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Abstract 

The purpose of this paper is to develop an intelligent diagnosis 

system for breast cancer classification. Artificial Neural 

Networks and Support Vector Machines were being developed to 

classify the benign and malignant of breast tumor in fine needle 

aspiration cytology. First the features were extracted from 92 

FNAC image. Then these features were presented to several 

neural network architectures to investigate the most suitable 

network model for classifying the tumor effectively. Four 

classification models were used namely multilayer perceptron 

(MLP) using back-propagation algorithm, probabilistic neural 

networks (PNN), learning vector quantization (LVQ) and support 

vector machine (SVM). The classification results were obtained 

using 10-fold cross validation. The performance of the networks 

was compared based on resulted error rate, correct rate, 

sensitivity and specificity. The method was evaluated using six 

different datasets including four datasets related to our work and 

two other benchmark datasets for comparison. The optimum 

network for classification of breast cancer cells was found using 

probabilistic neural networks. This is followed in order by 

support vector machine, learning vector quantization and 

multilayer perceptron. The results showed that the predictive 

ability of probabilistic neural networks and support vector 

machine are stronger than the others in all evaluated datasets. 

Keywords: fine needle aspiration cytology (FNAC), learning 

vector quantization (LVQ), multi layer perceptron (MLP), 

probabilistic neural networks (PNN) and support vector machine 

(SVM). 

1. Introduction 

Cancer is a big threat to human life. Based on statistics 

from the World Health Organization (WHO), deaths 

caused by cancer will reach about 12 million people in 

2030. Thus, it has become a big challenge to fight against 

cancers from both medical practice and scientific research 

field. Cancers in their early stages are vulnerable to 

treatment while cancers in their most advanced stages are 

usually almost impossible to treat.  

Palpable breast lesions can be accurately diagnosed by 

preoperative tests (like physical examination, 

mammography, fine-needle aspiration cytology, and core 

needle biopsy) [1,2]. Mammography is most often used for 

screening purposes rather than for precise diagnosis. It 

allows a physician to find possible locations of micro-

calcifications and other indicators in breast tissue. When a 

suspicious region is found, the patient is sent to a 

pathologist for a more precise diagnosis. This is when the 

FNA is taken. Fine needle aspiration provides a way to 

examine a small sample of the questionable breast tissue 

that allows the pathologist to describe the type of the 

cancer in detail. It has gained popularity due to its fast and 

easy approach, being inexpensive [3,4]. 

In the literature many researchers have carried out 

intelligent diagnostic systems specifically to provide 

‘second opinion’ for pathologists in making diagnosis [5-

7]. One can find approaches to breast cancer classification: 

k-nearest neighbors, support vector machines, 

multilayered perceptron, radial basis network, general 

regression neural network and probabilistic neural 

network. Some of the mentioned approaches are 

concentrated on classifying FNA slides based on existing 

benchmark dataset [8]. Other techniques involve images 

containing isolated cells in the diagnosis system [9-11] 

which is not applicable in real life. The classification 

techniques are based on a number of cell features for the 

characterization of a cell as normal or abnormal [12,13]. 

But some techniques provide a small number of features 

which affects the classification results [14]. In this study 

the cell features are extracted from our dataset images. 

Moreover, the images contain overlapped cells and cell 

clusters. Also the slides are classified using different 

classification networks to find the optimum classification 

model. Also the classifiers are evaluated using six 

different datasets to find a general classification model for 

all these datasets. 

In this paper, the studied dataset was based on microscopic 

images of breast Fine Needle Aspiration Cytology (FNAC) 
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specimens obtained in cooperation with specialists from 

the archive of Early Cancer Detection Unit-Obstetrics and 

Gynecology Department, Ain shams University Hospitals. 

Samples were taken from breast lumps using 23-22G 

needle and spread on glass slides, stained with May 

Grunwald Giemsa stain or Diff. Quick stain. The dataset 

consists of 92 FNAC images, including 45 images of 

benign tumors, 47 of malignant tumors. The images were 

acquired through Olympus digital camera adapted to a 

trinocular optical microscope. Images were captured using 

10x & 40x magnification lens. The size of the acquired 

images was 2560 x 1920. The images were stored in JPG 

format. The image itself was coded using the RGB color 

space and was not subject to any kind of lossy 

compression. 

In our work, we present an intelligent classification system 

for breast microscopic cellular image. At the first phase, 

we extend our previous work [15] for the segmentation of 

nuclei boundaries with the determination of meaningful 

features for the detected cell areas. The nuclei boundaries 

are extracted based Hough transform in conjunction with 

watershed algorithm. Features describing texture and 

shape are calculated for each segmented region. These 

features contribute to the identification of the normal and 

abnormal cells. A clustering step is then performed for the 

classification of benign and malignant nuclei. Since 

artificial neural network gives fast and accurate 

classification and is a promising tool for tumor diagnosis. 

We have performed four intelligent classifiers namely 

multilayer perceptron using back-propagation algorithm, 

probabilistic neural networks, learning vector quantization 

and support vector machine. 

The rest of the paper is divided into four sections. Section 

2 describes the process of feature extraction phase used in 

our approach. Section 3 presents the four classifier models 

used in the proposed method. Section 4 shows the training 

and testing related to our work. Section 5 shows the 

experimental results and discussion. The last part of the 

work includes a conclusion and references. These sections 

are described in detail in the following paragraphs. 

2. Feature Extraction 

The efficient classification of nuclei cells from the total 

segmented regions requires the generation of meaningful 

features of very good discriminative ability. Having found 

the areas of the nuclei enclosed by the detected boundaries, 

features concerning the shape and the texture of the 

detected regions can be easily determined [16]. In our 

work, we use ten shape-based features and two textural 

features. The values obtained for these features yield a 

good differentiation between cancerous and healthy cells. 

These features are proposed as input data for the 

classification phase. The extracted features consist of: 

Shape features. The detected boundaries for the nuclei 

are expected to present an ellipse-like shape and several 

features to describe this characteristic are chosen. Ten 

features are calculated from the extracted shape of the 

detected region boundary namely perimeter, compactness, 

smoothness, eccentricity, solidity, equivalent diameter, 

extent, major axis length and minor axis length. Table 1 

shows detailed explanation for these features. 

Textural features. Two features are calculated from the 

texture of the cell nucleus that is the standard deviation for 

the intensities of the region in both grayscale and Y-level. 

3. Classification 

Classification is a task of assigning an item to a certain 

category, called a class, based on the characteristic 

features of that item. This task in any classification system 

is performed by a classifier that takes a feature vector as 

an input and responds with a category to which the object 

belongs. A feature vector is a set of features extracted 

from the input data. In our study the feature vector 

represents the twelve features extracted for each nucleus 

as illustrated above in the feature extraction phase. Here 

we make use of neural network classifiers that are a 

collection of neurons (systems with many inputs and one 

output that are trained to fire, or not, for particular input 

patterns) that are connected one to another. Each 

connection is assigned an initial weight during the training 

process which is then adjusted to give a proper answer. 

The final decision is made based on the interaction of 

weights and the feature vector. The classification step was 

realized using four well known supervised classification 

algorithms: support vector machine, learning vector 

quantization, probabilistic neural networks and multilayer 

perceptron using back-propagation algorithm.  

3.1 Support Vector Machine 

A Support Vector Machine (SVM) performs classification 

by constructing an N-dimensional hyperplane that 

optimally separates the data into two categories [17]. SVM 

models are a close cousin to classical multilayer 

perceptron neural networks. Using a kernel function, 

SVM’s are an alternative training method for polynomial, 

radial basis function and multi-layer perceptron classifiers 

in which the weights of the network are found by solving a 

quadratic programming problem with linear constraints, 

rather than by solving a non-convex, unconstrained 

minimization problem as in standard neural network 

training. 
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Table 1 Shape features used in this study 

Feature Definition 

Perimeter 
This is the total number of the nucleus boundary 

points. 

Area 
This is measured simply by counting the number 

of points inside the nucleus region. 

Compactness 

Perimeter and area are combined to give a 

measure of the cell nucleus compactness using 

the formula  . 

Compactness measures the efficiency with 

which a boundary encloses an area. For a 

circular region we have that C ≈ 1. This 

represents the maximum compactness value. 

Smoothness 

The smoothness of a nuclear contour is 

quantified by measuring the difference between 

the length of a radial line and the mean length of 

the lines surrounding it.  

 

Eccentricity 

Eccentricity specifies the eccentricity of the 

ellipse that has the same second-moments as the 

region. It allows us to track how much a 

segmented nucleus differs from a healthy 

nucleus. Healthy nuclei will assume circular 

shapes while cancerous nuclei can assume 

arbitrary shapes. We calculate eccentricity as the 

ratio of the distance between the foci of an 

ellipse and its major axis length. The values of 

this feature vary between 0 and 1. These are 

degenerate cases because an ellipse whose 

eccentricity is 0 is actually a circle, while a 

shape whose eccentricity is 1 is a line segment. 

Solidity 

Solidity specifies the proportion of the pixels in 

the convex hull that are also in the region. 

Computed as  . 

Equivalent 

Diameter 

This specifies the diameter of a circle with the 

same area as the region. Computed 

as . 

Extent 

Extent specifies the ratio of pixels in the region 

to pixels in the total bounding box. Computed as 

the Area divided by the area of the bounding 

box. 

Major Axis 

Length 

This specifies the length (in pixels) of the major 

axis of the ellipse that has the same normalized 

second central moments as the segmented 

nucleus. 

Minor Axis 

Length 

This specifies the length (in pixels) of the minor 

axis of the ellipse that has the same normalized 

second central moments as the segmented 

nucleus. 

The goal of SVM modeling is to find the optimal 

hyperplane that separates clusters of vector in such a way 

that cases with one category of the target variable are on 

one side of the plane and cases with the other category are 

on the other side of the plane. The vectors near the 

hyperplane are called the support vectors. An SVM 

analysis finds the hyperplane that is oriented so that the 

margin between the support vectors is maximized. As 

shown in Figure 1(a), the line in the right panel is superior 

to the line in the left panel. In general, for the data vectors 

with N dimensions, SVM analysis finds (N-1) dimensional 

hyperplane that separates them. Sometimes separating the 

clusters is achieved with non-linear curves Figure 1(b), 

SVM handles this by using a kernel function to map the 

data into a different space where a hyperplane can be used 

to do the separation Figure 1(c). The kernel function 

transforms the data into a higher dimensional space to 

make it possible to perform the separation. The concept of 

a kernel mapping function is very powerful. It allows 

SVM models to perform separations even with very 

complex boundaries. 

Ideally an SVM analysis should produce a hyperplane that 

completely separates the feature vectors into two non-

overlapping groups. However, perfect separation may not 

be possible. To allow some flexibility in separating the 

categories, SVM models have a cost parameter, C, that 

controls the tradeoff between allowing training errors and 

forcing rigid margins as shown in Figure 1(d). It creates 

a soft margin that permits some misclassifications. 

Increasing the value of C increases the cost of 

misclassifying points and forces the creation of a more 

accurate model that may not generalize well. 

 

(a)  
 

(b)  

 

(c)  

 
(d) 

Figure 1 (a) The best separable line with the maximum margin. (b) 

Separating the clusters with non-linear curves. (c) Separation may be 

easier in higher dimensions using kernel functions. (d) Non-separable 

training sets – use linear separation, but admit training errors. 
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3.2 Multi Layer Perceptron 

Rumelhart, Hinton, and Williams (1986) revived interest 

in neural networks by introducing the generalized delta 

rule for learning by back propagation [18], which is today 

the most commonly used training algorithm for multilayer 

networks. Feed forward networks consist of a series of 

layers. The first layer has a connection from the network 

input. Each subsequent layer has a connection from the 

previous layer. The final layer produces the network's 

output. Feed forward networks can be used for any kind of 

input to output mapping. Each network input-to-unit and 

unit-to-unit connection is modified by a weight.  In 

addition, each unit has an extra input that is assumed to 

have a constant value of one.  The weight that modifies 

this extra input is called the bias.  All data propagate along 

the connections in the direction from the network inputs to 

the network outputs. When the network is run, each 

hidden layer unit performs the calculation in Eq. 1 on its 

inputs and transfers the result (Oc) to the next layer of 

units. While each output layer unit performs the 

calculation in Eq. 2 on its inputs and transfers the result 

(Oc) to a network output. Oc is the output of the current 

layer unit c, P is either the number of units in the previous 

hidden layer or number of network inputs, ic,p is an input 

to unit c from either the previous hidden layer unit p or 

network input p, wc,p is the weight modifying the 

connection from either unit p to unit c or from input p to 

unit c, and bc is the bias. hHidden(x) is the sigmoid activation 

function for hidden units and hOutput(x) is the linear 

activation function for output units. Other types of 

activation functions exist, but these functions were 

performed in this research. 

 where 

 

(1)  

 where 

 
(2)  

The neural network has to be trained on an appropriate 

data series to make meaningful forecasts. We use back-

propagation training algorithm for this purpose. back-

propagation training [18] consists of three steps: 

1. Present an example’s input vector to the network 

inputs and run the network: compute activation 

functions sequentially forward from the first hidden 

layer to the output layer. 

2. Compute the difference between the desired output 

for that example, output, and the actual network 

output (output of unit(s) in the output 

layer).  Propagate the error sequentially backward 

from the output layer to the first hidden layer. 

3. An error term is computed for each unit in the output 

layer according to Eq. 3.  

Dc is the desired network output (from the output vector) 

corresponding to the current output layer unit, Oc is the 

actual network output corresponding to the current output 

layer unit, and  is the derivative of the output 

unit linear activation function i.e 1. Also the error term is 

computed for each unit in the hidden layers according to 

Eq. 4. N is the number of units in the next layer (either 

another hidden layer or the output layer), n is the error 

term for a unit in the next layer, and wn,c is the weight 

modifying the connection from unit c to unit n. 

 (3)  

 where 
 =  

(4)  

 (5)  

For every connection, change the weight modifying that 

connection in proportion to the error according to   Eq. 5 

where wc,p is the weight modifying the connection from 

unit p to unit c ,  is the learning rate which controls how 

quickly and how finely the network converges to a 

particular solution, and Op is the output of unit p or the 

network input p.  

When these three steps have been performed for every 

example from the data series, one epoch has 

occurred.  Training usually lasts until a predetermined 

maximum number of epochs (epochs limit) is reached or 

the network output error (error limit) falls below an 

acceptable threshold.  Training can be time-consuming, 

depending on the network size, number of examples, 

epochs limit, and error limit. 

3.3 Learning Vector Quantization 

Having N data vectors, VQ algorithm groups them into 

small number of clusters in an unsupervised approach. VQ 

may be considered as a clustering process. However, LVQ 

neural network is a supervised classifier first introduced 

by by Kohonen’s [19]. It combines clustering and 

classification processes based on feed forward neural 

network. The architecture of Kohonen’s neural network 

that implements LVQ operations is shown in Figure 2. It 

consists of three layers; named input, hidden called 

competitive, and output called linear layers. Each neuron 

in the competitive layer represents one cluster. The linear 

layer maps the competitive layer's neurons into target 

classification defined by the user. Multiple neurons may 

belong to the same class, however, in the data space; 

cluster regions corresponding to the same class need not 

be contiguous. 
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Figure 2 the architecture of kohonen’s neural network that implements 

LVQ operations 

Design and learning of LVQ 
The first step in the design of LVQ neural network is 

setting the parameters of both competitive and linear 

layers. Then the available input data vectors have to be 

partitioned into training and test groups. Learning 

algorithm generally works as follows: 

Codebook initialization: The number of codebook 

vectors for each target class has to be comparative to the 

number of occurrence of that class and these vectors are 

initialized to the center of the input ranges. 

Winner determination: The Euclidean distance has to be 

calculated between training data vector and each codebook 

vector according to Eq. 6, where x is a training data vector, 

w is codebook vector, w is M-dimensional, and d is the 

Euclidean distance. The neuron mc with codebook vector 

that has the least Euclidean distance to a data vector x is 

considered a winner according to Eq. 7. 

 
(6)  

 (7)  

Codebook Adaptation: Codebook vectors are optimized 

during learning process. Different learning algorithms 

have been proposed. They are all iterative gradient 

methods. The purpose is to find the optimal codebook and 

avoid complex gradient calculations 

3.4 Probabilistic Neural Networks 

In 1990, Donald F. Specht proposed a method to formulate 

the weighted-neighbor method in the form of a neural 

network [20]. He called this a “Probabilistic Neural 

Network”. Probabilistic neural networks are conceptually 

similar to K-Nearest Neighbor (k-NN) models. The basic 

idea is that a predicted target value of an item is likely to 

be about the same as other items that have close values of 

the predictor variables.  

The nearest neighbor classification depends on how many 

neighboring points are considered for the classification of 

a new pattern. A probabilistic neural network builds on 

this foundation and generalizes it to consider all of the 

other patterns. The distance is computed from the pattern 

being evaluated to each of the other patterns, and a radial 

basis function (RBF) (also called a kernel function) is 

applied to the distance to compute the weight (influence) 

for each pattern. The radial basis function is so named 

because the radius distance is the argument to the function 

(Weight = RBF(distance)). The further some other pattern 

is from the new pattern, the less influence it has. The 

architecture for PNN is shown in Figure 3. As illustrated 

in the figure, PNN network has four layers: 

 
Figure 3 Probabilistic Neural Network Architecture 

Input layer — there is one neuron in the input layer for 

each predictor variable. N-1 neurons are used where N is 

the number of categories. The input neuron (or processing 

before the input layer) standardizes the range of the values 

by subtracting the median and dividing by the inter-

quartile range. The input neurons then feed the values to 

each of the neurons in the hidden layer. 

Hidden layer — this layer has one neuron for each case in 

the training data set. The neuron stores the values of the 

predictor variables for the case along with the target value. 

When presented with the x vector of input values from the 

input layer, a hidden neuron computes the Euclidean 

distance of the test case from the neuron’s center point and 

then applies the RBF kernel function using the sigma 

value as shown in Eq. 8. The resulting value is passed to 

the neurons in the pattern layer. 
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Pattern layer / Summation layer — there is one pattern 

neuron for each category of the target variable. The actual 

target category of each training case is stored with each 

hidden neuron; the weighted value coming out of a hidden 

neuron is fed only to the pattern neuron that corresponds 

to the hidden neuron’s category. The pattern neurons add 

the values for the class they represent (hence, it is a 

weighted vote for that category). 
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Decision layer — the decision layer compares the 

weighted votes for each target category accumulated in the 

pattern layer and uses the largest vote to predict the target 

category. 

4. Training and Testing 
Training and testing datasets are constructed using 10-fold 

cross-validation [21]. The performance of the classifier is 

calculated using the unknown nuclei features of the testing 

dataset. Some researches provide one feature vector for 

each FNAC image by extracting N features for each 

nucleus and then calculate some measures for each feature 

for all nuclei in this image [7,10,14]. Wisconsin 

Diagnostic Breast Cancer is the most commonly used 

dataset by many researchers [8]. Wisconsin dataset 

computes three measures which are the mean, standard 

error  , and "worst" or largest (mean of 

the three largest values). In this case the number of 

patterns will be equal to the number of data set images. 

Other researchers generate one feature vector for each 

nucleus [9,11]. This is performed when the number of 

dataset images is fairly small. The generated dataset 

features will contain number of patterns equals to the 

number of nuclei in all dataset images.  

In our work, we have constructed four different input data 

matrices from our dataset images. As mentioned before, 

our dataset images contain 92 FNAC image. The first 

input data matrix (dataset 1) contains one feature vector 

for each FNAC image with dimension of 92 x 60. Each 

FNAC slide is represented by sixty feature, twelve 

features are extracted for each nucleus then five measures 

are computed for each feature. The five calculated 

measures in our work are min, max, mean, standard error, 

and "worst" (mean of the three largest values). The second 

input data matrix (dataset 2) is the same as dataset 1 but 

we apply filtering for removing large connected 

components in the segmented image before feature 

extraction. As we have found that many contiguous cells 

are extracted as one connected component as illustrated in 

Figure 4(a). The values of the features will be largely 

dependent on the size of the connected component. So we 

have filtered the segmented image by removing the 

connected component with area greater than some 

threshold. Figure 4(b) shows the segmented image after 

the removal of large components.  

The third input data matrix (dataset 3) contains one feature 

vector for each nucleus with dimension of 3260 x 12. Each 

nucleus is represented by twelve features. 3260 is the 

number of connected components in all images in our 

dataset. Finally the fourth input data matrix (dataset 4) is 

the same as dataset 3 but after removing the large 

components. The dimension of dataset 4 is 2561 x 12. 

This means that we have removed 699 connected 

components.  

We have trained the four constructed datasets. Also we 

have used two benchmark datasets with different features 

to compare the classification results with our datasets 

results. Breast Cancer Wisconsin (Diagnostic) dataset [22] 

(dataset 5) with dimension of 569 x 30 where 569 

represent the number of dataset images and 30 is the 

feature vector length. The last trained dataset is Breast 

Cancer Wisconsin (Original) dataset [23] (dataset 6).  

Table 2 shows detailed description about all six datasets. 

We have trained each dataset using the four illustrated 

classifiers.  

The parameters needed for training and testing the datasets 

based on the four classifiers are shown in Table 3. We 

have got the values of these parameters after several 

experiments. The training and testing sets were chosen 

using 10-fold cross-validation. We took into consideration 

four neural networks classifiers: support vector machines 

(SVM), multilayer perceptron (MLP), learning vector 

quantization (LVQ) and probabilistic neural networks 

(PNN). We applied these classifiers on the six datasets that 

contain our study datasets and benchmark datasets as 

illustrated above. The training times for the classifiers 

presented in this study are provided in Table 4. As shown 

in the table, the PNN classifier takes the lowest training 

time. This is followed by SVM, LVQ and MLP. For the 

training results, Figure 5 shows the LVQ training receiver 

operating characteristic curve (ROC) for the six datasets. 

Also Figure 6 shows the MLP training performance for the 

six datasets. 

 

 
(a)  

 
(b)  

Figure 4 (a) Cell Nuclei before removing large connected components. 

(b) Cell Nuclei after removing large connected components 

 

5. Results and Discussion 

We will demonstrate the performance of the four 

classifiers presented in Section 2 along with results 

obtained for applying these classifiers on the six illustrated 

datasets for comparison. The method was developed in 

Matlab version 10b using a dual core PC with a 2.0 GHz 

processor and 2 GB of RAM.  

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 252

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

Dataset 1 

 

Dataset 2 

 

Dataset 3 

 

Dataset 4 

 
Dataset 5 

 
Dataset 6 

Figure 5 LVQ Training ROC for six datasets 

 
Dataset 1 

 
Dataset 2 

 
Dataset 3 

 
Dataset 4 

 
Dataset 5 

 
Dataset 6 

Figure 6 MLP Training Performance for six datasets 

Table 2 Details of the datasets used in training and testing 

 No. of 
patterns Features Description 

D
at

as
et

 1
 

92 Image 

 

45 

Benign 

 

47 

Malignant 

60 features: five measures 

(min , max, mean, standard 

error and worst) and twelve 

features ( Perimeter, Area, 

Compactness, Smoothness, 

Eccentricity, Solidity, 

Equivalent Diameter, 

Extent, Major Axis Length, 

Minor Axis Length, 

Standard deviation for 

grayscale intensities and 

Standard deviation for Y-

level intensities). 

Nuclei 

statistical 

features 

Before large 

components 

removing 

Feature vector 

for each image 

D
at

as
et

 2
 92 Image 

45 

Benign 

47 

Malignant 

Same as dataset 1. 

Nuclei 

statistical 

features 

After large 

components 

removing 

Feature vector 

for each 

nucleus 

D
at

as
et

 3
 

3260 

Image 

1135 

Benign 

2125 

Malignant 

Twelve features ( 

Perimeter, Area, 

Compactness, Smoothness, 

Eccentricity, Solidity, 

Equivalent Diameter, 

Extent, Major Axis Length, 

Minor Axis Length, 

Standard deviation for 

grayscale intensities and 

Standard deviation for Y-

level intensities). 

Nuclei 

statistical 

features 

Before large 

components 

removing 

Feature vector 

for each image 

D
at

as
et

 4
 

2561 

Image 

933 

Benign 

1628 

Malignant 

Same as dataset 3. 

Nuclei 

statistical 

features 

After large 

components 

removing 

Feature vector 

for each 

nucleus 

D
at

as
et

 5
 

569 

Image 

357 

Benign 

212 

Malignant 

30 features: three measures 

(mean, standard error and 

worst) and ten features 

(radius, texture, standard 

deviation of gray-scale 

values, perimeter, 

area, smoothness, 

compactness, concavity, 

concave points, symmetry 

and fractal dimension). 

Nuclei 

statistical 

features 

Feature vector 

for each image 
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D
at

as
et

 6
 

699 

Image 

458 

Benign 

241 

Malignant 

9 features: Clump 

Thickness, Uniformity of 

Cell Size, Uniformity of 

Cell Shape, Marginal 

Adhesion, Single Epithelial 

Cell Size, Bare Nuclei, 

Bland Chromatin, Normal 

Nucleoli 

Breast tissue 

features 

Feature vector 

for each image 

Table 3 Training parameters used in SVM, LVQ, PNN and MLP 

SVM 
Number of iterations =1000 

Kernel function : Linear 

C parameter = 1 

MLP 

Number of hidden layers = 1 

Hidden layer neurons = 24 

Hidden activation function = sigmoid function 

Output layer neurons = 2 

Output activation function = linear function 

Max number of iterations = 200 

Goal (error limit) =  1e-05 

Learning algorithm : Levenberg-Marquardt back-

propagation 

LVQ 

Number of hidden neurons =30 

Learning rate =0.01 

Max number of iterations = 100 

Goal (error limit) =  1e-04 

Learning function = 'learnlv1' 

PNN Goal (error limit) =  1e-05 

Two widely used statistical measures for the performance 

of the classification are calculated; sensitivity, specificity. 

The sensitivity measures the proportion of malignant 

tumors which are correctly identified; it is calculated as Eq. 

9. The specificity measures the proportion of benign 

tumors that are correctly characterized; it is calculated as 

Eq. 10. We have used these measures for the performance 

analysis and for providing tools to select a possibly 

optimal classification model.  

 
(9)  

 
(10)  

 

Table 5 shows the sensitivity measure of the four tested 

classifiers for the six datasets and Table 6 shows the 

specificity measure. First, both tables show that the 

sensitivity and specificity measures for dataset 1 are better 

than dataset 2 and also both measures for dataset 3 are 

better than dataset 4 for all classifiers. As mentioned 

before, dataset 1 and dataset 3 contain features for all 

connected components while dataset 2 and dataset 4 

contain features for connected components after removing 

the large ones. This means that removing large connected 

components from the segmented nuclei does not improve 

any classifier performance. As all classifiers gives higher 

sensitivity and specificity in datasets with features without 

removing large connected components (dataset 1 and 

dataset 3).  

Next, both tables show that the sensitivity and specificity 

measures for dataset 1 and dataset 2 are lower than dataset 

3 and dataset 4 for all classifiers. As mentioned before, 

dataset 1 and dataset 2 include one feature vector for each 

FNAC image while dataset 3 and dataset 4 include one 

feature vector for each nucleus. This means that extracting 

feature vector for each nucleus is better than extracting 

feature vector for each FNAC image. 

Next, the average measures for each classifier across 

all six datasets show that the best classifier is PNN. This is 

followed in order by SVM, LVQ and MLP. As shown in 

the below tables, PNN classifier gives the best measures 

for four datasets (dataset 1, dataset 2, dataset 5 and dataset 

6) while SVM gives the best measures for two datasets 

(dataset 3 and dataset 4). It must be noted that PNN and 

SVM take very small training times when comparing with 

LVQ and MLP training times as shown in Table 4.  

Finally, we have trained the benchmark Wisconsin 

datasets (dataset 5 and dataset 6) for the comparison with 

our study datasets. The results show that SVM and LVQ 

networks give the highest sensitivity and specificity with 

our study datasets (dataset 3 and dataset 4) while PNN and 

MLP networks give the highest measures with the 

Wisconsin datasets (dataset 5 and dataset 6). This means 

that our dataset features are accurate and can be compared 

with benchmark dataset features.  

Figure 7 includes a chart for the error rates and correct 

rates of the tested classifiers for each training dataset. All 

the achieved results show that the predictive ability of 

both probabilistic neural network and support vector 

machine are stronger than the learning vector quantization 

and multilayer perceptron for the evaluated datasets. 

Table 4 Training times for the classifiers used in this study 

Classifiers 
Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 

Time in sec (mean  std) 
SVM 0.44  0.98 0.09  0.01 41.4  6.61 33.54  10.18 47.19  2.44 87.77  2.49 

LVQ 71.84  3.97 69.6  0.66 2145.22  21.16 1681.82  25.64 387.95  7.86 463.45  4.37 

PNN 0.43  0.8 0.18  0.0 0.19  0.0 0.18  0.0 0.18  0.0 0.18  0.0 

MLP 133.65  52.42 30.17  12.97 115.8  6.89 95.52  2.06 144.39  53.43 19.56  6.8 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 2, September 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 254

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

Table 5 Sensitivity of the tested classifiers for the six different datasets 

Classifier Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Average sensitivity 
SVM 78.82 59.44 99.6 98.12 98.77 96.1 88.48 

LVQ 83.23 58.6 98.86 98.01 92.34 96.65 87.95 

PNN 97.02 94.84 93.78 92.48 100 99.8 96.32 

MLP 74.85 57.7 81.3 75.41 97.93 96.74 80.66 
 

Table 6 Specificity of the tested classifiers for the six different datasets 

Classifier Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5 Dataset 6 Average specificity 
SVM 92.23 64.09 99.64 98.65 94.63 96.68 90.99 

LVQ 79.44 60.99 99.03 97.76 84.23 92.69 85.69 

PNN 97.28 95.17 93.67 92.22 89.87 99.23 94.57 

MLP 68.86 57.23 82.46 77 94.94 77.19 76.28 

 

 
(a)  

 
(b)  

Figure 7 (a) Error rates of the tested classifiers for each training dataset. (b) Correct rates of the tested classifiers for each training dataset 

6. Conclusion and Future Work 
FNAC is an essential component in the preoperative 

management of breast lesions. Its accuracy, ease of use, 

and affordability are factors that cause its popularity. The 

advent of imaging technology together with the clinical 

expertise of the clinician contributed to its increased 

sensitivity. 

In this paper, we have developed a computer-aided 

diagnosis system for breast FNAC classification. For the 

feature extraction, we used ten shape-based features and 

two textural features. The values obtained for these 

features yield a good differentiation between benign and 

malignant cells. For the classification phase, we have 

performed four different classification models namely 

multilayer perceptron, probabilistic neural networks, 

learning vector quantization and support vector machine. 

The classification results were obtained using 10-fold 

cross validation.  

Six datasets were used to examine the efficiency of the 

proposed classifiers. Four datasets were constructed from 

our material and the other two datasets are benchmark 

datasets and were evaluated for the comparison. The 

conducted experiments show that the classification results 

of the datasets contain one feature vector for each nucleus 

with features for all connected components without 

removing large ones are the best datasets for training 

based on all proposed classifiers.  

The classification performance was capable of producing 

up to 99.7 % sensitivity and specificity for our datasets. 

The results showed that the predictive ability of both 

probabilistic neural network and support vector machine 

was stronger than the learning vector quantization and 

multilayer perceptron for the evaluated datasets. 

The results obtained so far are encouraging; more 

investigations are needed to further improve the clustering 

algorithms results (FCM, SVM, LVQ, MLP and PNN) 

with the selection of different nuclei features and 

performing hybrid clustering algorithms. Also the 

implementation of other clustering algorithms needs to be 

investigated. Furthermore, the proposed diagnostic system 

is being tested in a larger dataset in order to evaluate the 

robustness of this system. More work need to be done in 

the classification of cell nuclei malignancy to know the 

degree of malignancy of the FNAC image. Finally, the 

proposed diagnosis system can be used as the basis for 

further applications, such as mobile application for remote 

diagnosis for breast cancer. 
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