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Abstract 

The starting time in the machine time scheduling problem will be 
assumed stochastic follows certain distribution. A hybrid 
algorithm combines the mutation operation with particle swarm 
optimization algorithm with constriction factor has been 
developed to find best starting time for each machine in each 
cycle when starting time follows normal distribution. 
Keywords: Machine Time Scheduling, Particle Swarm 
optimization, Mutation, Time Window, Normal Distribution. 
  

1. Introduction 

A great deal of research has been focused on solving 
scheduling problems. One of the most important 
scheduling problems is the Machine Time Scheduling 
Problem (MTSP). This problem was investigated in [16] 
as a parameterized version of the MTSP, which was 
defined in [10], with penalized earliness in starting and 
lateness in the completion of the operation. The authors in 
[16] applied the optimal choice concept which is given in 
[14] and some theoretical results from [15] to obtain the 
optimal values of the given parameters.  

In [3] the authors investigated two cycles MTSP and 
introduced an algorithm to find the optimal choice of 
parameters, which represent the earliest possible starting 
time for the second cycle. In [2] an algorithm was 
developed (MTSP Algorithm (MTSPA)) for multi-cycles 
MTSP which found the starting time for each machine in 
each cycle by using the max-separable technique. The 
processing times in the previous researches were 
deterministic. A generalization was introduced in [1] to 
overstep the cases at which an empty feasible set of 
solutions is described by the system.  
In [4] introduced an algorithm by using the PSO and GA 
to solve MTSP, and compared between PSO, GA and 
max-separable technique (using numerical example). The 
Authors found that PSO algorithm reach to the best 
solution than GA and max-separable technique. In [12] 

discusses how to solve the MTSP when the processing 
time for each machine is stochastic. To solve this problem, 
the Monte Carlo simulation is suggested to handle the 
given stochastic processing times. In this paper we will 
introduce an algorithm to find best starting time for each 
machine in each cycle when starting time is stochastic. We 
assumed that the starting time is random variable with 
follows normal distribution. The starting time bounded 
with time window, so when we reformulated this tome 
window we will keep on the randomness distribution for 
the starting time. We will develop a hybrid algorithm by 
using particle swarm optimization algorithm (with 
constriction factor) with the mutation operation to solve 
the machine time scheduling problem when starting time 
in stochastic case. 

2. Problem Formulation 
In machine time scheduling problem there are n 

machines, each machine carries out one operation j with 
processing time pj for },...,1{ nNj =∈ and the machines 

work in k cycles. Let jrx~  represent starting time of the jth 

machine in cycle r for all Nj∈ , },...,1{ kKr =∈ (k number 
of cycles) and is random variable with certain distribution. 
Machine j can start its work in cycle r only after the 
machines in a given set  ⊂)()( , jj NN N ( )( jN is the set 
of precedence machines) had finished their work in the (r-
1)th cycle, so we can define the starting time in the (r-1)th 
cycle as follows: 

KrNipxx jrjriNj
ir ∈∀∈∀+

∈
≥+ ,)(max~

)(1        (1) 

Assuming that the starting time xjr is constrained by a 
time interval [ljr, Ljr]  for each Nj∈ , Kr∈  and, then the 

set of feasible starting times jrx~  is described by the 

following system for each Kr∈ : 
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Assume also that for some echological reasons there 
are a given recommended time interval [a jr, bjr] , Ni∈∀ , 

Kr∈∀  so: 
    ],,[]~,~[ jrjrjjrjr bapxx ⊂+   (3) 
The violation of the Eq. (3) will be penalized by the 
following penalty function  
   Krxfxf jrjrNj

∈→=
∈

min)~(max)~(  (4) 

Where the penalty function in a certain cycle r is given by:   
Njpxfxfxf jrjrjrjrjrjrjr ∈∀+= }0),~(),~({max)~( )2()1(

Where )1(
jrf : Rà R is decreased continuous function such 

that )()1( jrjr af =0, 
 

And )2(
jrf : Rà R is increasing continuous function such 

that )()2(
jrjr bf =0  

To minimize the maximum penalty in each cycle r, we 
should solve the following problem: 

NjLxl
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tosubject
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3. Particle Swarm Optimization 
The PSO method is a member of wide category of 

Swarm Intelligence methods for solving the optimization 
problems. It is a population based search algorithm where 
each individual is referred to as particle and represents a 
candidate solution. Each particle in PSO flies through the 
search space with an adaptable velocity that is dynamically 
modified according to its own flying experience and also 
the flying experience of the other particles. Further, each 
particle has a memory and hence it is capable of 
remembering the best position in the search space ever 
visited by it. The position corresponding to the best fitness 
is known as pbest and the overall best out of all the 
particles in the population is called gbest [13].  

The modified velocity and position of each particle 
can be calculated using the current velocity and the 
distance from the pbestj to gbest as shown in the following 
formulas: 

)(**

)(***
)(

,,22

)(
,,11

)(
,

)1(
,

t
gjgj

t
gjgj

t
gj

t
gj

xgbestrc

xpbestrcvwv

−+

−+=+

  (6) 

)1(
,

)(
,

)1(
,

++ += t
gj

t
gj

t
gj vxx     (7) 

With j=1, 2, …,n and g=1, 2, …, m 
n =number of particles in a group; 
m = number of members in a particle; 
t = number of iterations (generations); 

)(
,
t
gjv =velocity of particle j at iteration t, 

w = inertia weight factor; 
c1, c2 = cognitive and social acceleration factors, 
respectively; 
r1, r2 = random numbers uniformly distributed in the range 
(0, 1); 

)(
,
t
gjx = current position of j at iteration t; 

pbestj = pbest of particle j; 
gbest = gbest of the group. 

 
The index of best particle among all of the particles in 

the group is represented by the gbest. In PSO, each particle 
moves in the search space with a velocity according to its 
own previous best solution and its group’s previous best 
solution. The velocity update in a PSO consists of three 
parts; namely momentum, cognitive and social parts. The 
balance among these parts determines the performance of 
a PSO algorithm. The parameters c1 & c2 determine the 
relative pull of pbest and gbest and the parameters r1 & r2 
help in stochastically varying these pulls [13]. [5] Showed 
that combining them by setting the inertia weight, χ , to 
the constriction factor, v, improved performance across a 
wide range of problems as follows: 
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In [6] propose a simple modification to the particle 
swarm algorithm in which, at each generation, a small 
number of particles are mutated and are allowed to hill 
climb. The mutation has the effect of randomly bouncing 
particles towards other parts of the search space, while the 
effect of hill-climbing is to greatly increase the effective 
size of the “target” region of interest around the global 
optimum. We provide results for a selection of well-known 
test functions, and demonstrate that our modification 
improves the ability of the swarm to find the global 
optimum. 

 [8] Presented a new mutation operator called the 
Systematic Mutation (SM) operator for enhancing the 
performance of Basic Particle Swarm Optimization 
(BPSO) algorithm. The SM operator unlike most of its 
contemporary mutation operators do not use the random 
probability distribution for perturbing the swarm 
population, but uses a quasi random Sobol sequence to 
find new solution vectors in the search domain. The 
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comparison of SM-PSO is made with BPSO and some 
other variants of PSO. The empirical results show that SM 
operator significantly improves the performance of PSO. 

4. Mutation 
GA maintains a set of candidate solutions called 

population and repeatedly modifies them. At each step, the 
GA selects individuals from the current population to be 
parents and uses them produce the children for the next 
generation. Candidate solutions are usually represented as 
strings of fixed length, called chromosomes. A fitness or 
objective function is used to reflect the goodness of each 
member of population [12]. Two operators in GA have 
been used to generate next generation called crossover and 
mutation.  

In mutation, a bit involves flipping it: changing a 0 to 
1 or vice versa. The parameter Pm (the mutation rate), 
gives the probability that a bit will be flipped. The bits of a 
string are independently mutated that is, the mutation of a 
bit does not affect the probability of mutation of other bits. 
For example, suppose all the strings in a population have 
converged to a 0 at a given position and the optimal 
solution has a 1 at that position. Then crossover cannot 
regenerate a 1 at that position, while a mutation could [9].  

5. Normal Distribution 
The normal distribution described in [7] as the most 

important one in all of probability and statistics. Many 
numerical populations have distribution that can be fit 
much closed by an appropriate normal curve Fig 1. A 
random variable X is said to have a normal distribution 
with parameter µ  and σ  where ∞<<∞− x  and 

0>σ  if the probability density function: 

∞<<∞−= −− xexf x )2/()( 22

2
1),;( σµ

σπ
σµ    (10) 

 

 

 

 

 
Fig. 1 Probability Density Function for Normal Distribution 

To compute )( bxap ≤≤  when x is normal random 
variable with parameter µ  andσ  , we must evaluate 

∫ −−
b

a

x dxe )2()( 22 /

2
1 σµ

σπ
   (11) 

None of the standard integration techniques can be 
used to evaluate previous expression. For 0=µ  and

1=σ , previous expression has been numerically 
evaluated and tabulated for certain values of a and b [7]. 
This table can also be used to compute probabilities for 
any other values of µ  and σ .The normal distribution 

with parameter 0=µ  and 1=σ  is called standard 
normal distribution. A random variable that has a standard 
normal distribution is called standard normal random 
variable and denoted by z: 

σ
µ−

=
xz     (12) 

With probability density function: 

∞<<∞−= − xezf z 2/2

2
1),;(
π

σµ  (13) 

So to find the values of x random variable with normal 
distribution with any parameter µ  and σ  by 

zx σµ +=  
Where z could be calculated without need to the stander 
normal tables with the expression, 

12 log2)2(cos RRZ −= π [11] where R1 and R2 are two 
independent random numbers between zero and one. 

From the standard normal probability table we found 
that about 95% of all values fall within 2 standard 
deviations of the mean, that is 

9544.0)22( =+≤≤− σµσµ xP  and about 99% all 
values fall within 3 standard deviations of the mean, that is

9974.0)33( =+≤≤− σµσµ xP . 
 

6. Solving stochastic MSTP by HPSOM-
MTSP algorithm 

Now, we will develop an algorithm to solve machine 
time scheduling problem where the starting time for each 
machine in each cycle is stochastic with certain normal 
distribution by using hybrid particle swarm optimization 
algorithm with construction factor. The new algorithm will 
be called HPSOM-SMTSP, follow the next steps: 

 
1- Boundaries Determination: 

If the machine starting time follows uniform 
distribution then the Lir and lir equal to the uniform 
boundaries. 

If the machine starting time follows normal 
distribution then 

KrniLl iriririririr ∈∈+=−= ,3,3 σµσµ
 
2- Reformulation: 

Each machine boundaries will be reformulate 
(calculate the new boundaries) based on its' successors 

f(x) 

x µ  
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machines boundaries. For each machine the new 
lower boundary called h and the new upper boundary 
called H.  

 
3- New Normal Parameters: 

If machine starting time normal distribution then 
we will find the new Krniirir ∈∈′′ ,,σµ by solving 
the following equations together: 

KrniH
h

iririr

iririr

∈∈′+′=

′−′=
,3

,3
σµ

σµ  

Note: we keep the shape of normality 
 
4- Initial iteration: 
 First, the particle defines as a set of starting times 
for the machines in all cycles. The particle is 
represented by D-dimensional, where D equal to N 
multiplies by K (where N number of machine and K 
number of cycles). The irptx~ is the starting time for 
machine i in cycle r in particle p, Qp ,..,2,1=  in 
iteration t, Tt ,..,2,1=  (where Q is number of particles 
in the swarm and T is number of iterations) which 
satisfy the constraints in (P). If irptx~ is normal 

distribution then iririrpt zx σµ ′+′=  where

12 log2)2(cos RRZ −= π . The xirpt must satisfy the 
second constrain which is

)~(max~
)1()( jptrjiNj

irpt pxx +≥
−∈

. Determine the pbestp 

which is the best position of particle p that make the 
best value of the objective function. Then determine 
the gbest which is the best particle that make the best 
value of the objective function in all iterations. 
 
5- Other iterations: 
 The next iteration created by modifying the 
velocity of each particle by the following equation: 

)}(**

)(***{
)(

,,22

)(
,,11

)(
,

)1(
,

t
gjgj

t
gjgj

t
gj

t
gj

xgbestrc

xpbestrcvwv

−+

−+=+ χ

.4,

42

2

21

2

<+=

−−−
=

ccccwhere

ccc
χ

 

Then the particle position will be update by the 
following equation: 
 )1()1(

~~
++ += tirpirpttirp vxx  

6- Mutation: 
The symbol A denoted that the number of particle 

will be mutated. And the symbol E is the number of 
members in the particle that will be mutated. If 

Aaxirat ∈  is normal distributed then the value of 
these members will be generated randomly based on 
new irir σµ ′′ , .  
7- Calculate the objective function then find the 

pbestp and gbest  
8- Repeat step 5 to step 7 until the T.  

 
HPSOM-SMTSP Algorithm:  
A1: If xirpt normal distribution then

KrniLl iriririririr ∈∈+=−= ,3,3 σµσµ  
A2: Reformulate the boundaries for each machine in each 

cycle as follows:   
N

ikik
iLH ∈∀=Put , Nj

jrjr lh ∈∀= ,  

))min(,(min
1 jirjUijrjr pHLH −=

+∈
 Where

1,2,...,1}:{ )( −=∈∈= krNjNiU i
j  

A3: Put t = 1. 
A4: Put p = 1.   
A5: Put r = 1. 
A6: Put i = 1. 
A7: If 1≠r  then )~(max

)1()( jptrjiNj
ir pxh +=

−∈
. 

A8: If irptx~ normal distribution then finds the new 

irir σµ ′′ , by solving the following equations together: 

 
KrniH

h

iririr

iririr

∈∈′+′=

′−′=
,3

,3
σµ

σµ  

then find zx iririrpt σµ ′+′=~ where 

12 log2)2(cos RRZ −= π else generate random 

number for irptx~  where irir Hxh ircp ≤≤ ~ . 
A9: If i <  n then i =  i +  1 go to A7. 
A10: If r < k then r =  r +  1 go to A6. 
A11: pbestp = f( irptx~ ) KrNi ,..,1,,..,1 =∃=∃ . 
A12: If p < Q then p = p + 1 go to A5. 
A13: find min(f(pbestp)) .,..,1 Qp =∃  
A14: 

minppbestgbest =  
A15: t =  t +  1. 
A16: Put p = 1. 

A17: 
)}(**

)(***{
)(

,,22

)(
,,11

)(
,

)1(
,

t
gjgj

t
gjgj

t
gj

t
gj
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xpbestrcvwv

−+
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.4,
42

2
212

<+=
−−−

= ccccwhere
ccc

χ  

A18: irpttirpirpt vxx += − )1(
~~ . 

A19: if irptx~  is not feasible then go to A21. 
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A20: if f( irptx~ ) >  f( 1
~

−irptx ) then pbestp = irptx~  

A21: If p < Q then p = p + 1 go to A17. 
A22: if f (gbest) > f (

minppbest ) then
minppbestgbest = . 

A23: f (gbest t) < f (gbest t-1) then go to 16. 
A24: Generate random number A between 1 and Q. 
A25: a=1. 
A26: Put e = 1. 
A27: Generate random number m between 1 and D.  
A28: Put r =trunc(m/N) + 1. 
A29: Put i = rem(m/N). 
A30: if xirat normal distributed then zx iririrat σµ ′+′=~

where 12 log2)2(cos RRZ −= π  else generate 

random number for irptx~  where irir Hxh ircp ≤≤ ~

. 
A31: if e < E then e = e + 1 go to A27. 
A32: if a < A then a = a + 1 go to A28. 
A33: if f (gbest) > f ( tirx 1

~ ) then gbest = tirx 1
~ . 

A34: If t < T then go to A15. 
A35: The solution is gbest.  
trunc(): function return the integer part of divided 

operation. 
rem(): function return the remaining value divided 

operation. 
 

7. Numerical Example 
Consider a problem with the following values of 

parameters n = 5 so  N = {1,2,3,4,5}, and processing time  
p = {2,4.5,6.25,4,5}. The starting time for machine 2 in 
cycle 1 belongs to normal distribution with 

3/2,2 == σµ  and machine 3 in cycle 2 belongs to 
normal distribution with 25.0,6 == σµ . Other machines 
in other cycles belong to uniform distribution with 
boundaries as follows: 

Table 1: Machine Boundaries 

Cycle (r) r = 1 r = 2 r = 3 

sir 
i=1,2,…,5 

{1,-
,0,3,1} {4,6,-,5,6} {10,11,12,9,11.5} 

Sir 
i=1,2,…,5 

{5,-
,3,5,6} 

{6.5,7,-
,7.25,6.5} {13,12,15,12,14} 

 
Respect to machine which belongs to normal distribution 
we will find a boundaries for starting times for these 
machines to can reformulate all machines boundaries 
based on the their predecessors. So, most values for 
starting time x21 of machine 2 in cycle 1 (99% of values) 
fall in l21, L21. These boundaries calculated as follows: 

212121212121 3,3 σµσµ +=−= Ll  then l21 = 0, L21 = 4. 
 
So, most values for starting time x32 of machine 3 in cycle 
2 (99% of values) fall in l32, L32. These boundaries 
calculated as follows: 

323232323232 3,3 σµσµ +=−= Ll  then l32 = 6, L32 = 7.5. 

Table 2: Calculated Machine Boundaries 

Cycle (r) r = 1 r = 2 r = 3 
lir 
i=1,2,…,5 {1,0,0,3,1} {4,6,6,5,6} {10,11,12,9,11.5} 

Lir 
i=1,2,…,5 {5,4,3,5,6} {6.5,7,7.5,7.25,6.5} {13,12,15,12,14} 

Table 3: Machine Relations 

i 1 2 3 4 5 

N(i) {1,2,3} {2} {2,3} {1,4,5} {1,3,5} 

Uj {1,4,5} {1,2,3} {1,3,5} {4} {4,5} 

 
Assume further that 

Njbpxxaxf jrjrjrjrjrjrjr ∈∀−+−= )0,,(max)(  

Where a j, bj are for all Nj∈ given constants so that we 
have in our case for all Nj∈  

jrjrjrjrjrjrjrjrjrjr bpxpxfxaxf −+=+−= )()( )2()1(

 
Input values of a ir and bir for each cycle 
  

Table 4: Machines Penalty Boundaries 

Cycle (r) r=1 r=2 r=3 
air 
i=1,2,…,5 {1,1,1,3,3} {5,7,6,5,7} {11,12,11,10,13} 

bir 
i=1,2,…,5 {4,6,8,5,5} {8,9,8,6.5,8} {13,15,14,12,14} 

 
After Reformulation of the problem will obtain the 

following new boundary vectors: 

Table 5: Reformulated Machine Boundaries 

Cycle (r) r = 1 r = 2 r = 3 

hir 
i=1,2,…,5 {1,0,0,3,1} {4,6,6,5,6} {10,11,12,9, 

11.5} 

Hir 
i=1,2,…,5 

{4.5,2,0.25,3.25, 
1.5} 

{6.5,7,7.5,7.25, 
6.5} 

{13,12,15,12, 
14} 
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 We will keep on the normality shape of x21 and 
x32. So, we will calculate the new σµ, called σµ ′′, based 
on the new boundaries, as follows: 

3/11,
32,30

3,3

2121

21212121

212121212121

=′=′
′+′=′−′=

′+′=′−′=

σµ
σµσµ

σµσµ

andso

Hh
 

25.075.6,
35.7,36
3,3

3232

32323232

323232323232

=′=′
′+′=′−′=

′+′=′−′=

σµ
σµσµ
σµσµ

andso

Hh
 

 
We applied the HPSOM-SMTSP algorithm on this 

example. We found that, the best parameters for the 
algorithm are swarm size equal 80, the value of w equal 
0.5 and the value c1 and c2 equal 1.7. We run the program 
100 trials. The mutation probability equal 10% of particle 
size and the number of particles which will be mutated 
equal 20% of swarm size. We found that the best value of 
averageF equal 32.90 after 300 iterations as we show in 
the Fig. 2. 

 

 
Fig. 2 The solution of HPSOM-SMTSP 

 
The best starting time for each machine in each cycle is: 
 

 M1 M2 M3 M4 M5 
C1 1.7 1 0.12 3 1.44 
C2 6.37 6 6.37 7 6.43 
C3 12.62 11.24 12.62 11.43 12.62 

8. Conclusion 
 An algorithm has been developed for solving machine 

time scheduling problem when starting time is random 
and follows certain distribution. We assumed that the 
starting time follows normal distribution. The new 
algorithm combines the mutation operation with 
particle swarm optimization algorithm with 
construction factor to develop a hybrid algorithm.  
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