considerable 

value and widely applied in the theory of complex systems, 

computing systems and networks building [1] and in 

development of their software and mathematical support, 

and also for planning of resources distribution in GRID. 

Besides, MCP has wide application in GRID systems for 

diagnostics of systems and networks [1], in arrangement of 

service stations [1, 3], in information retrieval systems, for 

assigning of crews in transportation industry [1, 3, 5, 6], in 

designing of chips [6] and conveyor lines etc. 

Upon that, the basic requirement to solution 

algorithms for those problems is high efficiency of a 

solution and ensuring minimum possible errors of these 

solutions.  

  The problem of determination of independent 

maximum sets or vertex covers can be solved, for 

example, with consecutive search of independent sets 

with  

 

 

simultaneous check of each set on maximal (the last is 

executed by adding to investigated set of an additional 

vertex which does not belong to it, with subsequent  

clearing up whether the independence remains) and 

storing of maximum sets. However this mode becomes 

rather cumbersome with magnification of vertex number. 

Algorithms of Bron and Carbosh [1] are built on the basis 

of advancement of this procedure. As it is shown in study 

[3], the problem of a vertex cover is difficult to solve and 

effective algorithms of its solution for arbitrary networks 

are unknown. For bipartite graphs on the basis of Hopkroft 

and Carp algorithms (with postorder tree search) there are 

developed the methods [3] which allow finding a minimum 

vertex cover and maximum independent set of vertices in 

an arbitrary bipartite graph H = X, Y, E in time O 

((m+n) n ), where n = XY and m = E. Polynomial 

algorithms of stability number determination have been 

received for perfect graphs, i.e. those graphs for any 

generated subgraph of which the chromatic number is 

equal to clique number. The algorithm of stability number 

determination of a graph [5] is based on a method of 

ellipsoids and uses procedure of graph matrixes separating. 

However in terms of computing this algorithm has a 

number of the essential shortages which prevent its use in 

practice. As shown in study [5] it is practically impossible 

to receive a correct solution when number of vertices in a 

graph is more than 10. All known determined exact 

algorithms of MCP solution [1–4, 6, 7] have exponential 

complexity. 

It is necessary to note that application of known 

greedy algorithms of Greedy-Set-Cover type [8], as shown 

in [8–11], can give an error on the order of O (log n).        

P. Slavik [12] has shown that the error of greedy algorithm 

approximation for a problem solution on the minimal cover 

makes ln n – ln ln n + O (1). Other algorithms of this type 

[13] are built on the harmonic series analysis, 

c
i

H
k

i

k 
1

1 , where k is a potency of the set defining a 

cover, c is a some constant for which the estimations of 
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approximation [13] specifying magnitude of a constant c 

are received. Thus, the most comprehensible for the 

comparative analysis of available theoretical outcomes of 

greedy algorithms approximation efficiency is estimation 

O (log n) which is proportional to magnitude of the 

logarithm of an amount of columns (vertices) in matrix B. 

Thereat, these algorithms are hardly parallelized and 

therefore, their application as planning means in a 

distributed environment, for example, in GRID systems 

[2], is considered as inconvenient. 

The purpose of the study is development of a method 

having whenever possible minimum complexity and error 

for MVCP (for arbitrary graphs) and MCP solution. 

2. Problem statement and solution 

At first let’s consider formal characterization of 

the problem about a vertex cover in arbitrary graphs, for 

this purpose let’s introduce cone timept of disassembly and 

assembly of the graph from base elements. Base elements 

{li} of a graph G (Х, E) with set of vertices Х and set of 

edges Е are referred to as vertices of the graph {iХ} 

together with edges incident with them. Let’s say that base 

elements of the graph il and jl  can be united if they have 

common vertices or edges; then an association of two base 

components ji ll   will be referred by us to as a 

subgraph of the graph G received by association of the 

edges with the same name and vertices in base elements 

il and jl and junction of all vertices in an incorporated 

structure according to connections between vertices of the 

initial graph G. It is clear, that this operation is 

commutative, i.e. ijji llll  . Association of 

components is probable if there are common edges or 

vertices in united components. Let’s name procedure of 

removal of base components from a graph as disassembly 

of the graph G. If in the course of disassembly of the graph 

the base component il is deleted, let’s designate the 

remained subgraph as Gi, and if two components il and 

jl are deleted, let’s designate such a subgraph as Gij, etc. If 

a graph has n vertices, a number of base components of 

which the graph G consists is equal to n. For example, 

columns G shown on on fig. 1 consists of 5 vertices and 

has 5 base components. 

Obviously, it is possible to consider graph G as 

association of all components
il , i.e.

.
1


n

ilG 
 

Let's put in correspondence to each vertex in the graph a 

variable xi then each component il can be described in the 

form of product 
 iqmq

qi xx  where miq is a set of vertices 

adjacent to vertex i in a component 
il . If vertex i is 

included in a vertex cover, we will consider that a variable 

xi =0. Multiplication by xi = 0 in the product 
 iqmq

qi xx  

converts to zero all edges which are covered by the vertex i 

in a component il .  

Let’s consider the sum 

               ....21 



iqiqiq mq

qn

mq

q

mq

q xxxxxx              (1) 

If the subset of vertices {xi} forms a cover, then the sum 

(1) equals 0. As in each pair xi, xj one of variables for 

cover formation should equal 0, then after multiplication in 

(1) equalities xi xj + xi xj = xi xj will be correct equality and 

the relation (1) can be rewritten in the following form 

....
,

21 



Eji

ji

mq

qn

mq

q

mq

q xxxxxxxx
iqiqiq

 (2) 

Then the problem of minimum vertex cover definition can 

be formulated in the following form  

                                   ixmin                                      (3) 

when the following condition is satisfied in the form of 

equality  

0
,


Eji

ji xx .                               (4) 

The functional (3) means that we search for the 

minimum number of variables xi =0 that will convert 

equality (4) into identity, i.e. we have come to a problem 

of square programming. 

Taking into account (2), it is possible to rewrite 

problem (3) and (4) in the following form 

 

          ixmin                                 (5) 

 

when following restrictions are satisfied: 

01 
 iqmq

qxx ; 02 
 iqmq

qxx ;…, .0
 iqmq

qn xx                (6) 

The set of equations (6) can be easily made on the 

basis of base components of the graph, whereat the number 

of the equations will be equal to number of base 

components. For example, for the graph presented on            

fig. 1 the given set of equations will look like: 

         

        x1 x2 + x1 x3 + x1 x4= 0, 

        x2 x3 + x2 x4 + x2 x1= 0,   

        x4 x1 + x4 x2 + x4 x3= 0, 

             x5 x4= 0.                                                               (7) 
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Fig. 1 Graph G and its base components. 

 

For definition of the minimum vertex cover in the 

graph G on fig. 1, it is necessary to determine the minimal 

number of variables xi = 0 converting to identity a set of 

equations (7).  

In the study [2] it is shown that the following 

statement is correct. 

The statement. If a graph G has a suspended 

vertex i formed by an edge (i, j) the vertex j belongs to one 

of the minimum vertex covers in the graph G if there are 

some vertex covers in graph G, and to the minimum vertex 

cover of the graph G if there is one vertex cover in the 

graph. 

Presence of a suspended vertex in the graph 

means that we have at minimal one base component of the 

graph containing one edge, see fig. 1. The equation x5x4=0 

corresponds to the suspended vertex in (7) and therefore 

we should in (7) set x4=0, i.e. include 4-th vertex in a 

cover, thus the system will become:  

             x1x2 + x1x3 =0 

             x2x3 + x2x1=0.                             (8) 

 

Further it is clear that variables x1, x2 and x3 occur 

equally often in the remained equations; therefore any of 

them could be included in a cover, for example, if we set 

x2=0, we get x1 x3 =0, further we include either vertex 1, or 

3 in a cover, i.e. we have received two minimum covers, 

these are vertices {4, 2, 1} or {4, 2, 3}. Correctness of the 

solution is easy for checking up having enumerated all 

vertex covers of the graph G on fig. 1 using representation 

of the graph in the form of a Boolean function 

 f = (x1  x2) (x1  x3) (x1  x4) (x2  x3) (x2  x4) (x3  

x4) (x4  x5).              (9) 

Multiplying the variables contained in brackets and 

collecting like terms with use of an absorption rule, we will 

get the list of vertex covers of the graph 

   f = x1x2x4  x1x3x4  x2 x3 x4  x1x2x3x5,  

 

i.e. the graph G, fig. 1, has three minimum covers {4, 2, 

1}; {4, 2, 3} {1, 3, 4} which are intersected by set of 

vertices {1, 2, 3} corresponding to set of variables {x1, x2, 

x3} that occur equally often in the equations on some step 

of search for maximum number of the variables which 

zeroes corresponding pairs of items in the equations (8), 

but it has built only covers {4, 2, 1} and {4, 2, 3}.  

Let's introduce the following procedure of a problem (5, 6) 

solution.  

Procedure А1 

Step 1. We check whether there are the variables 

occurring one time in a set of equations; if there are such 

variables, the variables coupled with them will be equated 

to zero, and corresponding vertices will be brought into a 

cover, then the following step is performed; if there are no 

such variables, we pass to step 3. 

Step 2. We check in a set of equation whether all 

conjugate items are zeroed or not, if it is not, we go to step 

1, otherwise the algorithm stops, and the generated cover is 

minimum. 

Step 3. We find in a set of equations a variable 

which is more often encountered in conjugate products of a 

set of equations. If there are several such variables, then 

any of them is selected and equated to zero, and 

corresponding vertex is brought into a cover, and we go to 

step 2. 

Let's consider the problem an optimality of А1 

procedure work. For this purpose let’s consider three 

following cases: 

1) Let’s assume that on each step of procedure 

work there are variables occurring once, then with each 

step according to the statement 1 we connect to a cover the 

vertex which reliably belongs to the minimum vertex cover 

and therefore the cover obtained as a result of procedure 

А1 will be minimum.  

2) Let’s assume that the initial graph G has one 

minimum cover, and on each step (3) of procedure А1 work 

there is one variable which occurs most often in conjugate 

products of a set of equations. Let’s show that in this case 

we will obtain the minimum vertex cover too. Let in this 

case the procedure build a cover with a potency k, and let’s 

suppose that there is a cover with a potency k-1 in the 

graph G, but it is possible only in the event that there is a 

variable which occurs more often than the variables 

included in a cover with a potency k that contradicts the 

fact that at each step (3) of procedure А1 a vertex with 

maximum frequency of occurrence in conjugate products 

of a set of equations (6) was included in the cover. Hence, 

the cover received with the procedure in this case will be 

minimal too. 
3) Let’s assume that there are more than one 

minimum covers in the initial graph G. It means that during 

process of procedure А1 a situation occurs when at some 

step of its work it appears that a maximum number of 

variables which can be zeroed due to a choice of various 

variables {xi} is constant, i.e. it corresponds to that there 

are some minimum covers in the graph G which are either 

not intersected at all, or they are intersected on a subset of 

1 

2 

3 

4 5 

1 

2 3 4 

1l  

2 

1 4 3 

2l  
3 

1 4 2 

3l
 

4 

2 3 1 

4l  

5 

5 

4 

5l  

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 3, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 10

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

the vertices corresponding to variables {xi}. Unfortunately 

in a case when there are some nonintersecting covers, 

procedure А1 can lose an optimum solution, i.e. the 

procedure gives the approximate solution of a problem, 

and therefore it is of interest to estimate the error of its 

work. Thus, procedure А1 allows finding an approximate 

solution of the problem (5, 6) and consequently also of the 

problems (3, 4). The number of the equations in (5, 6) does 

not exceed n, and number of pairs of components in the 

equation does not exceed m. As in the course of procedure 

work we should review a set of equations no more than n 

times, time complexity of procedure work could not 

exceed O (mn
2
). 

Formalization and solution of MCP. The 

problem about the minimal cover can be formulated as a 

problem of linear Boolean programming [1, 7] which 

statement in a general view looks like: 

           min
1




n

j

jxL ,                 (10) 

at constraints                  

                     

    .1,0};1,0{

;,1i  ,1

1






j
x

m
n

j
j

x

ij

ij



       (11) 

The problem (10, 11) can be considered as a 

problem of minimum graph number definition in a 

Boolean matrix B which covers with units all the lines of 

the given matrix [2]. Let’s represent an arbitrary Boolean 

matrix in the form of a Boolean function f set in a 

conjunctive normal form (CNF) [2, 4] in which the 

disjunctive number is equal to number of lines in the 

matrix, and number of variables in every disjunction is 

equal to number of units in a line of matrix B. Then a 

problem on a minimal cover for an arbitrary matrix B set 

by some a Boolean function  

)...)...(...)(...( hdqtrskml XXXXXXXXXf   (12) 

could be considered as a problem of determination of the 

minimum set of variables {Xi=1}, at which Boolean 

function (12) is satisfiable. It is possible to write the 

statement in the following form 

}1{min i
i

X ,    (13) 

if the following conditions are satisfied: 

 .1)...)...(...)(...(  hdqtrskml XXXXXXXXX . (14) 

If we consider a two-value Boolean function we 

will obtain 

                                   }0{min i
i

X    (15) 

.0............  hdqtrskml XXXXXXXXX  . (16) 

 

From (15, 16) it follows, that the problem about the 

minimal cover can be considered as a problem of nonlinear 

Boolean programming consisting in determination of the 

minimal number of variables }0{ iX  zeroing the left part 

of the condition (16). The following statement is correct: if 

the variable 
qiX 

 occurs once in items, it is possible to 

suppose the variable equal to 1 in (16), i.e. the variable 

qiX 
 is not included into the minimum cover. Correctness 

of this statement is clear from statement of a problem (13, 

14). If variable 
qiX 
 in (14) occurs in disjuncts once, it 

means that all variables located in the same disjunction 

occur at minimal two or more times in others disjuncts, and 

if we suppose them equal to 1, they will also cover that 

disjunction where there is a variable
qiX 
 and some more 

disjuncts where they are present, and therefore the variable 

cannot belong to the minimum cover, and it is possible to 

suppose that the variable is equal to zero in (14). 

Accordingly, it should equal 1 in a two-value Boolean 

function, quadrat demonstrandum. It is necessary to note 

that if as a result an item appears in (16) consisting of one 

variable, the given variable should be included into the 

minimum cover, because if not, then the equality (16) will 

have never been satisfied. Using the property it is possible 

to offer the following procedure А2 similar to procedure А1 

for solution of the problem (15, 16). 

Procedure А2 

Step 1. Check if there are variables occurring 

once in items; if there are such variables, they are equated 

to 1, then go on to the next step. 

Step 2. Check if there are the items consisting of 

one variable; if there are such variables, they are equated 

to zero and brought into a cover; if there are no such 

variables, go on to the next step. 

Step 3. Check whether all items are zeroed or not; 

if there are such variables procedure stops as the minimum 

cover is generated, otherwise we go on to the next step. 

Step 4. We find a variable which is more often 

encountered among the remained items (if there are a 

number of them we select any), we suppose it equals zero 

and include it in a cover; then it is checked whether all 

items are zeroed or not. If there are such variables, 

procedure stops as the minimum cover is generated, 

otherwise we go to step 1. 

For example, let’s set the matrix B. 
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Let's present B in the form of a Boolean 

function: 
).)()()()(( 4332152653621 XXXXXXXXXXXXXf   

Two-value Boolean function will look like: 

 
4332152653621 XXXXXXXXXXXXXf  . (17) 

As the variable 4X is encountered one time in 

items, we suppose 14 X , upon that we have received an 

item with one variable
3X . Let’s suppose 03 X and 

include it in a cover after that we still had 

items 052621  XXXXX . We choose a variable which 

is most often encountered in items, it is
2X , let’s suppose 

02 X and include it in a cover. As upon that all items of a 

Boolean function (17) are zeroed, the cover generated of 

variables {
2X

3X } is minimum. 

Let's analyze an optimality of procedure А2 work. 

For this purpose let’s consider three following cases: 

1) Let’s suppose that there are items containing one 

variable on each procedure step (such situation is possible 

when disjuncts of a Boolean function of matrix B contain 

two variables, that is equivalent to a problem solution 

about the minimum vertex cover in arbitrary graphs) then 

according to the proven statement, on each step we connect 

to a cover a variable which is reliably belonging to the 

minimum cover and therefore the cover obtained as a result 

of procedure А2 work will be minimum. 

2) Let’s suppose that there is one minimum cover 

for matrix B and on each step (4) of procedure А2 work 

there is one variable which is more often encountered in 

products of a set of equations. Let’s show that in this case 

we will receive the minimum cover too. Let in this case the 

procedure has built a cover with potency k, and let 

suppose, that there is a cover with potency k-1 for a matrix 

B, but it is possible only in the event that there is a variable 

which is encountered more often than the variables 

included in a cover with a potency k that contradicts the 

fact that on each step (4) of procedure А2 a variable with 

maximum frequency of occurrence in items of a two-value 

Boolean function has been joined to the cover and, hence, 

the cover obtained through the procedure in this case will 

be minimum too. 

3) Let suppose that there is more than one minimum 

cover in a matrix B. It means that there is a situation in 

process of procedure А2 when on some step of its work it 

occurs that a maximum number of variables which can be 

zeroed due to a choice of various variables {Хi} is 

constant, i.e. it means that there are some minimum covers 

in B, and they either are not intersected at all, or 

intersected on a subset of variables {Хi}. As it is possible 

to execute a speculation presented in point 2 for each 

cover, it will mean that in this case as well the procedure 

А2 will build at minimal one of the minimum covers, but 

when covers are not intersected, as well as in a problem 

about a vertex cover, the optimum value loss is possible. 

Thus, procedure А2 allows determination of the 

approached solution of the problem (15, 16), and 

consequently the problem (13, 14) also. It is clear, that at 

number of variables not exceeding two in disjuncts of a 

Boolean function, the procedure А2 is actually degenerated 

to procedure А1. The number of items in (15, 16) does not 

exceed m, the number of variables in the item does not 

exceed n, and as in the course of procedure we should 

review items no more than n times, time complexity of 

procedure performance cannot exceed O (mn
2
). 

3. Experimental research of procedures А1 

and А2 performance 

To check accuracy of solution of a problem about a 

vertex cover on the basis of procedure А1, the exact 

algorithm of exponential complexity built on the basis of 

concepts of the rank approach [7, 14] was used as the 

reference. Dimension of the graph varied from 10 to 30 

vertices, graphs were generated with a various tightness of 

edges in the graph under the uniform law of distribution, 

not less than 100 realizations were generated for each 

dimension of the graph, and the error was measured. The 

average estimation of the time complexity of algorithm is 

carried out also; all values are received with a probability 

belief 0.95 for dimensions of graphs from 10 to 490 at 

various values of a tightness of edges in the graph. The 

diagrams of correspondence of average elementary 

operations number performed by the algorithm for 

different tightness of edges in the graph are shown on           

fig. 2. 

 1 2 3 4 5 6 

1 1 1 0 0 0 1 

2 0 0 1 0 1 1 

3 0 1 0 0 1 0 

4 1 1 1 0 0 0 

5 0 0 1 1 0 0 
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Fig. 2 Dependence of number of operations performed by the procedure 

А1 on the number of vertices for different tightness of edges in the 

graphs. 

 

Fig. 3 Dependence of probability of a problem solution by the procedure 

А1 for allowed time 5 ms at various values of tightness of edges in 

graphs. 

Fig. 3 shows correspondence of probability of a 

problem solution on the minimum vertex cover for allowed 

time 5 ms. It follows that the averaged time complexity of 

the algorithm does not exceed O (n
2
) and in the cases of 

allowed time of the solution equal to 5 ms, problems for 

graphs with number of vertices not exceeding 100 can be 

effectively solved.  

 

 

 

Fig. 4 Dependence of a relative error on number of edges in the graph at 

various numbers of vertices. 

 Fig. 4 shows dependence of an error of procedure 

А1 work on number of edges and vertices of the graph from 

which it is visible that magnitude of an error does not 

exceed 2.5 % on the average. Check on test examples of 

the big dimension has shown that there is a tendency to 

decreasing of magnitude of an error with magnification of 

dimension and a tightness of edges in the graph. On the 

diagrams mapping work of procedure А2 which is used for 

solving MCP (fig. 5 – fig. 8) the number of columns in 

matrix B is designated as n, and number of lines – as m. 

Fig. 5 shows dependence of number of elementary 

operations performed by procedure А2 with sizes of matrix 

B at various densities of filling by units of matrix B. Fig. 6 

represents dependence of probability of solution MCP by 

procedure А2 for the allowed times of their solution equal 

to 50 ms and 100 ms. It is clear from the diagram that 

procedure А2 has the averaged time complexity which does 

not exceed O (mn). Test examples of a solution of 

problems at n 600; m=400 have shown that the averaged 

time complexity did not exceed O (400mn). The analysis 

of an error of procedure А2 work (fig. 7, fig. 8) has shown 

that at densities of filling by units of matrix B more than 50 

% the error does not exceed 5 %. 

 

Fig. 5 Dependence of number of the operations performed by procedure 

А2 on dimension of matrix B. 
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Fig. 6 Dependence of probability of MCP solution by procedure А2 with 

an amount of columns in a matrix B at allowed times of MCP solution 

equal to 50 and 100 ms. 

 

Fig. 7 Dependence of a relative error of procedure А2 work on number of 

columns in a matrix B. 

 

Fig. 8 Dependence of an error of procedure А2 work on densities of units 

of matrix B. 

4. Conclusions 

Thus, the rough algorithms of MVCP solution are 

proposed in arbitrary graphs and MCP on the basis of their 

reduction to problems of square and nonlinear Boolean 

programming accordingly. Their specificity has allowed 

building algorithms with time complexity which does not 

exceed O (mn
2
) where in case of MVCP solution n is an 

amount of vertices in the graph, m is a number of edges in 

the graph, and in case of MCP solution n is a number of 

graphs in a matrix B, and m is a number of lines in matrix 

B. Upon that, the error of solution of these problems by 

procedures А1 and А2 does not exceed 2.5–5 % at tightness 

more or equal to 0.5, and they work with time complexity 

O (n
2
) for MVCP solution and O (mn) for solution MCP 

on the average that is very important at solution of 

resource distribution problems in modern GRID systems. It 

is clear from fig. 3 and fig. 6, that the proposed algorithms 

can be used for real time resource distribution planning [2, 

4] if allowed time of scheduling lays in a range 5 – 100 ms. 
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