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Abstract
Due to the benefits of Raman amplifier for Long-Haul 
UW-WDM Optical Communications Systems, we 
interest in this paper to investigate the parameters 
affecting on Raman gain and bandwidth, and also we 
are analyzed four and eight Raman pumping of 
special pump power and pumping wavelengths to 
show the effect of this parameters on gain and 
bandwidth. The model equations are numerically 
handled and processed via specially cast software 
(Matlab). The gain is computed over the spectral 
optical wavelengths (1.45µm ≤ λ signal ≤ 1.65µm). 
Keywords: Raman amplifier, Distributed multi-pumping 
Raman amplifier (DMRA), Raman gain, pumping power and 
wavelength, ultra wide-wavelength division multiplexing (UW-
WDM). 

1. Introduction 

There are mainly three reasons for the interest in 
Raman amplifier. First its capability to provide 
distributed amplification second is the possibility to 
provide gain at any wavelength by selecting 
appropriate pump wavelengths, and the third is the 
fact that the amplification bandwidth may be 
broadened simply by adding more pump 
wavelengths. An important feature of the Raman 
amplification process is that amplification is 
achievable at any wavelength by choosing the pump 
wavelength in accordance with the signal wavelength 
[1]. 

The term distributed amplification refers to the 
method of cancellation of the intrinsic fiber loss. the 
loss in distributed amplifiers is counterbalanced at 
every point along the transmission fiber in an ideal 
distributed amplifier [1]. 

In the late eighties, Raman amplification was 
perceived as the way to overcome attenuation in 
optical fibers and research on long haul transmission 
was carried out demonstrating transmission over 
several thousand kilometers using distributed Raman 
amplification. However, with the development and 

commercialization of erbium-doped fiber amplifiers 
through the early nineties, work on distributed Raman 
amplifiers was abandoned because of its poor pump 
power efficiency when compared to erbium-doped 
fiber amplifiers (EDFAs). In the mid-nineties, high-
power pump lasers became available and in the 
years following, several system experiments 
demonstrated the benefits of distributed Raman 
amplification including repeater-less undersea 
experiments, high-capacity terrestrial as well as 
submarine systems transmission experiments, 
shorter span single-channel systems including 320 
Gbit/s pseudo linear transmissions, and in soliton 
systems [1]. 
distributed Raman amplifiers improved noise 
performance because of amplification at any 
wavelength controlled simply by selecting the 
appropriate pump wavelength, extended bandwidth 
achieved by using multiple pumps when compared to 
amplification using EDFAs, and finally control of the 
spectral shape of the gain and the noise figure, which 
may be adjusted by combining and controlling the 
wavelength and power among multiple pumps [1]. 
The use of distributed Raman amplification has 
already been demonstrated in ultra-high-capacity 
optical communication systems as the enabling 
method to transmit 40Gbit/s per channel in a 
wavelength-division-multiplexed transmission system 
[1]. 
 Ultra long-haul (ULH) and ultrahigh-capacity (UHC) 
dense wavelength-division-multiplexed (DWDM) 
optical communication systems have recently 
attracted considerable attention due to their potential 
to greatly reduce bit-transport costs while addressing 
the ever-increasing demand for voice and data traffic. 
A flexible all-Raman pumping scheme, including 
forward-and backward-pumping of the fiber span and 
backward pumping of the dispersion compensation 
modules (DCMs), can be used as a common platform 
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yielding excellent system performance for 10 Gb/s 
ULH and 40Gb/s signals and ULH transmission over 
2500 km in a hybrid configuration [2]. It was shown 
how that amplification scheme provides enough gain 
to handle discrete losses from optical add/drop 
multiplexers (OADMs) inserted along the 
transmission. A comprehensive experimental 
investigation of an all-Raman ultra wide signal-band 
transmission system for both 10 and 40 Gb/s line 
rates was done [2]. 
The most important feature of Raman-gain spectrum 
is that the peak-gain wavelength only depends on the 
pump wavelength. The peak-gain wavelength for 
each pump still exists although the total gain 
spectrum of a multi-pumped fiber Raman amplifier 
(FRA) is the comprehensive result of all pumps [3].   
Two critical merits of distributed Raman amplifier 
(DRA) are the low noise and the arbitrary gain band. 
Experiments show that 2.5 Gb/s system could be up 
graded to 10Gb/s by only adding a Raman amplifier 
[4]. 
Raman amplifiers pumped at multiple wavelengths 
draw significant attention in high-speed long-haul 
WDM transmission, for example, because of their 
wideband flat-gain profile (100nm with 12 channel-
WDM pumping) and superior signal-to-noise ratio 
(SNR) performance. However, they require numbers 
of high power pump lasers to achieve high-gain and 
high bandwidth which makes it very expensive at the 
initial deployment stage where the WDM bandwidth is 
not in full use. While modular band-by-band and high 
upgrade like EDFA-based WDM systems reduces 
system introduction cost very much, in which either C 
or L-band EDFAs can be added later when a new 
bandwidth becomes needed. However, such modular 
addition of amplifiers is not possible for a DRA in 
which a transmission fiber is shared as common-gain 
medium. Neglecting nonlinear pump interaction or 
saturation WDM-pumped Raman amplifier gain can 
be approximated as the linear superposition of 
Raman gains induced by each pump laser [5].  
Currently, RFAs are the only silica-fiber based 
technology that can extend the amplification 
bandwidth to the S band while providing performance 
and reliability comparable with those of EDFAs. 
However, the noise figure remains high compared to 
that of the C and L bands [6].  
In this paper, the parameters affecting on Raman 
gain coefficient and Raman differential gain and 

bandwidth are processed through a numerical 
solution of the mathematical model. 
 
2. Mathematical Model 

In the present section, we cast the basic model 
and the governing equation to process N-Raman 
amplifiers in a cascaded form of special pumping 
powers Pr1, Pr2, Pr3, Pr4, ……., PrN and corresponding 
pumping wavelengths λr1, λr2, λr3, λr4, ……., λrN. The 
map of δ-g is as shown in Fig. 1, where δ is the 
Raman shift and g is the Raman differential gain 
coefficient; both were cast based on [7-11] as: 

ߜ ൌ
௦ߣ െ ߣ

ߣ௦ߣ
ൈ 10ସ , ܿ݉ିଵ                                      ሺ1ሻ 

 

Figure 1 Gain, g, of multi-pump Raman amplifier. 

 
The map of δ–g shown in Fig. 1 describes the 

basic model. This section depends on the position of 
the gain of each amplifier with wavelength, where the 
gain of each amplifier consists of three parts (three 
equations). A special software program is used to 
indicate the position of δo,i or λo,i and studying the 
total gain of the amplifiers. In this case, the basic 
model depends on using more than one amplifier 
which is put in a cascaded form to increase the 
bandwidth of the amplifier to multiplexing more 
signals in the transmission system. The overall 
amplifier bandwidth increases and the gain flatness 
improved depend on the position of each amplifier 
corresponding to other amplifiers. This is achieved by 
more trials of changing of δo,i or λ o,i for each 
amplifier.  

The general equations representing the Raman 
gain in the three regions are respectively [11]. 
݃ଵ, ൌ ݃

ߜ
440

      ,     0  ߜ  440                          ሺ2ሻ 
 

Where 
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Where ݃ ൌ 7.4 ൈ 10ିଵସ ݉/ܹ and 
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And 
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∆λ = λ2 – λ1 = 15 nm = (fixed value) 
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With 
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With 1 cm-1 = 30 GHz [12], where λo,i indicates the 
offset wavelength and λr,i indicates the pumping 
wavelength of each amplifier. These wavelengths 
are then used to indicate δo,i for each amplifier. 
 
݃ଶ, ൌ ݃    ,       ߜଵ,  ߜ   ଶ,                       ሺ12ሻߜ
 
Where, ݃ ൌ 7.4 ൈ 10ିଵସ ݉/ܹ is the differential 
Raman gain constant (of pure SiO2 at λ = 1.34 µm), 
and 
 

ଵ.ߜ ൌ
ଵ,ߣ െ .ߣ

,ߣଵ,ߣ
ൈ 10ସ , ܿ݉ିଵ                        ሺ13ሻ 

 

ଶ.ߜ ൌ
ଶ,ߣ െ .ߣ

,ߣଶ,ߣ
ൈ 10ସ , ܿ݉ିଵ                        ሺ14ሻ 

 
And 
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∆λ = λ2 – λ1 = 16 nm = (fixed value)  
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ଵߣ

1 െ ଵߣ0.044
ൈ 10ସ ,  ሺ16ሻ                      ݉ߤ

 
Where, λr is Raman pump wavelength and λo ≥ 
1.35um. 

The shift δo,i is the Raman shift that indicates the 
position of each amplifier. By changing this position, 
the total bandwidth and the flatness of the amplifier 
are changed. We are interested in obtaining a large 
bandwidth with flatness by more trials of changing δo.i 
or λo,i. In this case, one uses δ > δr  or λ > λr and δo ≥ 
δr or λo ≥ λr, where λr is Raman pump wavelength. 
Raman differential gain constant, g, and the effective 
core area, A, are defined as [8]: 
 

݃ ൌ 1.34 ൈ 10ି ൈ ݃
1  ߂80

ߣ
                    ሺ17ሻ 

 
ܣ ൌ

ߨ
2

ሺ ௦ܹ
ଶ  ܹ
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Where 
 

ܹ ൌ
ߣ0.21

√∆
ൌ

ଵ݊ߣ0.3

ܰ
 ,                                    ሺ19ሻ 

 
Where, λr is the pump wavelength, Ws and Wr are the 
mode field radii of two light waves coupled with each 
other with W=Ws at λ= λs and W=Wr at λ= λr and ∆ is 
the relative refractive index difference, n1 is refractive 
index of the core and NA is the numerical aperture. 
 
 

Neglecting the cross coupling among the signal 
channels, one has the differential equation governing 
the signal propagation for N-channels Raman 
pumping [9]: 
 

ݏ݀
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flatness than in case 1, because of number of 
optical amplifiers is large. 
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