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Abstract 
In this research Homogeneous and Heterogeneous networks will 

be analyzed using parallel processing technique for highly 

sophisticated research problem. During the analysis sample 

networks will be considered and QoS parameters will be 

observed using simulation for end-to-end services. 

Analysis of the wireless LAN system is carried out and its 

efficiency is measured compared to the wired systems, for the 

purpose of designing and implementing the parallel processing 

techniques used to solve general purpose engineering problems. 

The basic purpose for this research is to provide improved QoS 

in networks for research and academic learning. 

 

Keywords: Wired and Wireless, Parallel Simulation, Finite 

Element Method, Rotating Mixing Flow, Non-Newtonian Fluids. 

1. Introduction 

In recent years, parallel computation has become 

increasingly more important for solving large-scale 

computational fluid dynamics problems, which arise in 

many areas of science and engineering involving both 

compressible and incompressible flow regimes. Particular 

interests are in incompressible complex flows of non-

Newtonian fluids, of immediate relevance to the 

processing industries, associated with electromagnetic, 

electrostatic, polymer, foods, cosmetics, oil products and 

etc. The mathematical modelling of such flows, typically, 

generates complex three-dimensional systems of partial 

differential equations of mixed-type. Common 

discretisation approaches adopts, such as finite difference, 

finite element, finite volume or spectral element 

formulations, to transform these systems from differential 

to algebraic form, generating large numbers of degrees-of-

freedom. Over the preceding decade, with the 

advancement of computer hardware and developments in 

sophisticated numerical algorithms, it has become easier 

to solve complex flows, albeit of limited size. To make 

satisfactory progress in this area often fine resolution 

meshes are required, that may also involve adaptive 

meshing. This places practical limitations upon the range 

and scope of the problems that may be tackled in terms of 

size, necessitating a shift from a sequential to a parallel 

mode of computation. 

 

Parallel computation may be viewed in a distributed 

manner, where memory and processors are distinct, or in 

a combined form where memory is shared. The 

distributed model involves sending and receiving 

messages and configuring a processor network (e.g. 

Master/Slave). Over the last few years there has been an 

increase in the availability of software to perform such 

message passing. Recent advancements in parallel 

computing different message passing protocols have been 

developed, such as Network Linda (LINDA), Message 

Passing Interface (MPI), Parallel Virtual Machine (PVM) 

and many more. These protocols have given impetus to 

the design of parallel algorithms to solve very large 

tedious and time consuming problems. Present study, 

following the study of [1 and 2], PVM version 3.4.4 is 

adopted for using a Master/Slave configuration.  

 

In the solution of complex flows, inverting and resolving 

linear systems of equations constitutes a large proportion 

of CPU time overhead. The nature of the problem to be 

solved may be coupled, leading to large system matrices 

or alternatively, decoupled which may be handled 

iteratively. Some examples of using PVM for parallelising 

numerical codes are described in [1, 2]. 
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2. Problem Definition 

Here the problem investigated, is two-dimensional mixing 

flows of Newtonian fluids, of relevance to the food 

industry such as occurs in dough kneading. Such flows 

are rotating, driven by the rotation of the outer containing 

cylindrical-shaped vessel. The two stirrers are securely-

held in place by being attached to the lid of the vessel. In 

reality, within the industrial process, the lid of the vessel 

would rotate with stirrer attached with a double stirrers, 

an eccentric configuration is adopted. 

 

The problem is analysed for rotating flow with stationary 

stirrers in rotating cylindrical vessel, the numerical 

predictions are compared against the results obtained in 

previous investigations [1, 2]. 

 

   
 

Fig. 1:  Domain of interest and finite element meshes [Baloch] 

 

Domain and finite element mesh for the problem involved 

is displayed in Fig. 1. In this investigation two 

consecutive refined meshes are used to demonstrate 

scalability of the parallel performance. For first mesh the 

total number of elements, nodes and degrees-of-freedom 

are 3840, 7840 and 17680 respectively. However, for 

second mesh these parameters are four times [6]. 

 

To provide a well-posed specification for each flow 

problem, it is necessary to prescribe appropriate initial 

and boundary conditions. A quiescent initial state 

inaugurates the simulations. Boundary conditions are 

taken as follows. For stationary stirrers the fluid stick to 

the solid surfaces, so that the components of velocity 

vanish on the solid inner stirrers sections of the boundary 

(vr = vθ = 0) [6]. 

3. Parallelisation Strategy 

For any fixed mesh, the performance of these parallel 

implementations are presented demonstrating 

monotonically increasing speed-up and monotonically 

decreasing efficiency with increasing number of domains 

(processors). Running with a fixed number of processors 

illustrates the increase in speed-up and efficiency with an 

increasing number of mesh elements.  

 

Parallelisation has been achieved using the PVM. For 

parallel computations, PVM version 3.4.3 developed at 

Oak Ridge National Laboratory has been employed as 

message passing mechanism. PVM supports programs 

written in both C/C++ and FORTRAN by providing a 

library of low-level communication routines. 

 

For parallel computation, both [1, 2] have used PVM as 

the message passing mechanism in master/slave style. 

Shared memory on DEC-alpha clusters was used by [1] 

and distributed memory was used by [2] on Intel Linux. In 

present investigation the hardware platform consists of 

heterogeneous network systems involving a number of 

workstations. Initially, wired cluster was designed 

through three Intel processors one Intel Pentium–IV 1.7 

GHz, 256 MB memory as master processor and two, one 

Intel Centrino 512 MB memory and one Intel Centrino 

core 2 Duo with 1GB memory, as slave processor. The 

same network cluster was also used for wireless adhoc 

network. These workstations communicate through a fast 

100 Mbps Ethernet network for wired network and 802.11 

b/g for wireless network cluster. 

 

The parallelisation strategies and associated test results 

are applicable to a wide range of CFD applications. One 

of the major areas of this research can be that of 

mathematical modelling and simulation. Another area is 

that of wireless sensor networks were a cluster of sensors 

are utilised to collect data of physical nature, such as 

environment monitoring of remote systems. Modelling the 

behaviour of human body or its parts is also a major issue 

and with the use of modern day technology as well as 

methods such as parallel processing, systems can be 

designed to solve hard problems. 

 

3.1  Domain decomposition 
 

The domain decomposition method embodies 

(incorporates/includes) large potential for parallelisation 

of finite element methods. In this approach, the domain of 

interest is partitioned into smaller sub-domains of desired 

size according to the specification of the available 

processors. The overall computational load may be equi-

partitioned and assigned uniformly among the available 

processors, resulting in a uniform balancing of 

computational load [6].  

 

The inter-processor communications can considerably 

influence the overall efficiency. In this coarse granularity 

implementation, each sub-domain is assigned to a 

processor that computes simultaneously the corresponding 

subsection of the sub-domain, independently. Such a 
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configuration would yield optimal performance when 

there is no communication amongst the processors [6]. 

 

One of the key issues being addressed in parallel 

computing these days is load balancing. At this stage, 

issues of dynamic load balancing are yet to be 

investigated. Here, static uniform load distribution is 

ensured, irrespective of processor speed, using a Recursive 

Spectral Bisection method. This, with proper granularity 

of parallelism, enables us to handle synchronisation of 

processes, sending and receiving messages, and 

distributing data efficiently. Finite element algorithm is 

inherently suitable for parallelisation through a variety of 

paradigms [6]. 

 

Focusing on the paradigm of domain decomposition, as 

finite element meshes are structured, adopting a domain 

decomposition approach, the meshes are partitioned into a 

number of equal-sized sub-domains according to the 

number of processors available. On each processor, 

calculations are performed simultaneously for each sub-

domain over a set of slave processors. On the periphery of 

each sub-domain, shared boundary nodes are computed by 

a central master (control) processor. The master processor 

is used to gather the contributions from shared nodes that 

result from sub-domain processes on each processor, and 

subsequently, redistribute the combined information to 

each processor [6]. 

4. Numerical Scheme 

The present study adopts a so called semi-implicit Taylor-

Galerkin/Pressure-Correction finite element time-

marching scheme that has been developed and refined 

over the last two decades. This scheme, initially 

implemented sequentially, is appropriate for the 

simulation of incompressible isothermal Newtonian, fibre 

suspension, generalised inelastic and viscoelastic flows 

(Townsend and Webster [1], Carew et al. [2], Baloch and 

Webster [3], Baloch et al. [4] and Matallah et al.  [5]). 

Parallel implementations of this algorithm are described 

in (Grant et al. [1998] and Baloch et al. [6] and [7]). 

 

This scheme is based on a fractional-step formulation that 

involves discretisation, initially in the temporal domain, 

by adopting a Taylor series expansion in time and a 

pressure-correction operator-split, to build a second-order 

time-stepping scheme. This scheme was made available 

for researcher. For ready reference parallel algorithm is 

presented in Table 1 [6].  

5. Results and Discussion 

In this section, parallel results are presented in the form 

of speed-up and loss of efficiency. Fig. 2 shows the 

decomposition of domains: 
 

                                                                          
 

Fig. 2: Decomposed Domains 

 
Table 1: Parallel Taylor-Galerkin Algorithm 

 

Master processor: 

Enter pre-processing information; 

Setup Parallel Virtual Machines; Input domain decomposition 

information from RSB; 

Spawn process on slave processors; Input numerical, fluid and 

algorithm parameters; 

Inputs mesh information, and initial and boundary conditions; 

Decompose domain and reorder node numbering after band-

width reduction, and pack all information; 

Distribute information to slave processors after rearranging the 

information; 

Synchronise the machines and hand-shake with slave 

processors; 

While not converged 

Stage 1a  

Receive: right-hand-side for stage-1a from each slave processor;  

Redistribute: after combining;  

Loop over Jacobi iteration; Solve stage-1a for interfacing nodes;  

Stage 1b 

Receive: right-hand-side from each slave processor for stage-1b; 

Redistribute: after combining; 

Loop over Jacobi iteration; Solve stage-1bfor interfacing nodes; 

Stage 2 

Build: right-hand-side for interfacing nodes on stage-2; 

Solve stage-2 for pressure difference using Choleski on 

interfacing nodes; 

Stage 3 

Receive: right-hand-side from each slave processor for stage-3; 

Redistribute: after combining; 

Loop over Jacobi iteration; Solve stage-3 for interfacing nodes; 

Compute error norm for interfacing nodes; Test for convergence; 

Synchronise: the machines and hand-shake with slave 

processors; 

Receive: results from slave processors; Print combine final 

result; 
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Slave processor: 

Receive: pre-processing information from master processor and 

unpack all information; 

Synchronise: the machines and hand-shake with other 

processors; 

While not converged 

Stage 1a  

Build: right-hand-side for stage-1a for internal nodes; 

Send: only information of interfacing nodes to master processor; 

Receive: combined information from master processor; 

Loop over Jacobi iteration; Solve stage-1a for internal nodes;   

Stage 1b 

Build: right-hand-side for stage-1b for internal nodes; 

Send: only information of interfacing nodes to master processor; 

Receive: combined information from master processor; 

Loop over Jacobi iteration; Solve stage-1b for internal nodes; 

Stage 2 

Build: right-hand-side for stage-2 for internal nodes; 

Solve stage-2 for pressure difference using Choleski on internal 

nodes; 

Stage 3 

Build: right-hand-side for stage-3 for internal nodes; 

Send: only information of interfacing nodes to master processor; 

Loop over Jacobi iteration; Solve stage-3 for internal nodes; 

Compute error norm for internal nodes, send information of 

interfacing nodes to master; 

Synchronise: the machines and hand-shake with master 

processor; 

Send: result to master processor; 

 

5.1  Speed-up and Efficiency 

 

Numerical computed results are presented for the 

performance of the parallel TGPC scheme by measuring 

the speed-up factor and efficiency, defined as 

n

s
n

T

T
S  ,

 
n

Sn
n  , where Ts is the CPU time in seconds (s) for 

sequential algorithm and Tn is the CPU time for the 

parallel algorithm for number of processors (n), while Sn 

is the total speed-up factor and ηn is the total efficiency for 

the parallel computation. CPU time Tn of parallel 

computation can be decomposed into computation time 

(Tcomp) and communication (Tcomm). Timing accords to the 

total job run-time, inclusive of the input-output and 

communication latency. For a fixed mesh with an 

increasing number of partitions, the cost of 

communication increases and this decreases the total 

efficiency of computation. The computation on a fixed 

number of domains and upon increasing the size of 

problem (mesh) increases the over-all efficiency [6]. 

 

In Table 2, timings for systems comprising of the above 

network clusters is reported. These results are cross-

checked on other heterogeneous networks. 

 
Table 2:  Computation Time 

 

 

The row 2 and 3 of this table, it is observed that by 

doubling the number of processors and degrees of freedom 

will give the same order of computation time. This is true 

also if we extrapolate the time from row 1, taking the size 

of problem to be half that in row 2. This demonstrates the 

scalability of our parallel algorithm. In parallel 

computation, better scalability depends upon ideal speed-

up, whilst speed-up depends on problem size [6]. 

 

5.2  Scalability  

 

A parallel algorithm is said to be scalable if the 

computation time remains unchanged when the total 

number of degrees-of-freedom is increased simultaneously 

with an increase in the same ratio, as the number of slave 

processors. Heterogeneous network combination is 

constructed to show scalability. To establish two, four and 

eight slave processor heterogeneous networks, with equal 

numbers of Intel processors windows workstations are 

taken in each case [6].  

 

5.3  CPU Speedup and efficiency 

 
Table 3:  CPU Speed-up of Heterogeneous Cluster 

 

Number of 

Processors 
Wired Cluster 

Wireless 

Cluster 

1 1.00 1.00 

2 1.92 1.90 

4 3.60 3.52 

 

The given table 3 CPU’s speedup is shown as the number 

of processors are increased (for both wired and wireless 

clusters) and the result is shown in the Fig. 3. 
 

S. 

# 

Processor

s 
Elements Nodes DOF 

Time (secs) 

Wired Wireless 

1 2 3840 7840 17680 1440 1350 

2 4 15360 31220 70280 5130 4710 

3 8 61440 62120 155460 10260 7830 
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Fig. 4:  Graph of CPU Speed-up of Heterogeneous Cluster 

 

As the number of processors are increased, the 

computation time decreases, hence, the speed up of the 

network is increased. 

 
Table 4: Efficiency of Heterogeneous Cluster 

 

Number of 

Processors 
Wired Cluster 

Wireless 

Cluster 

1 1.00 1.00 

2 0.96 0.95 

4 0.90 0.88 

 

The given table 4 shows, efficiency of the cluster as the 

number of processors are increased and the result is also 

mapped in fig. 4. 
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Fig. 4:  Graph showing efficiency of Heterogeneous cluster 

 

Efficiency may decrease if the same size problem is 

decomposed to much smaller parts, thus, increasing the 

communication over-head of the network. 

6. Conclusions 

A problems solving cost on a parallel heterogeneous 

cluster is the product of overall parallel runtime and the 

number of processing nodes that are used. Cost can also 

reflect the sum of the time that each processing node 

spends in solving the problem. Efficiency is also 

expressed in terms of, the ratio of the execution time of 

the fastest known sequential algorithm for solving a 

problem to the cost of solving the same problem on a 

number of p processing nodes. The cost of solving a 

problem on a single processing node is the execution time 

of the fastest known sequential algorithm. A parallel 

system is cost-optimal if the cost of solving a problem on 

a parallel node has the same asymptotic growth as a 

function of the input size as the fastest-known sequential 

algorithm on a single processing node. Since efficiency is 

the ratio of sequential cost to parallel cost, a cost-optimal 

parallel system has an efficiency of η (1) [8]. 

 

The efficiency of the parallel wireless heterogeneous 

networked system depends on the problem size, number of 

processors and the distance/media between the processing 

nodes. 

 

In other words: Increasing partitions/processors will 

increase the cost of the communication and decrease the 

total efficiency of the computation. Thus, load balancing 

very essential. If the size of the problem is increased, but 

the number of processors remain constant, the processing 

time will increase compared to communication time; 

therefore increasing efficiency. Communication time 

depends on the type of network, its media, data rate and 

distance. Moving the processing nodes at a longer 

distance will also increase the communication time, thus, 

a reduction in efficiency of the network.  
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