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Abstract 
In this paper, one system identification method 

based on T-S fuzzy modeling approach is 
presented for modeling a furnace of steam boiler 
. In this method, NFCRM is applied to build the 
fuzzy structure and then identify the premise 
parameters; a new criterion is proposed to auto 
determine the number of rules in fuzzy 
modeling; after the fuzzy rules have been 
decided, orthogonal least square is exploited to 
identify the consequent parameters. Comparison 
between the responses of the proposed models 
with the responses of the plants and 
mathematical model validates the accuracy and 
performance of the modeling approach.

Keywords:furnace model, fuzzy model, system 
identification.

1. Introduction
One of the most important processes influencing 
boiler thermal efficiency is the efficiency of heat 
exchange in its furnace. Therefore, a lot of 
models analyzing and predicting heat exchange 
processes in boiler furnaces have been 

developed. These models are based on 
rudimentary principles of physics with different 
degrees of simplification. Huang et al. [1] 
presented a fire-tube boiler model that examines 
thermal flue gases and boiling water, and heat 
exchange efficiency. The modeling includes heat 
exchange between the external surface of the 
boiler and the environment. Applying this kind 
of model, we can simulate boiler efficiency at 
different heat loads. Also, Guru Z [2] described 
a mathematical model of heat exchange in the 
furnace by taking into account its soot deposit. 
Furthermore, a computer simulation model was 
presented by Claus and Stephan [3] to determine 
the steam boiler heat parameters by using the 
indirect method for testing its efficiency.
The key problem in system identification is to 
find a suitable model structure within which a 
good model is to be found. Fitting a 
modelwithin a given structure (parameter 
estimation) is in most cases a lesser problem. A 
basic rule in estimation is not to estimate what 
you already know. In other words, one should 
utilize prior knowledge and physical insight 
about the system when selecting the model 
structure[4].The  identification and  modeling of 
dynamic systems through  the  use  of  
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experimental  data  is  a  problem  of 
considerable  importance  to  the  nuclear  
industry.  Such procedures  are  useful  in  that:  
(1)  they  can  be  used  to quantify  the  
characteristics of  intricate  systems  that cannot  
be  analyzed  in  detail  due  to  their  
complexity, unknown  internal  system  
structure,  or  sheer  number  of components  
that  would  have  to  be  represented  in  an 
adequate model,  and  (2)  the  procedures  
be  a convenient  method    for  diagnosing  the  
condition  of a  wide  class  of systems,  thereby  
making  the  technique useful  for  defect  
identification  and  damage assessment. System  
identification  techniques can  be  classified on  
the basis  of  a  priori  knowledge  of  the  
system structure  which  is  required  for  their 
implementation[5]. Mathematical modeling 
including identification and simulation have 
become key techniques, central to all disciplines 
of science and engineering[6].In the case of 
black-box linear type models, the development 
time is smaller, but the amount of parameters 
increases considerably, and the result is a model 
quality highly dependent on the system 
operating conditions inherited from the 
identification experiment.
Fuzzy modeling is a powerful technique for the 
modeling of complicated nonlinear systems. 
Among rule based fuzzy-modeling approach, 
Takagi–Sugeno (T–S) fuzzy model has attracted 
great deal of attention for its wonderful features 
[7]. For a dynamic system, the output is a 
function of past inputs or past outputs or both: 
identification of this system is not as direct as 
identification of a static system. To deal with 
temporal problems of dynamic systems, the 
commonly used model is a black box model 
fuzzy model [8].The problem with this approach 
is that the exact order of the dynamic system is 
usually unknown. To solve this problem, 
recurrent networks for processing dynamic 
systems can be used. Interest in these networks 
has been steadily growing in recent years [9]. 
However, recurrent networks deal with optimal 
fuzzy membership functions and defuzzification 
schemes for applications by using learning 
algorithms to adjust the parameters of fuzzy 
membership functions and defuzzification 
functions. Further more, the number of fuzzy 
rules is an important factor that affects the 
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3. Mathematical model
A Dynamic model of boiler is describedby [10]. 
The dynamic model consists of Furnace model, 
the following assumptions is made in deriving 
the dynamic model for the furnace:
a) The fuel fiber and shell consumption is 
assumed to be constant.
b) The constant values are Calorific value, 
moisture content of the mixture of palm fiber 
and shell.
c) The air–fuel ratio is assumed to be constant.
d) Combustion gases temperature in furnace is 
proportional to the fuel rate.
e) In each tube bank the heat transfer rate is
determined by the tube wall temperature, the
average gas temperature is a function of the 
temperature of incoming gases and the amount 
of the heat loss of that particular bank.
f) Inertia of the hot gases is neglected and the 
velocity changes take place instantaneously.
g) Delay due to the heat capacitance of the hot 
gases is neglected; that is, temperature changes
take place instantaneously in combustion gases.
h) Turbulent heat transfer is assumed throughout 
the process.
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4. Fuzzy modeling
4.1. T–S fuzzy model
The well-known T–S fuzzy model proposed by 
Takagi and Sugeno [11],that to describe 
complicated nonlinear system. For the 
identification of multiple input–multiple output 
(MIMO) systems, we take multiple input–single 
output (MISO) systems into consideration 
instead, while MIMO system can be divided into 
MISO systems. It is assumed that a MISO 
system P(x, y) is the system that needs 
identification, while x is the system input 
with' ( )*, and y is the system output with y e 
R the T–S fuzzy model of this system can be 
described by the following IF–THEN fuzzy 
rules [7]:
Rule +, IF '- is .-/ and … and '0 is .*/ THEN         
1/2�34563478469634:8:� (6
)
Where+ � �� �� ! ! ! � ;� ; is the number of fuzzy 
rule, < is the system input,
< � � ='�� '��>�� �'*?�@Is dimension of input 
vector, 1+ is the ith output, and A/* is the 
consequent parameter of the ith output. Note that 
the affine linear functions in the consequent part 
are hyperplanes (B-dimensional linear 
subspaces) in )*6-.
The final output of T–S fuzzy model can be 
expressed by a weighted mean defuzzification as 
follows:

1C=
D �4 E4
F4G7
D �4F4G7

(7)

Where the weight 
+ represents the overall truth 
value of the premise of the HTh implication for 
the input which can be calculated as:

/ � I JK./LM�*L2- (8)

WhereJK./LMis the grade of membership 
function and is described by a Gaussian function 
as:

JK./LM ��expNO K8PQ R4PMS
T4P U � 	V� 

+ � ��> � ;�� H � ���> �@�� 
3. The proposed T–S fuzzy-modeling approach
In this section, we will discuss a new T–S fuzzy-
modeling approach in more detail, which is 
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illustrated by Fig. 2. As shown in this figure,the
approach is consisting of mainly two phases, 
namely, premise parameters identification and 
consequent parameters. In the first phase, 
NFCRMA is used to partition the input–output 
fuzzy space and extract fuzzy rules with the help 
of a criterion, which determines the right 
number of rules as the number varying. After 
fuzzy rules have been extracted in the first steps, 
the consequent parameter of the fuzzy model 
will be identified using orthogonal least square 
(OLS) method.
More efficient meant full than the former 
FCRM-clustering algorithm. The selection of 
initial values of hyper-panes needs to be 
discussed in a further step. The initial value is 
crucial for algorithm with gradient method. In 
order to get suitable initial values, we try to 
partition the input–output space coarsely. This 
step is concerned with the application of a 
suitable unsupervised learning process in order 
to dismember the input space into a number of 
subspaces (clusters). To do this, the fuzzy c-
means (FCM) algorithm is employed. And then, 
the clusters obtained in the previous step are 
considered to form a hyper-plane, which is be 
gotten by using least square (LS) method. The 
parameters of obtained c initial hyper-planes 
will be used in the fuzzy-clustering algorithm 
NFCRMA as initial values [7].

4.2. Identification of premise parameters
We use the proposed NFCRMA to separate the 
input–output space and obtain the premise part 
of each fuzzy rule the membership functions of 
the fuzzy sets in the premise part of each fuzzy 
rule as described by Eq. (9). As mentioned in 
Kim [12], in view of this equation, the fuzzy set 
centers W+H 	�� X �+� X �;� �� X �H� X �@�, and the 
respective standard deviations Y/Lcan be easily 
obtained by using J/Z, the membership of 
	'[� 1[� belonging to +th clustering representing 
hyper-plane as follows of rules blindly. 
However, it is not easy to find out the most 
suitable number of rules. In fuzzy-clustering 
algorithm-based T–S fuzzy-modeling method, 
researchers tried to get the optimum rules 
number through a certain cluster validity 
criterion when the fuzzy-clustering algorithm 
used to partition the fuzzy space. Cluster validity 
criterion fitting to the FCRM-clustering 

algorithm in T–S fuzzy modeling, while the 
rules numbers are decided by the partition of the 
input fuzzy space. It is maybe a reasonable way 
to decide the number of rules because a suitable 
cluster validity criterion can help us getting the 
optimal fuzzy partition as cluster number 
varying, thus deciding the number of rules [7].
In this paper, we design a new criterion to help 
deciding the number of rules in fuzzy modeling,

W/L �
D J/Z!'ZL\Z2-
D J/Z\Z2-

+ � �� > � ;�� H � ��� > �@���������	���

Y/L � ]�D J/Z\Z2- ! K'ZLQW/LM^
D J/Z\Z2-

	���
+ � ��> � ;�� H � ���> �@�� 
This takes into consideration two important 
aspects: accuracy and concision. Assume n 
Input–output data pairs 	'� 1� being partitioned 
into clusters ��� ��� ! ! ! � �; by NFCMA. Then, 
the criterion is described as

"	;� � _ `	;�
`	Ba'� � 	� � _� ;

;0b8
	���

Where;the number of rules is, �Ba' is the set 
maximum number of rules, _	�� c ��� is a 
coefficient`Ba' � Ba' d`	;�e, and `	;� is 
defined as

`	;� � �
;fg�h f 	1Z � ='Z-?A/�

	8iji�kl4
m 	���

l

/2-
 

Whereh+ represent the number of samples in it h
cluster.

From Eq. (12), it is manifested that "	;� consists 
of two normalized terms, while the first part 
indicates accuracy of fuzzy model or the 
linearity of the fuzzy model, the second part 
indicates simply of the fuzzy model. It is 
reasonable that the increase in number of rules 
will improve accuracy, but deteriorate concision 
of structure of the model, and reduce the 
generalization ability of the model. So the first 
term and the second term in Eq. (12) are 
incompatible, and we use a coefficient _ to 
control the balance between accuracy and 
concision. In experiments, it is found that 
_ � �!$ can produce wonderful results.
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Fig. 2.An illustration for the proposed fuzzy-
modeling approach
3.3. Identification of consequent parameters Once the premise fuzzy set parameters have 

been identified, the consequent parameters can 
be obtained from the following matrix equation,

1 � nA � o (14)

Where

A � pA-q�> � A-��> � Alq�> � Al*r,

1 � =1-� 1^� > � o^�> � o\?s

is the error vector with
tZ � 1Z � 1uZ	� X n � pn�� n�� > � nvr	v � ;	� � B�� is the

coefficient I

=n/	'-�� n/	'^�� > � n/	'\�?	� X + X v� 

From description in section 2, it is easy to find 
that 

n/	'Z� � =�� w-Z'Z-�> � w-Z'Z*� > � �� wlZ'Z-�> � wlZ'Z*?� 

Where'[H	�� X �[� X �x� �� X �H� X ��� 
reperesent the jth element of kth input, for<y,

w/Z	� X + X ;� � X [ X x� Reperesent the 
combination of weights of rules, which is 
expressed as:

w/Z �

/

D 
/\Z2-
	�&�

w/Z �

/

D 
/\Z2-
	�z�
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5. Fitting performance
The data are divided in two groups follow as 
estimate data and validate data. Then, the 
various nonlinear estimators of input and 
output system have been chosen for estimate 
the system in represent the nonlinearity 
behavior. The developed programming using 
MATLAB software will check accuracy of the 
drum of the boiler. Figs. 3 and 4 show the 
actual outputs, the predicted outputs by the 
mathematical model and the fuzzy modeling 
approach, respectively.

6. Conclusions
The nonlinear system identification using 
novel fuzzy-clustering-based modeling is the 
new method to modeling the 
modeling can imitate behavior of system by 
black-box approach. Simulation experiments 
demonstrated that the proposed modeling 
method is able to build fuzzy model for 
complicated nonlinear system with compact 
fuzzy rules and high accuracy. The mo
the representation of the system can be 
analyzed in aspect of control system, stability. 
The applications of modeling are widely use 
for example model predictive control, power 
plant system impact analysis, etc.

Fig. 3.The visual comparison of t
output and response of mathematical model

Fig.4.The visual Comparison between actual 
output and response of fuzzy model.
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The nonlinear system identification using 
based modeling is the 

furnace. The
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demonstrated that the proposed modeling 
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complicated nonlinear system with compact 
fuzzy rules and high accuracy. The model as 
the representation of the system can be 
analyzed in aspect of control system, stability. 
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for example model predictive control, power 
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