

DiagrammatizationDiagrammatizationDiagrammatizationDiagrammatization of theof theof theof the Transmission Control ProtocolTransmission Control ProtocolTransmission Control ProtocolTransmission Control Protocol

Sabah Al-Fedaghi

 Computer Engineering Department, Kuwait University
P.O. Box 5969 Safat 13060 Kuwait

Abstract

With the wide spread of Internet services, developers and users
need a greater understanding of the technology of networking.
Acquiring a clear understanding of communication protocols is
an important step in understanding how a network functions;
however, many protocols are complicated, and explaining them
can be demanding. In addition, protocols are often explained in
terms of traffic analysis and oriented toward technical staff and
those already familiar with network protocols. This paper aims at
proposing a diagrammatic methodology to represent protocols in
general, with a focus on the Transmission Control Protocol and
Secure Sockets Layer in particular. The purpose is to facilitate
understanding of protocols for learning and communication
purposes. The methodology is based on the notion of flow of
“primitive” things in a system with six stages: creation, release,
transfer, arrival, acceptance, and processing. Though the method
presents a basic description of protocols without in-depth
analysis of all aspects and mechanisms, the resultant conceptual
description is a systematic specification that utilizes a few basic
notions that assist in illustrating functionality and support
comprehension.

Keywords: conceptual model, Transmission Control Protocol,
Secure Sockets Layer, protocol specification, flowthing model.

1. Introduction

With the increasing trend to sharing of hardware,
resources, and data along with the wide spread of Internet
services, developers and users need greater understanding
of the technology of networking. Networking is a crucial
and sensitive factor in effective usage of information
technology. Because of the importance of this technology
for making networking decisions, e.g., structural,
operational, purchasing, management, …, a critical need
has developed for understanding computer networks at all
levels by users, managers, developers, designers, and
others.

However, it is not required to know everything. Most users
might never completely understand intricacies of
networking and how its aspects such as security are
organized; nevertheless, providing some basic knowledge
can help immensely. This level of understanding can be
supported best by conceptual descriptions.

Protocols play a crucial role in today's communication
world. Communication protocols provide traffic control
that facilitates communication among computers on a
network. Acquiring a clear understanding of protocols is
an important step in understanding how a network
functions.

According to Lahdenmäki [1], “Many data
communications protocols are complicated and explaining
them can be demanding.” Most current methods of
explaining protocols focus on traffic analysis and are
oriented toward technical staff and those already familiar
with network protocols.

In this paper we focus on a certain level of the network
stack. Protocols work as a layered communication system
as in the TCP/IP model, which consists of the four layers
link (device driver and interface card), network (e.g., IP
protocols), transport (e.g., the TCP protocol), and
application (includes FTP and DNS) [2, 3, 4, 5]. The
transport protocol, and especially its representative TCP, is
at the center of our attention. “It is important to understand
TCP if one is to understand the historic, current and future
architecture of the Internet protocols. Most applications on
the Internet make use of TCP, relying upon its mechanisms
that ensure safe delivery of data across an unreliable IP
layer below” [6]. According to Lacković et al. [7],

The concept of the transport protocol in most cases
gives a student a vague picture that is difficult to
comprehend. This is caused by a logical end-to-end
service in a connectionless environment like Internet.

The most common method of describing TCP (and, in
general, communication protocols) is to explain its
mechanisms and characteristics verbally and in pictures or
diagrams.

This approach is usually characterized by the lack of
comprehension. On the other hand almost every student
has his own image of the Internet and its protocols
acquired from his experience as an Internet user. This
image has little or no theoretical background. [7]

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 264

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Another reason to facilitate understanding of data
communication protocols is the issue of network security.
With the widespread use of the Internet, computer network
security has become an important aspect of its operation
[8]. An understanding of protocols in general, especially
security protocol, is now a necessity when using the
Internet.

This paper aims at proposing a diagrammatic
methodology to represent protocols in general, and TCP
and SSL in particular. It is based on the notion of flow of
“primitive” things in a system with six stages: creation,
release, transfer, arrival, acceptance, and processing. The
resultant conceptual description is a systematic
specification that utilizes a few basic notions that assist in
illustrating functionality and support comprehension. The
method represents a basic description of TCP without an
in-depth analysis of all aspects and mechanisms of the
protocol; nevertheless, it is suitable to use to describe TCP
to any level of detail.

To make this paper self-contained, the materials in the
following section are summarized from a series of papers
that have applied the model in several application areas
[9–11].

2. Flowthing Model

The Flowthing Model (FM) is a uniform method for
representing things that flow, called flowthings. Flow in
FM refers to the exclusive (i.e., being in one and only one)
transformation among six states (also called stages) of
transfer, process, create, release, arrive, and accept (see
Fig. 1). All other states are not generic states. For example,
we may have stored created flowthings, stored processed
flowthings, stored received flowthings, etc. Flowthings can
be released but not transferred (e.g., the channel is down),
or arrived but not accepted, … We will use Receive as a
combined stage of Arrive and Accept whenever
appropriate, i.e., whenever arriving flowthings are always
accepted. The fundamental elements of FM are as follows:
Flowthing: A thing (e.g., information, material, money,
shuttle, good) that has the capability of being created,
released, transferred, arrived, accepted, and processed
while flowing within and between systems.

A flow system (referred to as flowsystem), as depicted in
Fig. 1, comprises the internal flows of a system with the six
stages and transactions among them.
Spheres and subspheres: Spheres and subspheres are the
environments of the flowthing, such as a transistor, a
battery, and a wire, which form the sphere of an electrical
current, the flowthing.
Triggering: Triggering is a transformation (denoted by a
dashed arrow) from one flow to another, e.g., flow of
electricity triggers the flow of air.

3. Example

Many issues must be addressed in the area of
communication protocols, especially the type of protocol
used, its initialization, termination, the size of transmitted
messages, errors, and damaged transmission. A simple
example is the flow control in the so-called Stop-and-Wait
protocol (see [12, 13]). It messages are called frames. It
works as follows (see Fig. 2) [13]:
- The receiver sends an acknowledgment when a frame is
received;
- Upon sending a frame, the sender waits for an
acknowledgment, then sends another frame.
Fig. 3 shows the corresponding FM representation of this
scenario.

 Release

Transfer Process Receive Transfer Frame

Create Release Transfer ACK

Time

Process Receive Transfe
r

Frame

Create

Sender

Receiver

ACK

Reset

Set

same
(previous)

frame
first frame

next frame
Create

Out?

1 3

7

8

9

10

2

4

5

6
12

11

Fig. 3 FM representation of the Stop-and-Wait protocol

Time limit

Frame 0

Frame 1

Frame 1

Frame 2

ACK

ACK
 Time limit

Frame 0

Frame 1

Frame 2

Frame lost

ACK

ACK

Acknowledgment lost

Fig. 2 Stop-and-Wait protocol

Fig. 1 Flowsystem

Create

 Release Transfer

Process Accept Arrive

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 265

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In Fig. 3, there are two spheres: Sender and Receiver. The
sender has three subspheres: Frame, ACK, and Time. The
receiver has two subspheres: Frame, and ACK. First, the
sender is triggered to create (circle 1 in the figure) a first
frame that is released (2) and flows to the receiver (3).
Transferring a frame from the sender triggers setting the
waiting time (4) for an acknowledgment. In the frame
flowsystem of the receiver, the arriving frame is processed
(5) and triggers the creation of ACK (6). Notice that, for
simplicity’s sake, when a sphere/subsphere (e.g., Frame
subsphere of the receiver) has a single flowsystem (Frame
flowsystem), we draw them in one rectangle.

ACK flows to the sender (7), where its arrival resets the
wait time (8). It is processed (9) to trigger the creation of
the next frame that flows to the receiver as previously. If
time runs out (11) before the arrival of ACK, this triggers
the creation and sending of the same frame again (12).

Note how the FM representation depicts a continuous
sequence of acts involved in communication instead of the
“two solid walls” of the sequence diagram shown in Fig. 2.
Its representation is characterized by continuity of different
threads, making it possible to have a tight series of
superimposed protocol rules. Fig. 2 does not present a
complete picture, and the specification is fragmented
(triggering events behind the lines) and has vague
semantics (e.g., half an arrow to represent incomplete
communication).

In addition, the FM description provides a base for
superimposing coordination with other tools such as
synchronization, security constraints, and logical
operations. For example, it is clear that the possibility
exists of “premature time-out”, that is, triggering sending
of the same frame again (12), and during this, ACK arrives
at 7. However, the description exposes the internal stages
of operations of the sender and receiver; thus, it is possible
to develop several alternative solutions to such a problems,
such as coordinating the release (2) of a frame for the
second time with the latest arrival of a late ACK, as
illustrated in Fig. 4.

4. Transmission Control Protocol

The Transmission Control Protocol (TCP) [14] is the most
common transport layer used to ensure that data packets
are delivered in a reliable manner from one computer to
another. Its importance in the overall network architecture
comes from its role as a vehicle to relieve the application
from communication details in the lower layers, and to
facilitate data transportation across the network. In
addition, it is one of the two original components of the
Internet protocol suite, complementing the Internet
Protocol (IP), and therefore the whole suite is referred to
as TCP/IP. TCP/IP maps to a four-layer conceptual model:
Application, Transport, Internet, and Network Interface.
The Transport Layer facilitates data flow between two
hosts where TCP is used, and a reliable connection is
required. Reliability, here, denotes that the sender always
knows whether a packet has reached the receiver through
an acknowledgment of the arrival of the packet at its
destination; otherwise the sender resends the packet. The
sender also varies the rate of sending packets according to
traffic congestion. Ports are used to conduct multiple
simultaneous processes on one host by providing
additional addresses to route information. A port and an IP
address together form a socket.

TCP supports a full-duplex (simultaneous) connection with
two byte-streams, one for each direction. To establish a
connection between two hosts X to Y:
- X sends to Y a SYN (Synchronize - initiates a connection)
packet with a randomly generated sequence number. If X
does not receive an acknowledgment within a certain
specified time, it resends the packet.
- Remote host Y sends back a SYN+ACK packet containing
the next sequence number from X.
- X responds with an ACK packet (Acknowledges received
data) with its acknowledgment number.

The sequence number and acknowledgment number
fields are used to keep track of the byte count in the data
streams. Both ends use their own, independent sequence
numbers, and acknowledgment is related to the number of
bytes transferred. Flow control is accomplished through
the receiver’s ability to control the size of the segment
dispatched by the sender by using the Window field (the
maximum number of bytes that can be accepted) of an
acknowledgment packet.

Actually, TCP assigns more information—e.g., source
port number, destination port number—to the data coming
from the upper layer for use in ensuring communication
reliability. A number of flags (1-bit Boolean fields) in the
TCP header are used to control the state of a connection.

 Release
Transfer

Time

Arrive Transfe
r

Frame

Create
Sender

ACK

Reset
same

(previous)
frame

Create
Out?

7

8

2

12
11

Accept

Fig. 4 Synchronization between generation of the
same frame again and arrival of late ACK.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 266

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://en.wikipedia.org/wiki/Internet_Protocol
http://en.wikipedia.org/wiki/Internet_Protocol

5. Description of TCP

To demonstrate the expressive power of FM, we utilize a
specific description of the sequence of events in a TCP
given by Kak [15]. In the paragraphs in italics throughout
this section, we summarize Kak’s description [15], leaving
out irrelevant details, and sometimes copying some of his
sentences. After each paragraph we will show the (almost)
corresponding FM representation. Starting with
construction of a TCP segment, the sequence of
communication events proceeds as follows.

Bytes are grouped together to form a TCP segment
(datagram, packet) that consists of a header (with initial
sequence number of client) and the data. The TCP
segments are passed on to the IP layer for transmission.

Fig. 5 is an approximate FM representation of the TCP
protocol.

In general, TCP is formalized as the state diagram given in
Fig. 6. This state diagram has been extensively discussed
in protocol engineering. We include it here for the purpose
of, superficially, contrasting the two methodologies of
diagramming.

In Fig. 5, data flows from Application (circle 1), is
processed (2), and triggers (3)—in synchronization with a
created TCP header (4)—the creation of a TCP segment
(5) that flows to the IP (6). Note that data, the TCP header,
and the TCP segment are flowthings, each with its own
flowsystem. The processing of data (2) and the creation of
a TCP header (4) trigger the creation of a TCP segment (5).

The decision how to break the byte stream into TCP
segments depends on the Window field sent by the receiver.
The receiver TCP sets a value for this field depending on
the amount of memory allocated to the connection for the
purpose of buffering the received data. This is referred to
as the TCP’s sliding window algorithm for flow control.

 State

 Transfer Receive

Process Create

Transfer Release SYN

SYN+ACK

ACK

FIN

TCP segment

TCP header
Data

Transfer

Receive Process Transfer Receive Process

Create

Create Release Transfer

IP
WINDOW

Transfer

Receive

Process
No-zero

Create

Release Transfer

REMOTE

Application

Create

Transfer

Release

 REMOTE

Transfer

Release

 REMOTE

Transfer Receive Process

Transfer

Receive Process CLOSE

 TIMING

IF OUT CLOSE

C-TERMINATE

 Create Release

Receive Process

S- TERMINATE

 REMOTE

Persist
Timer

OUT

Create

Transfer

1
2

3
4

5

6
7 8

9 10

11

12

13

14

TCP
segment
sphere

STOP

15

Zero?

ACTIVATE

If ACK S-REQUEST CLOSE
ELSE

16

17

18

19

20

21

22

23

24

25

Receive Process

26

27
28

30
31

32

33

34

35

36

37

38

40

39

41

42 IF OUT CLOSE

Fig. 5 The FM specification of TCP

 Transfer

 REMOTE

Transfer
29

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 267

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 In Fig. 5, this is represented by the REMOTE (receiver)
sending a Window (7) that is processed (8).

If the receiver TCP sends 0 for the Window field, the
sender TCP stops pushing segments into the IP layer on its
side and starts what is known as the Persist Timer. When
the Persist Timer expires, the sender TCP sends a small
segment to the receiver TCP with the expectation that the
ACK packet received in response will contain an updated
value for the Window field.
It is in this state that data transfer takes place between the
two end points.

In Fig. 5, this depends on the processing (8) of the window.
If the window is zero (9), this triggers the Persist Timer
(10), and when the timer runs out (11), this, in turn,
triggers the creation (12) of SYN that flows to REMOTE
(13). REMOTE responds by sending ACK (14). Also, a
Window of value 0 stops the manufacture of TCP
segments (14). Notice that the TCP segment sphere has
two flowsystems: a TCP segment and a State. Previously
(e.g., in a data flowsystem), for simplicity’s sake, we drew
the sphere and the flowsystem in one rectangle, because
the sphere had a single flowsystem. Also note that States
are flowthings that can only be created and processed. In
this case STOP (or whatever action occurs in the segment
sphere) is a state that controls the activation/deactivation
of the segment sphere.

Continuing from circle 12 in Fig. 5, the REMOTE sends
ACK (15), triggering (16) activation of the sending of
segments (17).

[At the beginning,] When a local host wants to establish a
connection with a remote host, it sends a SYN packet to
the remote host. The remote should respond with a
SYN+ACK packet, to which the local should send back an
ACK packet. This is referred to as a three-way handshake:
"SYN, SYN/ACK, ACK.".

In Fig. 5, this three-way handshake is represented at circle
18, where processing of data triggers the creation of SYN
that flows (19) to REMOTE. REMOTE then should send
SYN+ACK (20), and this, upon receiving, triggers the
creation of ACK (21) that flows to REMOTE (22).

The famous three-way handshake: SYN, SYN/ACK, ACK is
typically represented by a message sequence diagram (Fig.
7) [16]. It can be represented in FM in an interesting way
as shown in Fig. 8. The right side creates SYN (1) that
flows to the left side (2), which processes it (3), triggering
(4) creation of SYN+ACK. SYN+ACK flows to the left
side (5), is processed, and triggers the creation of ACK (6).
ACK flows to the left side (7). Because of the symmetry of
the events, the three-way handshake appears as shown in
Fig 9.

LISTEN

SYN_RECD SYN_SENT

ESTABLISHED

FIN_WAIT_1

FIN_WAIT_2

CLOSE_WAIT

LAST_ACK CLOSING

TIME_WAIT

CLOSED

Received from Remote SYN
Send back to Remote: SYN+ACK

Application: Send Syn
Send to Remote: SYN

Received from
Remote:SYN

Send back to Remote:
SYN+ACK

Received from Remote: SYN+ACK
Send back to Remote: ACK

Received from
Remote:ACK

Application: Close
Send to Remote:FIN

Application: Open

Application: Close

Received From Remote:FIN
Send back to Remote: ACK Received From Remote:FIN

Send back to Remote: ACK

Received from Remote:FIN
Send to Remote: ACK

Application: Close
Send to Remote:FIN

Received from
Remote: ACK

Received from Remote: ACK

Received From Remote: FIN
Send to Remote: ACK

Time-out

Received From Remote:
Send to Remote: ACK

Application: Close

Active Open Send to
Remote:SYN

Fig. 6. TCP state transition diagram: The State of a TCP Connection at Local for a
Connection between Local and Remote (From [15])

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 268

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Returning to the discussion of Fig. 5, communication
continues as follows:

On the other hand, if the local host receives a SYN packet
from a remote host, the local sends a SYN+ACK packet
back to the remote. If the remote comes back with an ACK
packet, the local transitions into the ESTABLISHED state.
This again is a three-way handshake.

In Fig. 5, this is represented at circle 23, where SYN is
received, processed, and triggers the creation of
SYN+ACK (24) that flows to REMOTE. If REMOTE

comes back with ACK (15), transmission begins. Here,
Kak [15] uses PI and REMOTE as the other side of the
exchange. In Fig. 5, the transmission can be identified as
receiving a TCP segment from IP (25).

Regarding the state transition for the termination of a
connection, each end must independently close its half of
the connection.
If the local host wishes to terminate the connection first. It
sends to the remote a FIN (Final—cleanly terminates a
connection) packet and the TCP connection on the local
transitions from ESTABLISHED to FIN WAIT 1. The
remote must now respond with an ACK packet, which
causes the local to transition to the FIN WAIT 2 state.
Now the local waits to receive a FIN packet from the
remote. When that happens, the local replies back with a
ACK packet as it transitions into the TIME WAIT state.
The only transition from this state is a timeout after two
segment lifetimes to the state CLOSED.

In the FM description, we distinguish between a request to
terminate FIN (27) by the local host (the client that
contacts the server), referred to as C-TERMINATE, and
one issued by REMOTE (Server), referred to as S-
TERMINATE. Accordingly, at circle 28, the local host
creates C-TERMINATE (28) and sends (29) a request to
terminate. Simultaneously, when sending the request it
triggers a timing clock (30). IF REMOTE sends (31) FIN
of type C-TERMINATE, the local host closes (32) the
communication, triggering (33) sending (34) of ACK to
REMOTE. If time runs out, the local host closes (35) the
communication.

When the remote host initiates termination of a connection
by sending a FIN packet to the local. The local sends an
ACK packet to the remote and transitions into the CLOSE
WAIT state. It next sends a FIN packet to remote and
transitions into the LAST ACK state. It now waits to
receive an ACK packet from the remote.

In Fig. 5, receipt of S-TERMINATE (36) by the local host
triggers (37) sending (38) of ACK to REMOTE, which
then creates and sends (39) FIN of type S-TERMINATE,
simultaneously triggering a timing clock (40). If REMOTE
then sends ACK (15), the local host closes (41) the
communication; otherwise it closes (42) it when time has
run out.

In this section, we have demonstrated how FM can
describe TCP, with the aim of merely presenting the
description as evidence of the viability of the methodology.
We will now illustrate this viability in the area of security
protocols.

SYN

SYN+ACK

ACK

Fig. 7 Sequence diagram of a three-way handshake

Transfer Receive Process

Create Transfer Release
SYN

SYN+ACK
Transfer

Receive Process

Create Release Transfer

Fig. 8 The three-way handshake in FM

Create

Transfer

Release

Transfer Receive Process

1

Transfer Receive Process

Create Transfer Release

ACK

Transfer

Receive Process

Create Release Transfer

Create

Transfer

Release

Transfer Receive Process

SYN

SYN+ACK

ACK

2 3
4

5

6

7

Receive Process

Create Release

Receive Process

Create Release

Create Release

Receive Process

SYN

SYN+ACK

ACK

Transfer

Transfer

Transfer

Transfer

Transfer

Transfer

Fig. 9 Another representation of a three-way handshake

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 269

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

6. Secure Sockets Layer

The Secure Sockets Layer (SSL) sits directly above the
TCP to provide confidentiality and message integrity. The
SSL security protocol is layered between the application
protocol layer and the TCP/IP layer and can be divided
into sublayers. We focus on the layers of the Handshake
Protocol of the SSL protocol.

SSL takes the actual data to be sent, fragments it into
blocks, applies authentication and encryption primitives to
each block, and then sends the block to TCP for
transmission over the network. On the receiving side, the
blocks are decrypted, verified for integrity, reassembled,
and delivered to the higher-level protocol. Before the SSL
Record Protocol can do its thing, it must become aware of
what algorithms to use for compression, authentication,
and encryption. All of that information is generated by the
SSL Handshake Protocol

To present a specific example, we concentrate on
Microsoft’s description [17] of a version of SSL protocol
used in the Windows Server 2003 operating system. Its FM
description is shown in Fig. 10. The architecture consists
of the protocol suite that includes SSL.

A client sends a message to a server, and the server
responds with the information needed to authenticate
itself. The client and server perform an additional
exchange of session keys, and the authentication
dialogue ends. When authentication is completed,
secure communication can begin between the server
and the client using the secret keys established during
the authentication process [17].

The handshake protocol is a sequence of messages that
negotiate the security parameters of a data transfer session.
We follow the description given in [17] closely,
summarizing, paraphrasing, and deleting irrelevant words
and details as follows.

C
reate

3

1

Create Client
Hello

Release Transfer Process

Client Hello

Receive Transfer

Create
Server
Hello Release Transfer

Server Certificate

Release Transfer

Server Key Exchange
(Optional) Release Transfer

Client Certificate Request
(Optional)

Release Transfer

 Server Hello Done Release Transfer

 Process Server Certificate Transfer

 Process Server Key Exchange
((Optional)

Transfer

 Process
Client Certificate Request (Optional)

Transfer

 Process Server Hello Done Transfer Receive

Receive

Receive

Receive

Create

Create

Create

Client Certificate

Release Transfer

Record Layer

 Client Certificate Receive Transfer process

Client Key Exchange

Release Transfer Create

Change Cipher Spec Release Transfer Create

 Client Key Exchange

Receive Transfer

Change Cipher Spec Release Transfer Process

Master secret

 Finished Release Transfer Process Finished Release Transfer Create

Create Release Transfer Receive Process Transfer Client Random

 Create Release Transfer ServerRandom

Fig. 10 FM representation of Microsoft’s description [17] of the Handshake Protocol in a SSL protocol
used in the Windows Server 2003 operating system, with some simplifications

Receive Transfer

 Receive Process Transfer ServerRandom

Process Server

Hello

 Session Identification
(Optional)

Cipher Suite

 Version Number

Compression Algorithm

Version Number

Session Identification

Cipher Suite

2

Master secret

4

5 6 7

8

9

12

11

13

14

15

16

17

18

10

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 270

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The client initiates a session by sending a Client Hello
message to the server. The Client Hello message contains:

- Version Number
- (Optional) Session Identification
- Cipher Suite
- Client Random: A number that consists of the

client’s date and time, plus a cryptographically
generated pseudorandom number. This is used in
calculation of the Master Secret from which the
encryption keys are derived.

In Fig. 10, because of the special significance of the Client
Random, we make two flowsystems, one for the Client
number (circle 1) and the other for the remaining content
of the Client Hello message (circle 2). The Client Random
flows to the server, where it is used along with the Server
Random in creating the Master Secret key (3 and 4).

The server responds with a Server Hello message. The
Server Hello message includes:

- Version Number
- Session Identification (if any)
- Cipher Suite
- Compression Algorithm, if used
- Server Random is a 4-byte representation of the

server’s date and time plus a 28-byte,
cryptographically generated, pseudorandom
number. This number, along with the Client
Random, is used by both the client and the server
to generate the Master Secret from which the
encryption keys will be derived.

In Fig. 10, the Server Random is created (5) and triggers
creation of the master key (4). It also flows to the client (6),
to be processed to create the master key (7) along with the
Client Random (8). Also, the version number, session,
identification (if any), cipher suite, and compression
algorithm (9) are sent (10) to the client. These are
represented as one message. Additionally,
- The Server Certificate is retrieved (11) and sent to the
client.
- The Server Key Exchange (Optional) (12): “The server
creates and sends a temporary key to the client. This key
can be used by the client to encrypt the Client Key
Exchange message later in the process. The step is only
required when the server’s certificate does not contain a
public key that is suitable for key exchange” [17]. So (12)
leads to (6), where the client encrypts and sends the key
(16). Here we ignore representing the optional decision of
this flow, even though the FM map can be detailed to track
such details, e.g., checking if this requirement is needed
when processing the server’s certificate.
- The Client Certificate Request (Optional) (13) is sent to
the client, which triggers (14) sending of the certificate.

These messages may trigger some other processes on the
client side that can be described in FM. For example, “The
server sends its certificate to the client. The server
certificate contains the server’s public key. The client uses
this key to authenticate the server and to encrypt the
Premaster Secret” [17] (italics added). Note that we make
some simplifications (e.g., ignoring Certificate Verify
Message) because the aim here is not to be very precise;
rather the objective is to demonstrate the capabilities of the
FM representation.

Lastly, the server sends the Server Hello Done message
(16). Client responses to Server Hello include sending of
the Client Certificate (14) and the Client Key Exchange
(16), if required, as described previously. Also,

The Change Cipher Spec message notifies the server that
all future messages including the Client Finished message
are encrypted using the keys and algorithms just
negotiated… Both the client and the server have
calculated the Master Secret. Up until now, however, any
encryption has used the client’s or server’s private/public
keys. The Change Cipher Spec message tells the server
that the client is ready to use the Write Key for all further
encryption.

Accordingly, the Change Cipher Spec message is sent to
the server (17). The Finished message is then sent by the
client. It is the first message that the Record Layer
encrypts.

7. Conclusions

This paper has presented a diagrammatic methodology for
protocol specification that is applied to the Transmission
Control Protocol and the Secure Sockets Layer. It is based
on the notion of flow through six stages: creation, release,
transfer, arrival, acceptance, and processing. The examples
have demonstrated that the resultant conceptual description
can provide a viable descriptive method for protocol
specifications. Further research could experiment with
applying the proposed representation to more specific
protocols, with emphasis on protocol design, and applying
the methodology in different networking areas such as
wireless network [18, 20] and authentication [19].

References
 [1] Miro Lahdenmäki, “Software Visualization for Teaching

Network Protocols”, Thesis, School of Science and
Technology, Aalto University, June 2 2010.
http://mlahdenm.kapsi.fi/thesis.pdf

 [2] L. Parziale, D. T. Britt, C. Davis, J. Forrester, W. Liu, C.
Matthews and N. Rosselot, TCP/IP Tutorial and Technical

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 271

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://mlahdenm.kapsi.fi/thesis.pdf

Overview, Eighth Edition, IBM, December 2006.
http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf

[3] P. Simoneau, “The TCP/IP and OSI Models, Global
Knowledge”, White Papers, 25 February 2011.
http://www.globalknowledge.com/training/whitepaperdetail.
asp?pageid=502&wpid=825&country=United+States

[4] C. M. Kazierok, The TCP/IP Guide - Version 2.0, 2004.
http://www.tcpipguide.com/TCPIPGuide_2-0_s2.pdf

[5] C. M. Kazierok, The TCP/IP Guide Version 3.0, 20
September 2005.
http://dc102.4shared.com/doc/6swi0Rb2/preview.html

[6] J. Kristoff, “The Transmission Control Protocol”.
http://condor.depaul.edu/jkristof/technotes/tcp.html

 [7] M. Lacković, R. Inkret, and M. Mikuc, "An approach to
education oriented TCP simulation", Proceedings of the 10th
International Conference on Software, Telecommunications
and Computer Networks (SoftCOM 2002) / Rožić, Nikola;
Begušić, Dinko (ur.). - Split : FESB , 2002. 181-185.

[8] L. G. C. Hamey, "A simulation game for teaching secure data
communications protocols," in And Gladly Teche:
Celebrating Teaching at Macquarie (A. Reid, M. Gosper, and
S. Fraser, eds.), The Centre for Professional Development
and the Centre for Flexible Learning, Macquarie University,
Australia, 2002. ISBN 1-86408-793-5.

[9] S. Al-Fedaghi, “A Conceptual Foundation for the Shannon-
Weaver Model of Communication”, International Journal of
Soft Computing, Vol. 7, No. 1, pp. 12-19. SCOPUS

[10] S. Al-Fedaghi, “Conceptual Foundation for Specifying
Processes”, International Journal of Advancements in
Computing Technology, Vol. 3, No. 4, pp. 265-278, 2011.

[11] S. Al-Fedaghi, “A Conceptual Foundation for Data Loss
Prevention”, International Journal of Digital Content
Technology and its Applications, Vol. 5, No. 3, pp. 293-303,
2011.

[12] I. A. Dhotre, Data Communication, Technical Publications,
2007. ISBN 8184312628, 9788184312621.

[13] J. Valcarce, “The Stop-And-Wait ARQ Protocol”, Website,
July, 2012 (access).
http://www.javiervalcarce.eu/wiki/The_Stop-And-
Wait_ARQ_Protocol

[14] J. Postel, RFC 793: Transmission Control Protocol. Tech.
Rep. 793, IETF, Sept. 1981. Updated by RFCs 1122, 3168.

[15] A. Kak, “TCP Vulnerabilities: IP Spoofing and Denial-of-
Service Attacks”, Lecture Notes on “Computer and Network
Security”, April 25, 2012.
https://engineering.purdue.edu/kak/compsec/NewLectures/Le
cture16.pdf

[16] ITU-TS. ITU-TS Recommendation Z.120: Message
Sequence Chart 2004.Tech. rep., ITU-TS, Geneva, 2004.

[17] Microsoft, “How TLS/SSL Works”, WindowsServer, 28
March 2003. http://technet.microsoft.com/en-
us/library/cc783349%28v=ws.10%29.aspx

[18] C. Ellammal, and G.Sudha Sadasivam, "Improvement in
Medium Access Control Protocol based on new contention
scheme for Wireless Ad hoc Network", IJCSI International
Journal of Computer Science Issues, Vol. 9, Issue 3, No 2,
May 2012.

[19] Ghada F. ElKabbany, and Heba K. Aslan, "Efficient Design
for the Implementation of Wong-Lam Multicast",
Authentication Protocol Using Two-Levels of Parallelism",

IJCSI International Journal of Computer Science Issues, Vol.
9, Issue 3, No 1, May 2012.

[20] Adamu Murtala Zungeru, Li-Minn Ang, and Kah Phooi
Seng, "Performance Evaluation of Ant-Based Routing
Protocols for Wireless Sensor Networks", IJCSI International
Journal of Computer Science Issues, Vol. 9, Issue 3, No 2,
May 2012.

Sabah Al-Fedaghi holds an MS and a PhD in computer science from the
Department of Electrical Engineering and Computer Science,
Northwestern University, Evanston, Illinois, and a BS in Engineering
Science from Arizona State University, Tempe. He has published two
books and more than 130 papers in journals and conferences on Software
Engineering, Database Systems, Information Systems,
Computer/information Ethics, Information Privacy, Information Security
and Assurance, Information Warfare, Conceptual Modeling, System
Modeling, Information Seeking, and Artificial Agents. He is an associate
professor in the Computer Engineering Department, Kuwait University.
He previously worked as a programmer at the Kuwait Oil Company and
headed the Electrical and Computer Engineering Department (1991–
1994) and the Computer Engineering Department (2000–2007).
http://cpe.kuniv.edu/images/CVs/sabah.pdf

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 272

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.redbooks.ibm.com/redbooks/pdfs/gg243376.pdf
http://www.globalknowledge.com/training/whitepaperdetail.asp?pageid=502&wpid=825&country=United+States
http://www.globalknowledge.com/training/whitepaperdetail.asp?pageid=502&wpid=825&country=United+States
http://www.tcpipguide.com/TCPIPGuide_2-0_s2.pdf
http://condor.depaul.edu/jkristof/technotes/tcp.html
http://www.javiervalcarce.eu/wiki/The_Stop-And-Wait_ARQ_Protocol
http://www.javiervalcarce.eu/wiki/The_Stop-And-Wait_ARQ_Protocol
http://technet.microsoft.com/en-us/library/cc783349%28v=ws.10%29.aspx
http://technet.microsoft.com/en-us/library/cc783349%28v=ws.10%29.aspx

