

Wired and Wireless Parallel Simulation of Fluid Flow Problem

on Heterogeneous Network Cluster

Fariha Quratulain Baloch,

SE Development Switching, PTCL, Hyderabad, Sindh, Pakistan

Mahera Erum Baloch

Institute of Computer Engineering, University of Duisburg-Essen, Campus Duisburg, Germany

Abstract
In this research Homogeneous and Heterogeneous networks will

be analyzed using parallel processing technique for highly

sophisticated research problem. During the analysis sample

networks will be considered and QoS parameters will be

observed using simulation for end-to-end services.

Analysis of the wireless LAN system is carried out and its

efficiency is measured compared to the wired systems, for the

purpose of designing and implementing the parallel processing

techniques used to solve general purpose engineering problems.

The basic purpose for this research is to provide improved QoS

in networks for research and academic learning.

Keywords: Wired and Wireless, Parallel Simulation, Finite

Element Method, Rotating Mixing Flow, Non-Newtonian Fluids.

1. Introduction

In recent years, parallel computation has become

increasingly more important for solving large-scale

computational fluid dynamics problems, which arise in

many areas of science and engineering involving both

compressible and incompressible flow regimes. Particular

interests are in incompressible complex flows of non-

Newtonian fluids, of immediate relevance to the

processing industries, associated with electromagnetic,

electrostatic, polymer, foods, cosmetics, oil products and

etc. The mathematical modelling of such flows, typically,

generates complex three-dimensional systems of partial

differential equations of mixed-type. Common

discretisation approaches adopts, such as finite difference,

finite element, finite volume or spectral element

formulations, to transform these systems from differential

to algebraic form, generating large numbers of degrees-of-

freedom. Over the preceding decade, with the

advancement of computer hardware and developments in

sophisticated numerical algorithms, it has become easier

to solve complex flows, albeit of limited size. To make

satisfactory progress in this area often fine resolution

meshes are required, that may also involve adaptive

meshing. This places practical limitations upon the range

and scope of the problems that may be tackled in terms of

size, necessitating a shift from a sequential to a parallel

mode of computation.

Parallel computation may be viewed in a distributed

manner, where memory and processors are distinct, or in

a combined form where memory is shared. The

distributed model involves sending and receiving

messages and configuring a processor network (e.g.

Master/Slave). Over the last few years there has been an

increase in the availability of software to perform such

message passing. Recent advancements in parallel

computing different message passing protocols have been

developed, such as Network Linda (LINDA), Message

Passing Interface (MPI), Parallel Virtual Machine (PVM)

and many more. These protocols have given impetus to

the design of parallel algorithms to solve very large

tedious and time consuming problems. Present study,

following the study of [1 and 2], PVM version 3.4.4 is

adopted for using a Master/Slave configuration.

In the solution of complex flows, inverting and resolving

linear systems of equations constitutes a large proportion

of CPU time overhead. The nature of the problem to be

solved may be coupled, leading to large system matrices

or alternatively, decoupled which may be handled

iteratively. Some examples of using PVM for parallelising

numerical codes are described in [1, 2].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 81

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2. Problem Definition

Here the problem investigated, is two-dimensional mixing

flows of Newtonian fluids, of relevance to the food

industry such as occurs in dough kneading. Such flows

are rotating, driven by the rotation of the outer containing

cylindrical-shaped vessel. The two stirrers are securely-

held in place by being attached to the lid of the vessel. In

reality, within the industrial process, the lid of the vessel

would rotate with stirrer attached with a double stirrers,

an eccentric configuration is adopted.

The problem is analysed for rotating flow with stationary

stirrers in rotating cylindrical vessel, the numerical

predictions are compared against the results obtained in

previous investigations [1, 2].

Fig. 1: Domain of interest and finite element meshes [Baloch]

Domain and finite element mesh for the problem involved

is displayed in Fig. 1. In this investigation two

consecutive refined meshes are used to demonstrate

scalability of the parallel performance. For first mesh the

total number of elements, nodes and degrees-of-freedom

are 3840, 7840 and 17680 respectively. However, for

second mesh these parameters are four times [6].

To provide a well-posed specification for each flow

problem, it is necessary to prescribe appropriate initial

and boundary conditions. A quiescent initial state

inaugurates the simulations. Boundary conditions are

taken as follows. For stationary stirrers the fluid stick to

the solid surfaces, so that the components of velocity

vanish on the solid inner stirrers sections of the boundary

(vr = vθ = 0) [6].

3. Parallelisation Strategy

For any fixed mesh, the performance of these parallel

implementations are presented demonstrating

monotonically increasing speed-up and monotonically

decreasing efficiency with increasing number of domains

(processors). Running with a fixed number of processors

illustrates the increase in speed-up and efficiency with an

increasing number of mesh elements.

Parallelisation has been achieved using the PVM. For

parallel computations, PVM version 3.4.3 developed at

Oak Ridge National Laboratory has been employed as

message passing mechanism. PVM supports programs

written in both C/C++ and FORTRAN by providing a

library of low-level communication routines.

For parallel computation, both [1, 2] have used PVM as

the message passing mechanism in master/slave style.

Shared memory on DEC-alpha clusters was used by [1]

and distributed memory was used by [2] on Intel Linux. In

present investigation the hardware platform consists of

heterogeneous network systems involving a number of

workstations. Initially, wired cluster was designed

through three Intel processors one Intel Pentium–IV 1.7

GHz, 256 MB memory as master processor and two, one

Intel Centrino 512 MB memory and one Intel Centrino

core 2 Duo with 1GB memory, as slave processor. The

same network cluster was also used for wireless adhoc

network. These workstations communicate through a fast

100 Mbps Ethernet network for wired network and 802.11

b/g for wireless network cluster.

The parallelisation strategies and associated test results

are applicable to a wide range of CFD applications. One

of the major areas of this research can be that of

mathematical modelling and simulation. Another area is

that of wireless sensor networks were a cluster of sensors

are utilised to collect data of physical nature, such as

environment monitoring of remote systems. Modelling the

behaviour of human body or its parts is also a major issue

and with the use of modern day technology as well as

methods such as parallel processing, systems can be

designed to solve hard problems.

3.1 Domain decomposition

The domain decomposition method embodies

(incorporates/includes) large potential for parallelisation

of finite element methods. In this approach, the domain of

interest is partitioned into smaller sub-domains of desired

size according to the specification of the available

processors. The overall computational load may be equi-

partitioned and assigned uniformly among the available

processors, resulting in a uniform balancing of

computational load [6].

The inter-processor communications can considerably

influence the overall efficiency. In this coarse granularity

implementation, each sub-domain is assigned to a

processor that computes simultaneously the corresponding

subsection of the sub-domain, independently. Such a

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 82

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

configuration would yield optimal performance when

there is no communication amongst the processors [6].

One of the key issues being addressed in parallel

computing these days is load balancing. At this stage,

issues of dynamic load balancing are yet to be

investigated. Here, static uniform load distribution is

ensured, irrespective of processor speed, using a Recursive

Spectral Bisection method. This, with proper granularity

of parallelism, enables us to handle synchronisation of

processes, sending and receiving messages, and

distributing data efficiently. Finite element algorithm is

inherently suitable for parallelisation through a variety of

paradigms [6].

Focusing on the paradigm of domain decomposition, as

finite element meshes are structured, adopting a domain

decomposition approach, the meshes are partitioned into a

number of equal-sized sub-domains according to the

number of processors available. On each processor,

calculations are performed simultaneously for each sub-

domain over a set of slave processors. On the periphery of

each sub-domain, shared boundary nodes are computed by

a central master (control) processor. The master processor

is used to gather the contributions from shared nodes that

result from sub-domain processes on each processor, and

subsequently, redistribute the combined information to

each processor [6].

4. Numerical Scheme

The present study adopts a so called semi-implicit Taylor-

Galerkin/Pressure-Correction finite element time-

marching scheme that has been developed and refined

over the last two decades. This scheme, initially

implemented sequentially, is appropriate for the

simulation of incompressible isothermal Newtonian, fibre

suspension, generalised inelastic and viscoelastic flows

(Townsend and Webster [1], Carew et al. [2], Baloch and

Webster [3], Baloch et al. [4] and Matallah et al. [5]).

Parallel implementations of this algorithm are described

in (Grant et al. [1998] and Baloch et al. [6] and [7]).

This scheme is based on a fractional-step formulation that

involves discretisation, initially in the temporal domain,

by adopting a Taylor series expansion in time and a

pressure-correction operator-split, to build a second-order

time-stepping scheme. This scheme was made available

for researcher. For ready reference parallel algorithm is

presented in Table 1 [6].

5. Results and Discussion

In this section, parallel results are presented in the form

of speed-up and loss of efficiency. Fig. 2 shows the

decomposition of domains:

Fig. 2: Decomposed Domains

Table 1: Parallel Taylor-Galerkin Algorithm

Master processor:

Enter pre-processing information;

Setup Parallel Virtual Machines; Input domain decomposition

information from RSB;

Spawn process on slave processors; Input numerical, fluid and

algorithm parameters;

Inputs mesh information, and initial and boundary conditions;

Decompose domain and reorder node numbering after band-

width reduction, and pack all information;

Distribute information to slave processors after rearranging the

information;

Synchronise the machines and hand-shake with slave

processors;

While not converged

Stage 1a

Receive: right-hand-side for stage-1a from each slave processor;

Redistribute: after combining;

Loop over Jacobi iteration; Solve stage-1a for interfacing nodes;

Stage 1b

Receive: right-hand-side from each slave processor for stage-1b;

Redistribute: after combining;

Loop over Jacobi iteration; Solve stage-1bfor interfacing nodes;

Stage 2

Build: right-hand-side for interfacing nodes on stage-2;

Solve stage-2 for pressure difference using Choleski on

interfacing nodes;

Stage 3

Receive: right-hand-side from each slave processor for stage-3;

Redistribute: after combining;

Loop over Jacobi iteration; Solve stage-3 for interfacing nodes;

Compute error norm for interfacing nodes; Test for convergence;

Synchronise: the machines and hand-shake with slave

processors;

Receive: results from slave processors; Print combine final

result;

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 83

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Slave processor:

Receive: pre-processing information from master processor and

unpack all information;

Synchronise: the machines and hand-shake with other

processors;

While not converged

Stage 1a

Build: right-hand-side for stage-1a for internal nodes;

Send: only information of interfacing nodes to master processor;

Receive: combined information from master processor;

Loop over Jacobi iteration; Solve stage-1a for internal nodes;

Stage 1b

Build: right-hand-side for stage-1b for internal nodes;

Send: only information of interfacing nodes to master processor;

Receive: combined information from master processor;

Loop over Jacobi iteration; Solve stage-1b for internal nodes;

Stage 2

Build: right-hand-side for stage-2 for internal nodes;

Solve stage-2 for pressure difference using Choleski on internal

nodes;

Stage 3

Build: right-hand-side for stage-3 for internal nodes;

Send: only information of interfacing nodes to master processor;

Loop over Jacobi iteration; Solve stage-3 for internal nodes;

Compute error norm for internal nodes, send information of

interfacing nodes to master;

Synchronise: the machines and hand-shake with master

processor;

Send: result to master processor;

5.1 Speed-up and Efficiency

Numerical computed results are presented for the

performance of the parallel TGPC scheme by measuring

the speed-up factor and efficiency, defined as

n

s
n

T

T
S ,

n

Sn
n , where Ts is the CPU time in seconds (s) for

sequential algorithm and Tn is the CPU time for the

parallel algorithm for number of processors (n), while Sn

is the total speed-up factor and ηn is the total efficiency for

the parallel computation. CPU time Tn of parallel

computation can be decomposed into computation time

(Tcomp) and communication (Tcomm). Timing accords to the

total job run-time, inclusive of the input-output and

communication latency. For a fixed mesh with an

increasing number of partitions, the cost of

communication increases and this decreases the total

efficiency of computation. The computation on a fixed

number of domains and upon increasing the size of

problem (mesh) increases the over-all efficiency [6].

In Table 2, timings for systems comprising of the above

network clusters is reported. These results are cross-

checked on other heterogeneous networks.

Table 2: Computation Time

The row 2 and 3 of this table, it is observed that by

doubling the number of processors and degrees of freedom

will give the same order of computation time. This is true

also if we extrapolate the time from row 1, taking the size

of problem to be half that in row 2. This demonstrates the

scalability of our parallel algorithm. In parallel

computation, better scalability depends upon ideal speed-

up, whilst speed-up depends on problem size [6].

5.2 Scalability

A parallel algorithm is said to be scalable if the

computation time remains unchanged when the total

number of degrees-of-freedom is increased simultaneously

with an increase in the same ratio, as the number of slave

processors. Heterogeneous network combination is

constructed to show scalability. To establish two, four and

eight slave processor heterogeneous networks, with equal

numbers of Intel processors windows workstations are

taken in each case [6].

5.3 CPU Speedup and efficiency

Table 3: CPU Speed-up of Heterogeneous Cluster

Number of

Processors
Wired Cluster

Wireless

Cluster

1 1.00 1.00

2 1.92 1.90

4 3.60 3.52

The given table 3 CPU’s speedup is shown as the number

of processors are increased (for both wired and wireless

clusters) and the result is shown in the Fig. 3.

S.

Processor

s
Elements Nodes DOF

Time (secs)

Wired Wireless

1 2 3840 7840 17680 1440 1350

2 4 15360 31220 70280 5130 4710

3 8 61440 62120 155460 10260 7830

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 84

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

1.00

1.90

3.52

1.00

1.92

3.60

0.00

1.00

2.00

3.00

4.00

0.00

1.00

2.00

3.00

4.00

1 2 4

Sp
e

e
d

 u
p

Number of Processors

CPU Speed up of Heterogeneous Cluster

Wireless Cluster

Wired Cluster

Fig. 4: Graph of CPU Speed-up of Heterogeneous Cluster

As the number of processors are increased, the

computation time decreases, hence, the speed up of the

network is increased.

Table 4: Efficiency of Heterogeneous Cluster

Number of

Processors
Wired Cluster

Wireless

Cluster

1 1.00 1.00

2 0.96 0.95

4 0.90 0.88

The given table 4 shows, efficiency of the cluster as the

number of processors are increased and the result is also

mapped in fig. 4.

0.80

0.85

0.90

0.95

1.00

1.05

1 2 4

Ef
fi

ci
e

n
cy

Number of Processors

Efficiency of Heterogeneous Cluster

Wired Cluster

Wireless Cluster

Fig. 4: Graph showing efficiency of Heterogeneous cluster

Efficiency may decrease if the same size problem is

decomposed to much smaller parts, thus, increasing the

communication over-head of the network.

6. Conclusions

A problems solving cost on a parallel heterogeneous

cluster is the product of overall parallel runtime and the

number of processing nodes that are used. Cost can also

reflect the sum of the time that each processing node

spends in solving the problem. Efficiency is also

expressed in terms of, the ratio of the execution time of

the fastest known sequential algorithm for solving a

problem to the cost of solving the same problem on a

number of p processing nodes. The cost of solving a

problem on a single processing node is the execution time

of the fastest known sequential algorithm. A parallel

system is cost-optimal if the cost of solving a problem on

a parallel node has the same asymptotic growth as a

function of the input size as the fastest-known sequential

algorithm on a single processing node. Since efficiency is

the ratio of sequential cost to parallel cost, a cost-optimal

parallel system has an efficiency of η (1) [8].

The efficiency of the parallel wireless heterogeneous

networked system depends on the problem size, number of

processors and the distance/media between the processing

nodes.

In other words: Increasing partitions/processors will

increase the cost of the communication and decrease the

total efficiency of the computation. Thus, load balancing

very essential. If the size of the problem is increased, but

the number of processors remain constant, the processing

time will increase compared to communication time;

therefore increasing efficiency. Communication time

depends on the type of network, its media, data rate and

distance. Moving the processing nodes at a longer

distance will also increase the communication time, thus,

a reduction in efficiency of the network.

Acknowledgments

Authors greatly acknowledge the Mehran University of

Engineering and Technology, Jamshoro for providing

computing facilities and Professor A. Baloch for his

valuable guidance.

References
[1] Baloch, A., Grant, P. W. and Webster, M. F.,

“Homogeneous/Heterogeneous Distributed Cluster

Computation of Two and Three-Dimensional Viscoelastic

Flows”, Int. J. Numer. Meth. Fluids, 40, 1347-1363, 2000.

[2] Baloch, A., Grant, P. W. and Webster, M. F., “Parallel

Computation of Two-Dimensional Rotational Flows of the

Viscoelastic Fluids in Cylindrical Vessel”, Int. J. Comp.

Aided Eng. and Software, Eng. Comput., 19(7), 820-853,

2002.

[3] Townsend, P. and Webster, M. F., “An Algorithm for the

Three-dimensional Transient Simulation of Non-Newtonian

Fluid flows”, in: G. Pande, J. Middleton (Eds.), Proc. Int.

Conf. Num. Meth. Eng.: Theory and Applications,

NUMETA, Nijhoff, Dordrecht, pp. T12/1–11, 1987.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 85

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[4] Carew, E. O., Townsend, P. and Webster, M. F., “Taylor-

Petrov-Galerkin algorithm for Viscoelastic flow”, J. Non-

Newtonian Fluid Mech., 50, 253–287, 1994.

[5] Baloch, A. and Webster, M. F., “A Computer Simulation of

Complex Flows of Fibre Suspensions”, Int. J. Computers

and Fluids, 24(2), 135–151, 1995.

[6] Baloch, A., Townsend, P. and Webster, M. F., “On the

highly elastic flows”, J. Non-Newtonian Fluid Mech. 59,

111–128, 1995.

[7] Matallah, H., Townsend, P. and Webster, M. F., “Recover

and stress-splitting schemes for Viscoelastic flows”, J. Non-

Newtonian Fluid Mech., 75, 139–166, 1998.

[8] Grama, A., Gupta, A., Karypis, G., and Kumar, V.,

Introduction to Parallel Computing (2nd edn). Addison-

Wesley, Harlow, UK, 2003.

Fariha Quratulain Baloch graduated in Telecommunication

Engineering in 2006 and did her M. Eng. in Communication Systems

and Networks in 2008 from Mehran University of Engineering and

Technology, Jamshoro, Sindh, Pakistan. She is currently working as

a Senior Engineer at PTCL, Pakistan.

Mahera Erum Baloch graduated in Computer Systems Engineering

in 2008 and received her Master’s degree in Communication

Systems & Networks from Mehran University of Engineering &

Technology, Jamshoro, Pakistan in 2011. She is currently studying

towards a PhD degree in Computer Engineering at the University of

Duisburg-Essen, Germany. Her research interests include

Distributed & Parallel Computing, Performance Analysis & Evaluation

techniques, Computer Supported Collaborative Work, & Artificial

Intelligence.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 86

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

