

Aspect-oriented programming with AspectJ

Daniela Gotseva1 and Mario Pavlov2

 1 Computer Systems Department, Technical University of Sofia

Sofia, Bulgaria

2 Computer Systems Department, Technical University of Sofia

Sofia, Bulgaria

Abstract
This article describes the fundamental concepts of a complete

AOP system. It discusses the AspectJ language specification and

implementation. The article examines the use of the language, as

well as its features and tooling support. It lays out a common

crosscutting problem to illustrate the general syntax of the

traditional AspectJ Language. The development tools of the

AspectJ language are described and compared to popular Java

development tools.

Keywords: Aspect-oriented Programming, AspectJ, Aspect-

oriented Programming System (AOP), AspectJ Development

Tools (ADT), Eclipse IDE.

1. Introduction

1.1 Fundamental concepts

An aspect-oriented programming system (AOP) is a

software system that is a realization of the aspect-oriented

programming methodology. In general, a programming

methodology realization consists of two parts:

 Language specification: an explicit definition of

the syntax and semantics of the language

The AOP language specification defines how programming

constructs are expressed. An AOP language must include

constructs for describing data and behaviour, along with

constructs that describe how to combine data and behavior.

 Language reference implementation: a software

application that can translate code written in the

language into an executable form.

The AOP language implementation performs the steps

necessary to convert the source code into executable code

according to the language rules. This process is commonly

referred to as compilation.

A complete AOP system supports the following

fundamental concepts [1, 4-6]:

 Join points: identifiable points in the execution of

a system

 Pointcut: a construct for selecting join points

 Advice: a construct to introduce or alter execution

behaviour

 Static crosscutting: constructs for altering the

static structure of a system

 Aspect: a module to express all corsscutting

constructs

1.2 Historical perspective

AspectJ is the first complete AOP system. At the time of

writing this article, AspectJ is also the best and most

widely used AOP system. The initial development of

AspectJ was the work of a team at Xerox PARC, led by

Gregor Kiczales. He also coined the terms "crosscutting"

and "aspect-oriented programming". After a few releases,

Xerox donated AspectJ to the free software community at

http://eclipse.org. A few years later another AOP system

(AspectWerkz) merged with AspectJ, adding features, such

as annotation based syntax. At the moment, AspectJ has an

alternative implementation (AspectBench), used for

experimenting with new features and optimizations.

2. AspectJ as an AOP system

AspectJ is an extension to the Java programming language

that adds AOP capabilities to Java. The AspectJ

implementation consists of the following components [2]:

 A compiler (ajc)

 A debugger (ajdb)

 A documentation generator (ajdoc)

 A program structure browser (ajbrowser)

 Integration with Eclipse, Sun-ONE/Netbeans,

GNU Emacs/XEmacs, JBuilder, and Ant.

The AspectJ compiler (ajc) is often called a weaver. The

name originated because of its primary role to weave the

AspectJ extensions into the Java code, that is to weave

aspects into classes and produce the final executable code.

AspectJ provides three weaving mechanisms:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 212

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Source weaving: The source code for aspects and

classes is fed to the AspectJ compiler/weaver

which produces the final executable code. This

mechanism is useful when the entire source code

(aspects and classes) is available. It enables both

the compilation and weaving to be done in one go

and highly simplifies the building process.

 Binary weaving: The input to the weaver is in

byte-code form, that is classes and aspects are compiled

beforehand. The idea is to compile the classes and aspects

without weaving and then weave the resulting binary file.

In other words, this is a three-step process (see Fig.h 1):

1. Compile classes

2. Compile aspects

3. Weave aspects into classes to produce

the final binary files

The binary weaving mechanism is very flexible and

enables weaving even when some or all of the Java source

code is not available, for example the source code is part

of a third party library or for some reason cannot be

compiled alongside the AspectJ code.

2.1 Load-time weaving

A load-time weaver takes compiled classes and aspects, as

well as an XML configuration. The load-time weaver can

take various forms, such as JVMTI agent or a classloader.

The load-time weaver weaves aspects into classes as they

are loaded into the system prior to first use. The XML file

(aop.xml) specifies the weaving configuration. The

aop.xml can be placed under the META-INF directory and

defined in the MANIFEST.MF as a classpath component.

Load-time weaving greatly reduces the risk of adopting

and experimenting with AOP because it makes switching

AspectJ on and off just a matter of configuration.

The AspectJ documentation tool (ajdoc) is very similar to

the Java documentation tool (javadoc). It produces similar

output, but also provides additional information, such as

advice affecting a particular method or all code affected by

a given aspect, allowing developers to examine easily the

crosscutting structure of a system.

3. AOP with AspectJ

3.1 Implementing a cache

To describe and illustrate an AOP with AspectJ, we are

going to discuss a rather common and wide-spread

problem: implementing a cache. A cache is a classical

crosscutting concern. With traditional object-oriented

programming, the caching concern cannot be completely

isolated or separated from the main concern. You can work

around this problem to a certain extent leveraging design

patterns such as proxy and decorator, but it cannot be

completely eliminated.

AOP provides a complete and elegant solution to such a

problem. A very simple illustration is shown in code listing

1 (Note that this code listing shows three files:

FileSystem.java, FileSystemCache.java and

FileSystemCacheAspect.aj):

Code listing 1: File System Interface.

public interface FileSystem {

 Collection<File> list(File entry);

 byte[] getContents(File entry);

}

public interface FileSystemCache {

 byte[] getContents(File entry);

 void putContents(File entry, byte[] contents);

}

1 public aspect FileSystemCacheAspect {

2

3 private FileSystemCache cache = new

FileSystemCacheImpl();

4

5 pointcut fileSystemAccess(File entry) :

execution(public * FileSystem+.get*(File)) &&

args(entry);

6

7 byte[] around(File entry) : fileSystemAccess(entry) {

8 byte[] contents = cache.getContents(entry);

9 if(null == contents) {

10 contents = proceed(entry);

Fig. 1 Three-step process.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 213

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

11 cache.putContents(entry, contents);

12 }

13 return contents;

14 }

15 }

The example shows the traditional AspectJ syntax. The

FileSystemCacheAspect contains one pointcut and one

advice that are defined on lines 5 and 7 respectively. Each

pointcut definition is of the form:

 pointcut pointcutIdentifier : joinPointSelectionCriteria;

Each advice definition is of the form

 [strictfp] AdviceSpec [throws typeList] :

pointcutIdentifier { body }

where AdviceSpec is one of

 before(formals)

 after(formals) returning [(formal)]

 after(formals) throwing [(formal)]

 after(formals)

 Type around(formals)

and where formal refers to a variable binding like those

used for method parameters, and formals refers to a

comma-delimited list of formal.[2]

The following line:

pointcut fileSystemAccess(File entry) : execution(public *

FileSystem+.get*(File)) && args(entry);

creates a pointcut with the name fileSystemAccess. The

part after the colon is the join point selection criteria. In

this case, it will match on execution of public methods that

fulfil the following criteria:

 their name starts with “get”

 the return type is any (including void)

 takes one parameter of type File

 resides in classes that are direct or indirect

descendants of FileSystem or FileSystem itself

This pointcut also collects the actual method parameter

that is passed to each method execution matched by the

pointcut. AspectJ provides a wide variety of powerful

pointcut constructs used to select different join points.
Most of the pointcut constructs are shown in Table 1. [2]

AspectJ offers a wide variety of pointcut constructs that

cover virtually every possible join point in a system. The

pattern syntax is as follows: [2]

MethodPattern =

 [ModifiersPattern] TypePattern

 [TypePattern .] IdPattern (TypePattern | ".." , ...)

 [throws ThrowsPattern]

Table 1: Pointcut Construct Structures.

Pointcut construct Used to select...

call(MethodPattern or
ConstructorPattern)

calls to the methods or
constructors

execution(MethodPattern
or ConstructorPattern)

executions of methods or
constructors

get(FieldPattern) field read access

set(FieldPattern) field write access

handler(TypePattern) catch blocks

within(TypePattern) executions of code defined in
classes

withincode(MethodPattern
or ConstructorPattern)

executions of code defined in
methods or constructors

initialization(ConstructorP
attern)

object initializations

preinitialization(Construct
orPattern)

object pre-initializations

staticinitialization(TypePat
tern)

static initializer executions

adviceexecution() all advice executions

cflow(Pointcut) join points in the control flow of
any join point P picked out by
Pointcut, including P itself

cflowbelow(Pointcut) join points in the control flow of
any join point P picked out by
Pointcut, but not P itself

this(Type) join points where the currently
executing object is an instance of
Type

target(Type) join points where the target
object (the object on which a call
or field operation is applied to) is
an instance of Type

args(Type) join points where the arguments
are instances of Type

ConstructorPattern =

 [ModifiersPattern]

 [TypePattern .] new (TypePattern | ".." , ...)

 [throws ThrowsPattern]

FieldPattern =

 [ModifiersPattern] TypePattern [TypePattern .]

IdPattern

ThrowsPattern =

 [!] TypePattern , ...

TypePattern =

 IdPattern [+] [[] ...]

 | ! TypePattern

 | TypePattern && TypePattern

 | TypePattern || TypePattern

 | (TypePattern)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 214

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

IdPattern =

 Sequence of characters, possibly with special * and ..

wildcards

ModifiersPattern =

 [!] JavaModifier ...

Pointcuts can also be combined logically, for example:

pointcut staticExecution : execution(static * *(..))

&& !within(com.example..*);

The following line:

byte[] around(File entry) : fileSystemAccess(entry)

is the advice that executes somewhat “around“ the advised

method or in other words behavior can be added before

and/or after the method execution, and the behavior can be

based on the result of the method execution. The code in

the body of the advice first checks if the requested file

contents is already cached: if yes, the cached value is

returned; if no, the actual method from the file system

implementation is invoked using the special construct

“proceed()”, the return value is cached and then returned.

This advice augments the join points selected by the

fileSystemAccess pointcut, that is the getContents()

method from any FileSystem implementation.

AspectJ has two more types of advice: before and after that

execute before or after the matched join point respectively.

An advised method is each method that satisfies the join

point criteria defined in the pointcut. Actually, every join

point that is supported by the AOP system, such as field

access, constructors and exceptions, can be advised.

The code in code listing 1 illustrates a very simple file

system that supports caching. If traditional object-oriented

programming were applied, the caching logic would have

been scattered across all methods of the file system

implementation. And if at some point the implementation

had to be changed, the caching code would have to be

presented in the new implementation as well. Even if the

decorator design pattern were used, some changes still

would be necessary to make the decorator decorate the

correct file system implementation. With the aspect-

oriented approach, the caching logic resides only in the

aspect, which essentially means that modifications to the

file system implementation or even replacing the entire

implementation will have no effect on the caching aspect

(literally speaking) of the file system. In other words, the

file system cache is a completely separate module and

modifications to the file system implementation and/or the

cache can be done independently. So the code for the file

system and the cache becomes simpler and therefore easier

to maintain.

3.2 Program tracing

Another very good example of AOP with AspectJ is the

problem of program tracing. Tracing is a special case of

logging with the purpose of tracing the execution of a

program. In other words, tracing is a technique to obtain

records of everything executed in a program. Traditionally

tracing is done by adding logging to the beginning and end

of methods similar to the code in code listing 2.

Code listing 2: File System Implementation.

public class FileSystemImpl implements FileSystem {

 public Collection<File> list(File entry) {

 logger.info(“Entered: FileSystemImpl.list()”);

 // code omitted for brevity

 logger.info(“Left: FileSystemImpl.list()”);

 }

 public byte[] getContents(File entry) {

 logger.info(“Entered:

FileSystemImpl.getContents()”);

 // code omitted for brevity

 logger.info(“Left:

FileSystemImpl.getContents()”);

 }

 public static void main(String[] args) {

 logger.info(“Entered:

FileSystemImpl.main()”);

 FileSystem fs = new FileSystemImpl();

 Collection<File> files = fs.list(new File("/"));

 fs.getContents(files.iterator().next());

 logger.info(“Left: FileSystemImpl.main()”);

 }

}

Obviously, the calls to the logger should be added to each

method in the system, which increases code scattering

immensely, not to mention that the code becomes a

maintenance nightmare. <<tsvety: had to re-wire the

previous sentence a bit; nothing wrong with it in a

conversation, but it was too informal for writing.>>

Fortunately AspectJ solves this problem with literally

several lines of code. A simple solution to the tracing

problem using AspectJ is shown in code listing 3.

Code listing 3: Tracing Aspect.

public aspect TracingAspect {

 private Logger logger =

Logger.getLogger(TracingAspect.class.getName());

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 215

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 pointcut tracedExecution() : execution(public * *.*(..))

&& !within(TracingAspect);

 before() : tracedExecution() {

 Signature methodSignature =

thisJoinPointStaticPart.getSignature();

 logger.info("Entered: " +

methodSignature.toShortString());

 }

 after() : tracedExecution() {

 Signature methodSignature =

thisJoinPointStaticPart.getSignature();

 logger.info("Left: " +

methodSignature.toShortString());

 }

}

The pointcut in the TracingAspect obtains the execution of

every public method in the system, except anything in the

aspect itself, and weaves the calls to the logger before and

after each execution. The thisJoinPointStaticPart reference

is accessible within every advice. It refers to the static part

of the current join point and it can be used to access useful

information like the join point signature, as shown in code

listing 3. The AspectJ runtime API documentation is

located at http://www.eclipse.org/aspectj/doc/next/runtime-

api/index.html. When the code in code listing 2 is executed

with the TracingAspect, the logger output should look

similar to the following:

INFO: Entered: FileSystemImpl.main(..)

INFO: Entered: FileSystemImpl.list(..)

INFO: Left: FileSystemImpl.list(..)

INFO: Entered: FileSystemImpl.getContents(..)

INFO: Left: FileSystemImpl.getContents(..)

INFO: Left: FileSystemImpl.main(..)

The TracingAspect, as is, will work for any system. When

implemented as shown in code listing 3, tracing is

completely separated from the system and the aspect itself

is fully reusable.

4. AspectJ tooling support

4.1 Eclipse integration

AspectJ is well-integrated with the Eclipse IDE. The

AspectJ Development Tools (AJDT) project provides

Eclipse platform based tool support for aspect-oriented

software development with AspectJ. AJDT's home page is

at http://eclipse.org/ajdt/. AJDT is very similar and

consistent with the Java Development Tools (JDT). It is

integrated with the “New Project” wizard and it has its own

“New Aspect” wizard. AJDT has an editor for aspects that

is also similar and consistent with the Java editor. The

aspect editor shares many of the features of the Java editor

including [3, 5]:

 The outline view populates as you type

 Syntax errors are underlined in red

 Organize imports works the same across aspects

and classes

 The editor supports folding (for example,

collapsing comment blocks)

 Reformat file function

 Helpful content-assist via control-space function

Another very useful part of AJDT is the Cross References

view. It shows the crosscutting relationships of the selected

element. This view plays very well with the standard

Outline view that normally shows the structure of a

class/aspect. For example, clicking within a method in the

editor or the Outline view causes the Cross References

view to show any crosscutting information for that method,

for example which advice are applied to this method.

Likewise clicking within an advice in the editor or the

Outline view causes the Cross References view to show

which methods are advised by the selected advice as

shown in Fig. 2.

Fig. 2 Outline and Cross References

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 216

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://eclipse.org/ajdt/

Debugging AspectJ code is done virtually in the same way

that Java code is debugged.

The AspectJ compiler used in AJDT is based on the

Eclipse Java compiler, and aims to be as efficient. The

compilation process is made more complex by the

crosscutting nature of AspectJ, but even the simplest

changes to both classes and aspects will still result in a fast

incremental compile. Some changes, such as changes to

pointcuts or advice that has been inlined, will require a full

build.

4.2 Ant integration

The AspectJ compiler is integrated with Ant and can be

run from any Ant build project. The aspectjtools.jar

includes three Ant tasks: [2, 6]

 AjcTask (iajc), a task to run the AspectJ post-1.1

compiler, which supports all the Eclipse and ajc

options, including incremental mode.

 Ajc11CompilerAdapter (javac), an adapter class

to run the new compiler using Javac tasks by

setting the build.compiler property

 Ajc10 (ajc), a task to run build scripts compatible

with the AspectJ 1.0 tasks

Adding the code in code listing 4 to any Ant build file

makes the AspectJ Ant tasks accessible:

Code listing 4: Ant Integration.

<taskdef

resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdef

s.properties">

 <classpath>

 <pathelement

path="${aspectj.lib.dir}/aspectjtools.jar" />

 </classpath>

</taskdef>

Where ${aspectj.lib.dir} points to the lib directory in the

AspectJ distribution. The <iajc> task should be used in

most cases. Some of the important attributes are shown in

Table 2. [2]

A complete list of all supported attributes is located at

http://eclipse.org/aspectj/doc/released/devguide/antTasks-

iajc.html. A simple example of a functional Ant build file

is shown in code listing 5.

Code listing 5

<project name="simple-example" default="compile" >

 <taskdef

resource="org/aspectj/tools/ant/taskdefs/aspectjTaskdef

s.properties">

 <classpath>

 <pathelement

path="${aspectj.lib.dir}/aspectjtools.jar" />

 </classpath>

 </taskdef>

 <target name="compile" >

 <iajc

outJar="${project.output.dir}/application.jar"

sourceroots="${project.src.dir}"

classpath="${aspectj.lib.dir}/aspectjrt.jar" />

 </target>

</project>

Where ${project.src.dir} points to a source directory that

contains Java classes and aspects and ${project.output.dir}

points to a directory into which the final binary file

(application.jar) goes. In this case the AspectJ compiler

performs source weaving.

The AspectJ Ant integration is very convenient and

simplifies to a great extent adding AspectJ to existing

projects whose builds are based on Ant.

Table 2: Important Attributes

Attribute Description

sourceRoots Directories containing source files
(ending with .java or .aj) to compile.
(can be used like a path-like
structure)

inPath Read .class files for bytecode
weaving from directories or zip files.
(can be used like a path-like
structure)

classpath The classpath used by the sources
being compiled. When compiling
aspects the same version of
aspectjrt.jar has to be included. (can
be used like a path-like structure)

destDir The directory in which to place the
generated class files. Only one of
destDir and outJar may be set.

outJar The zip/jar file in which to place the
generated output class files. Only one
of destDir and outJar may be set.

target Target class file format.

source Source compliance level.

5. Conclusion

AspectJ slowly but surely gains popularity and the number

of big projects that are using it has increased. A good

example is the Spring framework that allows AOP and

AspectJ code in particular to be seamlessly integrated and

used with the framework. AspectJ is also very popular in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 217

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://eclipse.org/aspectj/doc/released/devguide/antTasks-iajc.html
http://eclipse.org/aspectj/doc/released/devguide/antTasks-iajc.html

the academic setting. Researchers often use it for their

research in the area of AOP, for example in software

design optimizations.

Although AOP with AspectJ is not mainstream at the

moment, it has potential to become very popular in the

near future because it is easy to use and very powerful.

References
[1] R. Laddad, AspectJ in Action, Enterprise AOP with Spring,

Manning Publications, 2010.

[2] http://www.eclipse.org/aspectj

[3] http://www.eclipse.org/articles

[4] R. Miles, AspectJ Cookbook, O’Reilly Media, 2004.

[5] A. Colyer, A. Clement, G. Harley and M. Webster, Eclipse

AspectJ: Aspect-Oriented Programming with AspectJ and

Eclipse AspectJ Development Tools, Addison-Wesley

Professional, 2004.

[6] J. D. Gradecki and N. Lesiecki, Mastering AspectJ: Aspect-

Oriented Programming in Java, Wiley, 2003.

Daniela Gotseva is associate professor, PhD and Vice Dean of
Faculty of Computer Systems and Control, Technical University of
Sofia, from 2008 with primary research interest of programming
languages and fuzzy logics. She is a member of the IEEE and the
IEEE Computer Society.

Mario Pavlov is PhD student at Faculty of Computer Systems
and Control, Technical University of Sofia, from 2010, with primary
research interest of aspect oriented programming and
programming languages.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 218

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://www.eclipse.org/aspectj
http://www.eclipse.org/articles

