

Design and Implementation of Reconfigurable Embedded
Processor (REP) for AUV using FPGA

M. H. Al-Doori1, R. Badlishah Ahmad1, Abid Yahya1 and Mohd. Rizal Arshad2

 1 School of Computer and Communication Engineering, Universiti Malaysia Perlis, Kuala Perlis,
02000, Malaysia

2 School of Electric and Electronic Engineering, Universiti Sains Malaysia, Penang,
14300, Malaysia

Abstract
The superscalar pipeline is something that the REP architecture
resembles. The features that are similar in both architectures
include rename, decode, fetch as well as in-order front-end’s
parts as substituted by dispatch units. The physical register file,
execute unit, dynamic scheduler and task queue are contained by
the out of-order execution core. The architecture also contains
the REP that beholds an integrated system of shared-memory. A
number of experiments with realistic benchmarks and an FPGA
environment are used to synthesize design. The experiments
conducted yielded in results that prove that the new architecture
of the REP leads to higher performance of applications because
of decreased processing time. And the core reason for the
deduction of processing time is the simplified complexity of the
frequency and area of the architecture. The results show that the
least error tolerance is 1m by particle filter. Also, the optimum
iteration level is 20 to get enhanceable navigation data for AUV.
Keywords: Embedded system design, Soft core FPGA processor
design, parallel processing, underwater detection.

1. Introduction

Application-specific applications can be developed using
customized hardware or software. Achieving a
compromise between the two can lead to many benefits.
By taking hardware and software factors into
consideration, the scientific community proposed the
novel concept of reconfigurable computing [1]. These
systems integrate the efficiency of hardware
implementations in addition to the implementation of
programmable processors. This leads to improvements in
performance. These systems are also expected to address
the difficulties of both the hardware and software as they
are a hybrid of both the technologies. Reconfigurable
computing was introduced as a concept in early sixties [2].
It was described as a system that employs hardware
programmability, customizing the way the hardware is
employed for a number of physical control points [2].

A reconfigurable system actually comprises of
microprocessors, I/O interface, Reconfigurable Devices
(RD) and memory. FPGAs are originally reconfigurable
devices that have revolutionized the development of
digital systems. The recent developments in the VLSI
technology have vastly influenced reconfigurable devices
in terms of evolution in the last decade, securing
improvements in performance and flexibility. Taking into
account the literature available in this field, a number of
important surveys such as Tessier and Burleson, Vemuri
and Harr, DeHon and Wawrzynek, Compton et al. [1- 4]
categorize these devices as digital signal processing or
DSP technology between specific ICs and
microprocessors. While ASICs are believed to be
hardwired devices, nothing can overshadow the
importance of the role Programmable Digital Signal
Processors (PDSP) plays in the implementation of
mechanisms for digital signal processing applications.
Researchers also found out that RDs filled the existing
gaps between hardware and software such that better
performance is rendered than software and it helped
maintain a very high level of flexibility.

This paper focuses on parallel and out-of-order execution,
register renaming and other established superscalar
architectural techniques are used as a base for the creation
of the REP. Interestingly, REP design has earlier been
created to make instructions fine-grained parallel. The
creation took several steps. The first step revolved around
the analysis of the nature of coarse-grain level architecture
and that of fine-grain superscalar architecture. The second
step was to identify the differences between the models of
both the architectures. One of the major findings was that
the very huge number of inputs and outputs contained by
embedded tasks complicates the design that includes
dynamic scheduler, task queue and register renaming. The
third step is to measure the magnitude of the differences
discovered between the two architectures. The fourth step
is to take due measures to modify and scale the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 118

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

architectural techniques in a way that efficiency is not
adversely affected.

2. Parallel Computing Architecture

The typical classification of parallel computing
architecture was introduced in 1972 by Michael J. Flynn,
this architecture came to be known as Flynn’s taxonomy
[5]. The basis for this classification was whether the
architecture is able to execute single or multiple
instructions on single or multiple data sets. Using this
basis, the classification put forward four categories of
computer architecture that are described below:

i. Single instruction single data (SISD) is a
computer system that is capable of executing
instructions sequentially on a single set of data.
This system does not support parallelism.

ii. Single instruction multiple data (SIMD) is an
architecture that works with instruction sets using
vectors so that a single instruction is executed to
all the data in a set simultaneously. A common
example using this architecture are multimedia
applications making use of computer graphics.

iii. Multiple instruction single data (MISD) is very
rarely used. As the name implies, it is used for
executing multiple instructions on a single set of
data. A common area of use is to determine the
fault tolerance on critical systems.

iv. Multiple instruction multiple data (MIMD) is a
core multiprocessor systems with multiple cores.
This architecture supports parallelism as multiple
instructions are being executed on multiple sets
of data simultaneously.

In addition, parallelism can be implemented on a number
of levels of the system architecture. It can be achieved at
instruction level, data level and thread level [6]:

i. Instruction level parallelism determines how
many operations can be simultaneously
performed by a computer program.

ii. Thread level parallelism, also known as task
parallelism, is the parallelism that shares the
execution of a computer program among multiple
processors.

iii. Data level parallelism achieves the execution of
instruction by distributing data among multiple
processors.

While it is difficult to differentiate between embedded and
general purpose computer systems, embedded ones have
continued to scale in terms of complexity, sophistication
and scope. The introduction of advancements in
semiconductor and information technology has introduced
inexpensive computing capabilities. The following

outlines the way embedded computing and embedded
applications differ from that of general purpose computer
systems [7]:

i. Power and Energy Efficiency.
ii. Performance and Predictability.
iii. Cost and Scalability.

FPGAs are being used for the design and development of
embedded systems. This is because FPGAs uses ‘off-the-
shelf’ programmability and superior logic capacity that
allows it to avoid costs of long manufacturing times. Some
of the major FPGA vendors include Synplicity [8-12],
these vendors do not only supply FPGA boards but
Electronic Design Automation (EDA) tools so that
designers can realize the full potential of FPGAs. These
tools can be used for designing, placement, simulation,
synthesis, routing and verification. In addition, libraries of
Intellectual Properties (IPs) and reference designs.

3. Proposed Design

The designed core has incorporated an embedded
processor that comprises of a dual-issue processing unit
that is effectively pipelined along with all the other
functional elements that are needed to create embedded
SoC solutions. The REP used for this approach consists of
two stages namely dual-issue task fetch and decode unit
and load/store operations. Furthermore, it includes
individual task and data units as well as timer facilities.
Fig. 1 illustrates the logical organization of the REP. The
task unit incorporated into the REP is responsible for
fetching, decoding and issuing two tasks each cycle to a
group of two execution pipelines.

Fig. 1 Block diagram of designed REP [13]

The proposed design of the processor employ data and
task transfers so as to secure improvements in terms of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 119

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

efficiency of data and task transmission between memory
and registers. The processor achieves all the interaction
over an on-chip connection. The memory and
communication systems integrated into the processor offer
latencies that can predict and bandwidth that promises to
simplify the process of addressing the efficiency and real-
time constraints. The task and data memory are made up
of 2-port RAM on chip and is created by making use of the
Altera® CAD tool as shown in the Fig. 2 and Fig. 3
respectively.

Fig. 2 Block diagram of task memory

Fig. 3 Block diagram of data memory

Embedded applications extensively make use of threads
and loops that comprise of small task working sets and
execute extensive sub-tasks locality and reuse. As a result,
a large portion of the required bandwidth in embedded
applications is contributed by smaller memories
comparatively.

The on-chip memory carries out a number of fractions
effectively. The most important function is that it offers
local memory for retaining all the significant tasks and
data sets that fail to meet the capacity of register files that
are located close to processors. The local memory is where
the REP stores the tasks that are then loaded into the task
registers while the thread is being executed. This
significantly reduces the predicted impact of energy and
performance encountered by loading tasks from memory
in the duration of thread execution. The embedded
memory being used is also making use of local memory
that releases data temporarily when the scenario occurs
that it becomes impossible to designate registers to all the
available variables in a thread.

The on-chip memory also offer local storage for achieving
task and data transfers between the processors residing in
the memory and in the core and beyond. The superior
storage capacity embedded into the local memory allow
designs to incorporate techniques such as double buffering
and pre-fetching that ensure computation and
communication concurrency. This successfully
discourages any remote latency in terms of memory
access. The REP architecture used reduces the rate of task
and data transmission to an REP by ensuring that multiple
processor embedded in an concurrent architecture are
accessing the tasks and data. This makes it a promising
mechanism that guarantees to secure improvements with
regard to task and data delivery. This is achieved by using
data parallel threads that are integrated to the REP.

The on-chip memory used allows multiple transactions to
be executed simultaneously. Each processor has a separate
bank within a core. Processes gains access to its preferred
bank by making use of priority before any other channel
interface or processors tries to access it. Tasks and data
that are unique to a processor are retained by its preferred
bank to offer access times that are deterministic. The logic
circuit is responsible for assigning accesses to the read and
writes ports and is biased. This is done to ensure that an
affinity is established between the different memory banks
and processors. This is why REP is capable of making
such strong assumption in terms of latency and memory
availability when data distributed among a number of
processors is accessed.

Threads that are executed in an REP interact by means of
shared reading and writing variables that are stored in the
local memory. However, a drawback associated with
interaction through memory is that it demands that threads
execute load and store tasks massively. The local
communication offers a high-bandwidth interconnection
that has a low latency. This ensures that data is transferred
efficiently between threads and that they are capable of
executing simultaneously on different processors. These
interconnections established can also be used to transmit
data between threads that are mapped to different
processors within an REP. This ensures that the rate of
data streaming through memory does not suffer. An
implicit synchronization mechanism is also employed by
these communication links. This allows data to be
transported locally between tasks from a single thread that
are distributed and mapped over a number REPs. In
addition, injected tasks running on a variety of processors
make use of communication to guarantee synchronized
execution.

Furthermore, since REP uses dedicated point-to-point
links to achieve communication between the processors,
the local communication offer links that are configurable

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 120

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

for REP. This allows data streams between processors in
different threads to communicate to each other. The
mapping of tasks to processors is further simplified by
addressing some of the constraints that discourage local
communication. This is because the rate at which multiple
memory operations are executed and it is also cost
effective to transfer data among the different threads
working between processors through local communication
that is responsible for transferring data to memory. This
facilitates the transportation of scalar data between tasks
that are carried out on different threads across configurable
links. However, the transport latency increases with the
increase in distance as the data traverses.

REP actually makes use of two execution pipelines that
are simple integer and load/store respectively. Each
pipeline makes use of four stages that are capable of
accessing the nine ports (six designated to reading and
three for writing). The simple integer pipeline is
responsible for carrying out the usual arithmetic and logic
operations but it does not update the condition register. All
the load/store operations are handled by the load/store
pipeline. Furthermore, the load//store pipeline also provide
provisions for carrying out all the operations that are lying
in the big-endian and little-endian data regions. The
dynamic data and task controller provided by the REP
allows the use of concurrent access and effectively handles
all the pipeline stalls, as shown in the Fig. 4.

Fig. 4 State diagram of the task and data controller

The task units are responsible for issuing the tasks that are
then distributed among the functional units. Shared
operand registers provide cost effective solutions for
employing short-term locality and reuse provide close to
functional units. Tasks are coupled together to form a
thread and they all share the local memory. Groups of

threads are coupled with distributed memory to form
processes. Local communication ensures that the
communication links used offer a low latency and high
bandwidth and this allows the different registers to
communicate to each other.

The REP used makes use of time base and two timers: a
Fixed Interval Timer (FIT) and a Decrementer (DEC). The
time base is typically a 64 bit counter that increments at a
particular frequency that is either equal to the clock input
of an asynchronous timer or to the rate of the processor
clock of the REP. DEC or Decrementer is a 32-bit register
whose rate of decrement equals the rate of increment of
the time base. The DEC register actually retains a value to
guarantee that the desired interval is created. When the
register contains the value zero, there are a number of
actions that are triggered: a status bit is set in the Timer
Status Register (TSR) and the DEC register will stop
decrementing. Moreover, the DEC can also be
programmed to reload the value stored in the DECAR or
Decrementer Auto-Reload register. In turn, the DEC will
again start decrementing. Moreover, the FIT generates the
periodic time depending on the chosen bit selected from
the time base.

Rep processed the date that coming from Embedded
Parallel Systolic Filters (EPSF) [14]. The basic idea is that
of chained processing or pipeline which is used as the
basic implementation technique. This distributes the
execution of a given operation in a series of steps where
efforts are made to ensure that all the steps are of the same
time duration. The cycles it takes to execute a single data
packet is less and the overhead introduced can be
effectively amortized by using parallel operations. A
synchronous pipeline has a number of processing stages
where each stage represents a different stage of
processing. The stages are distinguished by embedding a
number of additional registers. However, the use of
pipeline or chained processing may introduce a number of
conflicts in terms of data and control. These conflicts are
then addressed in the proposed design by employing
appropriate circuitry structures [14].

To counter this problem, the status of each stage is
indicated using flag bits. If the flag bit is 0, this implies
that the stage has finished the process and can progress
with the next data otherwise the data from the previous
unit will be retained in the delay unit for 100 ns each
cycle. This will make the previous stages work with
smaller clock cycles until the flag bit is again 0. This part
of embedded design makes use of the most commonly
used filters Kalman Filter, Extended Kalman Filter,
Unscented Kalman Filter, and Particle Filter for data
processing in navigation and tracking systems for robot
[15- 24].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 121

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

4. Design Validation

The most important aspect to keep in mind for design
testing is the range information. Ping and other
synchronized clocks are used at specific intervals to
determine ranges. The echo of the ping for different
directions is listened by the sensors and the round trip
times are then used to compute the ranges. The important
parameters for range finding are used to determine the
frequency of the ping. A reverse relation exists between
the signal penetration and frequency due to the
characteristics of water. High frequency implies lower
penetration and higher absorption as compared to the infra
frequency which also has high penetration [25]. 1Hz is the
frequency chosen for range finding involved in design
validation. Using this range, it is possible for the system to
self localize the AUV.

In design validation , one significant question is how many
iterations are needed to achieve a chosen level of precision
in the results. More iterations in the sample lead to greater
precision until reach saturation point that extra iterations
are wasted system time. The proper number of iterations to
reach acceptable level of precision in the results by REP is
20 iterations. REP starts from 5 iterations until reach study
state, as shown in the Fig.'s 5, 6, 7, 8, 9 and 10. There are
five plots in each figure, four of them representing filtered
data by EPSF and supplying to REP to get target distance
from AUV. The fifth one is the actual target distance.
Figures show that tolerance in the REP's throughput is
decreasing while iteration increased until reach 20
iteration. Furthermore, figures show that the most
acceptable data filtered in the design is PF. This is
because the PF reacts relatively accurate than KF, EKF
and UKF.

Fig. 5 Distance for oncoming target to AUV for 5 iterations

Fig. 6 Distance for oncoming target to AUV for 10 iterations

Fig. 7 Distance for oncoming target to AUV for 15 iterations

Fig. 8 Distance for oncoming target to AUV for 19 iterations

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 122

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 9 Distance for oncoming target to AUV for 20 iterations

Fig. 10 Distance for oncoming target to AUV for 21 iterations

The good performance of the prescribed design is secured
for a tolerance of 2 m for 25 m range. The PF module
offers minimum tolerance that is 1 m in this case and this
is logical as the error is minimized precisely as shown in
Fig. 9. In addition, the test provides sensor signals that are
used on Matlab files by employing the same filters that
help to evaluate the comparison for the specific filters
used. Results also prove that EPSF is more accurate as
compared to Matlab as shown in Fig.'s 11, 12, 13, and 14.

Fig. 11 Range comparison between KF and Matlab for 20 iterations

Fig. 12 Range comparison between EKF and Matlab for 20 iterations

Fig. 13 Range comparison between UKF and Matlab for 20 iterations

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 123

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 14 Range comparison between PF and Matlab for 20 iterations

5. Conclusion

The new architectural design brought a set of improved
processes that exploit locality, reuse and abundant
parallelism that are rife in embedded applications. Such a
design was hierarchically organized and distributed. Also,
the novel architectural structure allowed a far more
efficient scheme of mapping applications to massive
parallel systems through a wide range of mechanisms. The
improvement in efficiency was also a function of design
that orchestrated and scheduled the motion of data and
tasks and significantly controlled the placement of data
and tasks too.

Although this paper mostly contemplated efficiency, the
relative complexity of mapping applications to design
informed many of the architectural decisions. Mapping
applications from high level descriptions of systems to
detailed implementations imposed substantial engineering
and time costs. The architecture attempted to simplify the
complex and arduous task of that must satisfy real time
performance constraints to programmable architectures.

References
[1] DeHon, A., & Wawrzynek, J.” Reconfigurable computing:

what, why, and implications for design automation”, Paper
presented at the Proceedings of the 36th annual ACM/IEEE
Design Automation Conference, 1999.

[2] Compton, K., Li, Z., Cooley, J., Knol, S., & Hauck, S.
“Configuration relocation and defragmentation for run-time
reconfigurable computing”, IEEE Trans. Very Large Scale
Integr. Syst., 10(3), 209-220, 2002.

[3] Tessier, R., & Burleson, W. “Reconfigurable Computing for
Digital Signal Processing: A Survey. J. VLSI Signal
Process. Syst"., 28(1/2), 7-27, 2001.

[4] Vemuri, R. R., & Harr, R. E. “Configurable computing:
technology and applications”, Computer 33(4), 39-40, 2000.

[5] Flynn, M. J. “Some computer organizations and their
effectiveness”, IEEE Transactions on Computers, 21(9),
948–960, 1972.

[6] Hennessy, J. L., & Patterson, D. A. " Computer
Organization & Design: The Hardware/Software Interface"
Morgan Kaufmann publishers, Inc. 1997.

[7] Sass, R., & Schmidt, A. “Embedded Systems Design with
Platform FPGAs: Principles and Practices" 2010.

[8] Synplicity. Information available at
http://www.synplicity.com. Access Date at July 2012, from
http://www.synplicity.com.

[9] Altera. Information available at http://www.altera.com.
Access Date at July 2012., from http://www.altera.com.

[10] Xilinx. Information available at http://www.xilinx.com.
Access Date at July 2012, from http://www.xilinx.com.

[11] Cadence Information available at http://www.cadence.com.
Access Date at July 2012.

[12] Graphics, M. Information available at
http://www.synplicity.com. Access Date at July 2012, from
http://www.synplicity.com.

[13] Salih, Muataz H., R. B Ahmad, Abid Yahya & Mohd. Rizal
Arshad, "Embedded Concurrent Computing Architecture
using FPGA", Proc. of the 2012 7th International
Conference on System of Systems Engineering, Genoa, Italy
- 16-19 July 2012.

[14] Salih, Muataz H., R. B Ahmad, Abid Yahya & Mohd. Rizal
Arshad, " FPGA Design and Implementation of Multi-
Filtering Techniques using Flag-Bit and Flicker Clock",
IJCSI International Journal of Computer Science Issues,
Vol. 9, Issue 4, No 2, July 2012.

[15] Brown, R. G., & Hwang, P. Y. C. " Introduction to Random
Signals and Applied Kalman Filtering (3rd Ed ed.)", New
York: John Wiley and Sons, 1997.

[16] Doucet, A., Godsill, S., & Andrieu, C. " On sequential
Monte Carlo sampling methods for Bayesian filtering"
Statistics and Computing, 10(3), 197-208, 2000.

[17] Salcic, Z., & Chung-Ruey, L. "Scalar-based direct algorithm
mapping FPLD implementation of a Kalman filter",
Aerospace and Electronic Systems, IEEE Transactions on,
36(3), 879-888, 2000.

[18] Wan, E. A., & Van Der Merwe, R. "The unscented Kalman
filter for nonlinear estimation. Paper presented at the
Adaptive Systems for Signal Processing, Communications,
and Control Symposium 2000. AS-SPCC. The IEEE 2000.

[19] Haykin, S. "Adaptive Filter Theory [Book Review]" Signal
Processing Magazine, IEEE, 19(4), 87-88, 2002.

[20] Zia, K., Balch, T., & Dellaert, F. "A Rao-Blackwellized
particle filter for EigenTracking", Paper presented at the
Computer Vision and Pattern Recognition, 2004. CVPR
2004. Proceedings of the 2004 IEEE Computer Society
Conference on, 2004.

[21] Meiliang Wu, & Andrew W. Smyth, "Application of the
unscented Kalman filter for real-time nonlinear structural
system identification", Structural Control and Health
Monitoring, 14(7), 971-990, 2007

[22] Eleni N. Chatzi, & Andrew W. Smyth, "The unscented
Kalman filter and particle filter methods for nonlinear
structural system identification with non-collocated

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 124

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

heterogeneous sensing", Structural Control and Health
Monitoring, 16(1), 99-123, 2009.

[23] Fayomii, C. J. B., Sawan, M., & Bennis, S. "Parallel VLSI
implementation of a new simplified architecture of Kalman
filter", Paper presented at the Electrical and Computer
Engineering, 1995. Canadian Conference on, 1995.

[24] Sau-Gee, C., Jiann-Cherng, L., & Chieh-Chih, L. "Systolic
implementation of Kalman filter", Paper presented at the
Circuits and Systems, 1994. APCCAS '94., 1994 IEEE
Asia-Pacific Conference on, 1994.

[25] Wadoo, S., & Kachroo, P. “Autonomous Underwater
Vehicles: Modeling, Control Design and Simulation”,
Califonia: CRC p.112-134, 2010.

Muataz H. Salih received the B.Sc. and M.Sc.
degrees from the Department of Computer
Engineering from University of Technology,
Baghdad, Iraq, in 1998 and 2002, respectively.
From September 1998 to March 2003, he was a
research engineer in Military Industrialization
Corporation of Iraq. From October 2003 to June
2008, he was a lecturer and manager of

engineering faculty’s LABS in the faculty of Engineering of Al-
Kalamoon private university, Derattiah, Syria. Currently, he is a
Ph.D student at Universiti Malaysia Perlis (UniMap), Kuala Perlis,
Malaysia. His research interests on designing digital systems
using FPGA technology, embedded systems, computer system
architecture, microprocessor architecture, computer interfacing,
active jamming system for laser missiles, and real time systems.

R.B. Ahmad obtained B. Eng. in Electrical &
Electronic Engineering from Glasgow University in
1994. He obtained his M.Sc. and PhD in 1995 and
2000 respectively from University of Strathclyde,
UK. His research interests are on computer and
telecommunication network modeling using
discrete event simulators, optical networking &
coding and embedded system based on

GNU/Linux for vision. He has five (5) years teaching experience in
University Sains Malaysia. Since 2004 until now he is working with
University Malaysia Perlis (UniMAP). Currently as the Dean at the
School of Computer and Communication Engineering and Head of
Embedded Computing Research Cluster.

Abid Yahya earned his B.Sc. degree from
University of Engineering and Technology,
Peshawar, Pakistan in Electrical and Electronic
Engineering majoring in telecommunication. Dr.
Abid Yahya began his career on a path that is
rare among other Researcher executives and
earned his M.Sc. and Ph.D. degree in Wireless
& Mobile systems, in 2007 and 2010

respectively, from the university Sains Malaysia, Malaysia.
Currently he is working at School of Computer and Communication
Engineering, university Malaysia Perlis (UniMAP). His professional
career outside of academia includes writing for the International
Magazines, News Papers as well as a considerable career in
freelance journalism. He has applied this combination of practical
and academic experience to a variety of consultancies for major
corporations.

Mohd Rizal Arshad graduated from the
University of Liverpool, in 1994 with a B.Eng. In
Medical Electronics and Instrumentation. He
then pursues his MSc. in Electronic Control
Engineering at the University of Salford,
graduating in Dec. 1995. Following from this, in

early 1999, he continues with a PhD degree in Electrical
Engineering, with specialization in robotic vision system,. Since
then, he has been working at the Universiti Sains Malaysia (USM),
Malaysia as a full-time academics, i.e. lecturer and researcher. He
has supervised a number of postgraduates students at the MSc.
and PhD. levels. He has also published actively in local and
international publications. Dr. Mohd Rizal Arshad is currently an
Associate Professor and the deputy dean of the School of
Electrical and Electronic Engineering, USM. And with his team of
researcher, is also the pioneer of underwater system technology
research efforts in Malaysia.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 5, No 1, September 2012
ISSN (Online): 1694-0814
www.IJCSI.org 125

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

