
P2M2 – A Project Memory Management System

Hatem BEN STA

LI3 – Laboratoire de l’Ingénierie Intelligente des Informations,
Ecole Nationale des Sciences de l’Informatique

Université la Manouba
Campus Universitaire de la Manouba, la Manouba 2010

Abstract
The knowledge preservation of design project is an
important issue for high technological industry. A general
framework for managing knowledge pertaining to design
projects is proposed. The objective is to allow preserving
relevant information to be used later, thanks to a product
design project memory. We introduce a generic platform-
independent model that fits requirements of project
memory management; this platform is based on UML
generic models. We describe P2M2, an original
implementation over object-relational technology in a
multi-tier architecture; model transformation based on
Model Driven Architecture (MDA) is developed. Finally,
we discuss the benefits of ontology engineering for
Project Memory management purposes.
Keywords: Project Memory, Object-Relational,
Knowledge Management, Ontology.

1. Introduction

In design projects characterized by a high level of
technological and organizational complexity, an
important question is to know how a company or
partners consortium can maintain competencies
generated during an engineering project until their
next use, and how the technical choices validated or
invalidated within a previous projects can be
reused.
In the framework of high technology products,
designers use their experience to make choices. The
justification of these choices is sometimes stored in
documents which are exploitable with difficulty or
at the very worst remains in the implicit domain
and is never formalized. These choices depend on
the context: economic constraints for example can
change during the time; new technologies can

appear, as well as new requirements concerning
comfort or security.
If a team has to design a new product version some
time later, it is interesting to retrieve the different
considered solutions and the reason why they were
rejected. The cost of a particular component was
perhaps prohibitive, but it is now acceptable, and so
a previously abandoned solution becomes possible.

So, the traceability of reasoning process can ensure
going faster in the design of future products, by
reusing. Furthermore, it is often necessary to know
who by, when and why, the decision was made, to
determine the responsibilities when a problem
occurs.

Another problematic is to preserve information
about a product configuration. An aircraft for
example is often a particular case, and to be able to
ensure the airplane’s maintenance, a company has
sometimes to call actors who have left the firm,
because these persons are the only ones to have the
appropriate knowledge. This situation is
unacceptable.

So, the question is: how to store design choices,
their justifications, working hypotheses, context
and authors of these choices. The proposed answer
is to implement a method of expert’s knowledge
management using a software tool: a product design
project memory [2]. This software must be
considered as a means serving a learning
organization, including human aspects. In this paper
only technical aspects are considered.

2. A Model for Project Memory

2.1 Project Memory

A project memory can be defined as a memory of
both knowledge and information acquired during

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 84

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



the realization of projects [5]. [13] distinguishes the
memory of the projects characteristics (concerning
the context, the organization, the result) from the
memory of the design reasoning (relating to the
decisions and the resolution of problem). In the
field of the engineering and knowledge
management, some traditional methods can be
quoted, like REX [12] (individual memory of
experiment), MKSM [6] and CommonKADS [18]
(memory of activities). Several approaches are
proposed more specifically for the design memory.
For example, “Design Rationale Capture Design”
[11] based on a representation language (language
DRCS) is adapted to concurrent engineering. Other
approaches like IBIS [4] or QOC [3] are interested
in the decision-making process in design.
Other non-technical aspects must be taken into
account, as [10] shows that it is necessary to
develop a new culture to transform an organization
by project into a learning organization. [9] shows
the interest to capitalize on the failures and missed
opportunities. Many aspects require nevertheless to
be improved, in particular the problem of the
traceability of the design choices is still of
topicality.

2.2 General Architecture of the Information
System

Our approach consists in proposing a generic model
allowing the implemen-tation of project memories.
In reference to model levels proposed by [16], we
suggest a three level architecture (fig. 1).

Fig. 1 The three levels architecture.

Level M0 is relative to real world “objects”, such as
product, human or material resources, calculation
resources, CAD models, documentation, etc.
Level M1 corresponds to the models of the previous
real objects, and constitutes a project memory; it
structures the pertinent information without
redundancies, but indicating where to find this
information.

Lastly, level M2 is the more abstract one; it
describes the model allowing project memories
instantiation. This level is generic and ensures the

possibility to memorize all projects’ information.
For example, it is possible to add dynamically
attributes to a class, to associate it to one or several
viewpoints. It also allows linking to the actor who
is responsible of its values’ validity and to elements
from which it is issued (documentation, calculation
resource, etc.). By instantiation of the model, the
software’s developer of a particular project memory
for an enterprise has to define the appropriate
information to store, depending on its next use. For
example, if the concern is tracking the
responsibilities in case of default, the software will
store the tasks, the actors, the organization and the
date of each action.

2.3 A generic data model

In the framework of product design project, real
objects can often be represented by tree structures
The search of a generic concept leads to represent
such models by the use of a pattern (design scheme)
fig. 2 adapted from those proposed in [7]. A pattern
is in a sense a motif duplicable and adaptable
according to necessities.

Fig. 2 Patterns describing a tree-like structure.

This pattern contains a class Root-Element intended
to represent the root of the structure, because it was
noticed that this one is stable. Indeed, if one
represents the WBS of a project for example, the
root is at once the name of the project and remains
unchanged.
On the other hand, for Gamma, leaves have to
remain leaves, without possibility of continuing the
breakdown. This limit does not correspond to what
was noticed in real design cases. The users often
have to break down elements that were previously
leaves. As a result, the pattern we propose contains
a class called Element representing a node of the
breakdown. This class contains a reflexive
association (a node can consist of nodes).

The association between Root-Element and Element
as well as the reflexive association represented on
fig. 2 are of composition type; a node belongs only
to a father node, and the suppression of this father

Real
objects

Project
memory

Generic
model

M0

M1

M2

represents

represents

RootElement Element

1..1 0..* 1..1

0..*

::Core::Entity

isComposedOf

isComposedOf

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 85

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



leads to suppress all children nodes. But the pattern
can be adapted according to necessities, and one or
some of these compositions can become
aggregations; in this case, a node can be shared
between several fathers, and the lifecycles of a node
and its father can be different.

We may also notice that such a pattern can be
enriched by constraints described with a language
such as [15] to specify for example the
impossibility to create a circular breakdown
structure (if Element_1 consists of Element_2, then
Element_2 can not consist of Element_1). These
constraints are specified once.

The pattern described allows only keeping the last
version of the arborescence, administering neither
its history nor any other constraint such as
exclusivity between children nodes, etc. These
aspects are managed by the means of relations
which are defined between entities in the package
Core [2].

Fig. 3 gives the global view of the information
system models structure in packages. This paper
concerns only the package Product.

Fig. 3 Package structure of the IS models.

3. P2M2: An Object-Oriented Project
Memory Management System

3.1 Prototype architecture

The models proposed are currently under
implementation by using multi-tier J2EE
architecture (fig. 4).
The first tier is the database tier supported by an
Oracle database management system in version
9iR2 and is in charge of:

 The definition of the database type
hierarchy using the object/relational
feature of the server (type inheritance,
nested tables, type references…)

 Data storage in one object relational table
named "entity_tab"

 Data filtering with object views associated
to database triggers "instead of…"

The second tier consists of a business application
server hosting one entity EJB per object view and
one session EJB implementing the classical façade
pattern. This pattern provides a unified interface to
a set of interfaces in a subsystem. Façade defines a
higher-level interface that makes the subsystem
easier to user [7].
The third tier is the presentation tier composed of
JSP and html pages.

The last tier is the client tier. The client uses the
application trough a simple web browser.

The fig. 4 illustrates the component mapping for the
product aspect of the project memory.

Fig. 4 General technical architecture of the information system.

Documentation

Organisation

Core

Product

Proc ess

Knowledge

Actors

ViewPoints

ClientPresentationServerapplicationServerdatabaseTier

«table»
entity_tab

«View»
Entity_View

«View»
ProductViewEJB

«View»
ProductTreeEJB

«EJB entity»
EntityView

«EJB entity»
ProductViewEjb

«EJB entity»
ProductTreeEjb

«EJB session»
ProjectMemoryFacadeEJB

«pageHTML»
indexProduct.html

«JSP»
addProduct

«JSP»
updateProduct

«JSP»
listOfProducts

«JSP»
deleteProducts

«JSP»
listOfEntities

«JSP»
productTree

«type»
Entity_type

«type»
Product_Element Product

-Term1

*

-Term2

*

-parent

0..1

-Child *

WebBrowser

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 86

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



For the implementation of the project memory, one
of the main interesting features of this database
management system is to provide the developer
with the object relational technology. The object-
relational model is based on the extension of the
relational model by the essential concepts of the
object. The system main part thus remains
relational, but all the key concepts of the object are
added there in a form particularly designed to
facilitate the integration of the two models. In
addition to built-in data types, the developer can
define new object types that make it possible to
model complex structures such as type hierarchy,
object references, etc. In general, the object-type
model is similar to the class mechanism found in
C++ and Java. Like classes, objects make it easier
to model complex, real-world business entities and
logic, and the reusability of objects makes it
possible to develop database applications faster and
more efficiently. By natively supporting object
types in the database, Oracle enables application
developers to directly access the data structures
used by their applications. Object abstraction and
the encapsulation of object behaviours also make
applications easier to understand and maintain [17].

3.2 Model Implementation Guidelines

The classical principle of the model implementation
is the following:

1. For each UML class, define one user
defined type ("CREATE TYPE
MyType…" statement). For sub-classes,
sub-types are created using the "
CREATE TYPE … UNDER …"
statement.

E.g, the statements for the diagram shown on fig. 5
are:

CREATE TYPE Class1Type(

Id_class1 INTEGER,   Attrib1
VARCHAR2(10)) NOT FINAL

CREATE TYPE Class2Type

UNDER Class1Type (

Attrib2 VARCHAR2(10))

Fig. 5 Type structure for a class hierarchy.

2. Define one object-relational table per user-
defined type ("CREATE TABLE
MyTable OF MyType" statement), except
for types corresponding to UML sub-
classes.

 For each association (including aggregation
and composition) and according to the
multiplicities expressed on association-ends:
1. Define references (REF or FOREIGN

KEY)
2. Define composite structure if necessary for

managing "1..*" multiplicities.
 For each inheritance relation it is possible to

use two different implementation models:
horizontal or flattened model.
1. In the horizontal model, the developer

defines one table per type (fig. 6)

Fig. 6 Horizontal model: one table per type.

The benefit of this model resides in the
straightforward access to data. However it becomes
difficult to build referential integrity constraints
concerning instances of different classes of the
hierarchy due to the scattering of the data in the
large number of tables.

In the flattened model, the substitutability principle
in a type hierarchy is used. This principle indicates
that one instance of the subclass can be considered
as one instance of its super-class, i.e. from set
viewpoints all elements of the subclass also belong
to the set of elements of the super-class. In practice,
only one table of the super-class type can be created
for storing data of all the type hierarchy (fig. 7).
The statements of the data manipulation language
can access directly to the columns corresponding to
the attributes of the super-type, but have to include
down casting operators (i.e. TREAT) to access to
columns corresponding to the attributes of the sub-
type.

Fig. 7 Flattened model: one table for the hierarchy.

This last possibility was chosen for the inheritance
implementation because all the project memory
components are sub-classes of a unique root class

-id_class1 : integer
-attrib1 : String(10)

Class1

-attrib2 : String(10)
Class2

-id_classe1 : integer
-attrib1 : Varchar2(10)

«type»
Class1Type

-attrib2 : Varchar2(10)

«type»
Class2Type

Id_class1 attrib1

Classe1_Tab

Id_class1 attrib1 attrib2

Classe2_Tab

Id_class1 attrib1 attrib2

Classe1_Tab

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 87

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



("Entity") and the management of links between
two components of any class is easier this way.

3.3 Implementation
Several models are implemented in the prototype:
product, documentation, evolution relation and
version models. In this prototype it is possible to
define (create, update, delete) different product lists
(fig. 8 a) and hierarchies (fig. 8 b).

Also, it is possible to manage documentation, by
using nested documentation items whose structure
can be modified throughout versions (figure 9a).

P2M2 allows one to reference as many entities as
necessary in a version item (figure 9b), which is a
composition of a set of any entity of the project
memory. Versions can evolve: their history is being
referenced in an evolution item. On figure 10, one
can see how a version or a documentation item can
be declared as the evolution of a former entity of
the same type.

Fig. 9 a Documentation tree Fig. 9 b Version content

Fig. 8 a List of products. Fig. 8 b products hierarchy in P2M2.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 88

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



Fig. 10 List of evolutions in P2M2

4. Ontologies for Project Memory
Management

4.1 Ontologies and the Semantic Web

Over the past decade, knowledge representation
research has focused on ontologies, which are, as
[8] defines them, formal specifications of
conceptualizations. An Ontology typically consists
in a set of formally-defined concepts and properties.
By applying inference rules defined by an ontology,
a software agent can compute inferred knowledge
from a given ontology asserted knowledge. Several
general inference tasks are referenced by ontology
engineering, the main one being the subsumption
problem, which consists in finding all the classes a
given object belongs to.
Ontologies usually rely on a subset of first order
predicate logic known as Description Logics [1].
Depending on the constructs an ontology is built
upon, a given ontology can be proven decidable, in
the sense of subsumption, and therefore ensure
tractability of applications using it. SHOIN(D) is
one of the most popular Description Logics, since a
well-known implementation of it is OWL-DL, the
Description Logic compliant subset of the Web
Ontology Language (OWL) [14]. The World Wide
Web Consortium (W3C) has recently issued a
recommendation for OWL as a core technology of
the Semantic Web, but only with its DL restriction
can one ensure an EXPTIME decidability regarding
the subsumption problem.

Unlike expert systems that aim at building the most
extensive knowledge base or ontology pertaining to
a specific domain and to compute it, Semantic Web
ontologies tend to focus on knowledge interchange
and interoperability. The Semantic Web can be
regarded as a http-based network of XML-

serialized ontologies, such that any resource is
identified by an URI (Uniform Resource Identifier,
of which URL are a subset). On the Semantic Web,
a resource can assert a relation involving some
instances of a concept defined by another ontology,
simply by referencing the URI of that concept.
Therefore, using applications that are aware of a
limited set of primitives, a machine can compute
knowledge formalized in distinct ontologies, and
have access to the meaning of a description rather
than to plain text strings.

4.2 Benefits of the OWL-DL data-model over
Object-Relational technology

Although Object-Relational data-bases offer a very
powerful environment for knowledge management,
several insufficiencies remain under this paradigm
that an ontology-based approach might help to
solve.
The main difference between Object-Oriented
modelling, and frame-based systems (built upon
Description Logics) comes from the way classes (or
types, concepts...) are defined. When creating a new
object type in an Oracle application, one can assert
that the new type extends any previously defined
type, but there is no other way to create a subtype
than to explicitly state what type it extends. Under
the Description Logics paradigm, a concept is
defined by asserting a set of necessary conditions,
under which any instance in the knowledge base
will be classified as an instance of the considered
concepts, whenever those conditions are met. Thus,
a knowledge base (KB) has to be classified, and
depending on the complexity of the concepts
necessary or necessary and sufficient conditions, a
software agent, known as a reasoner, will achieve
classification of the KB in a tractable time.
Therefore, from a set of asserted concepts and roles

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 89

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



definitions, a DL-based KB will compute an
inferred ontology, including a concept taxonomy.

For these reasons, ontology-based modelling can be
regarded as much more extensible than UML-based
models, since whenever a new concept has to be
defined, there is no need for a complete redesign of
the model.

Under the Semantic Web, one will also benefit
from another kind of flexibility due to ontology-
based modelling: since concepts can be formally
identified by an URI, there is no need to maintain
an exhaustive database of any concept one might
have to refer to inside the system. By using external
URIs, and thanks to Web Services, one can model
projects involving externalized resources. Let's
suppose a product is completely designed and the
model makes use of external references through the
URI mechanism. Whenever someone will need a
new functionality for which no form was intended
(e.g. to check that all the parts of a product,
including subcontracted ones, are free of certain
particles), the ability to scale a query up to the
semantic web will be a powerful advantage.

Conclusion

We have designed P2M2 a generic framework
suited for project memory management. We present
its platform independent model, and explain its
implementation over object-relational technology,
in compliance with the model-driven application
(MDA) paradigm. We discuss an extension of our
work to support ontologies for project memory, and
present its benefits. In the near future, we aim at
extending P2M2 beyond product centred-aspects of
design projects, and to validate our tool in an
industrial context.

References
[1] F. Baader, D. Calvanese, D. McGuiness, D.
Nardi, “The Description Logics Handbook”,
Theory Implementations and Applications,
Cambridge, 2003.
[2] M. Bigand, “Information system supporting the
functional specification in product design”,
International Federation of Automatic Control 11th
IFAC, Symposium on Information control
Problems in Manufacturing, INCOM, Salvador,
Brasil, 2004.
[3] S. Buckingham Shum, “Negotiating the
construction and reconstruction of organizational
memories”, Journal of Universal Computer
Science, 3(8):899-928, 1997.
[4] J.E. Conklin and M.L. Begeman, “gIBIS: A
Hypertext Tool for exploratory Policy Discussion”,
ACM Transactions on Office Informations
Systems, 6:303-331, 1998.

[5] R. Dieng, O. Corby, A. Giboin and M. Ribière,
“Methods and Tools for Corporate Knowledge
Management”, International Journal of Human-
Computer Studies, 51:567-598, Academic Press,
1999.
[6] J.L. Ermine, M. Chaillot, P. Bigeon, B.
Charenton and D. Malavielle, “MKSM a method
for knowledge management”, Knowledge
management: organization, competence and
methodology, ISMICK’96, Schreimenmakers ed.,
Rotterdam (Neederlands), pp.288-302, 1996.
[7] Gamma E., R. Helm, R. Johnson, and J.
Vlissides, “Design Patterns: Elements of Reusable
Object-Oriented Software”, Reading, Addison-
Wesley, 1995.
[8] T. R. Gruber, “A translation approach to
portable ontologies”, Knowledge Acquisition,
5(2):199-220, 1993.
[9] M. Jarke, Experience-based knowledge
management: a cooperative information systems
perspective, Control Engineering Practice Vol 10
(2002) 561 – 569.

[10] J.J. Kasvi, M. Vartiainen and M. Hailikari,
“Managing knowledge and knowledge competences
in projects and project organizations”, International
Journal of Project Management, Pergamon ed.,
2003.
[11] M. Klein, “Capturing Design Rationale in
Concurrent Engineering Teams”, IEEE, Computer
Support for Concurrent Engineering, January, 1993.
[12] P.Malvache and P. Prieur, “Mastering
Corporate Experience with the REX Method”,
Management of Industrial and Corporate Memory,
ISMICK’03, Compiègne (France), pp.33-41, 1993.
[13]. N. Matta, O. Corby and M.Ribière, “Méthodes
de capitalisation de mémoire de projet”, INRIA,
Rapport de recherche n°3819, 1999.
[14] D. McGuiness, F. VanHermalen, “OWL Web
Ontology Language Overview”,
http://www.w3.org/TR/2004/REC-owl-features-
20040210/, W3C recommendation, 2004.
[15] Object Constraint Language Specification.
OMG Unified Modeling Language specification
version 1.5, http://www.OMG.org/uml, 2003.
[16] OMG-Meta Object Facility Specification v1.4,
April 2002.
[17] “Oracle Application Developer's Guide -
Object-Relational Features”, Release 2 (9.2), Part
No. A96594-01, March 2002.
[18] G. Schreiber, H. Akkermans, A. Anjewierden,
R. De Hoog, N. Shadbolt, W. Van de Velde, B.
Wielinga, “Knowledge engineering and
management: The CommonKADS Methodology”,
The MIT Press ed., ISBN 0-262-19300-0, 1999.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 90

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




