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Abstract 

MetaSearch is utilizing multiple other search systems to perform 
simultaneous search. A MetaSearch Engine (MSE) is a search 
system that enables MetaSearch. To perform a MetaSearch, user 
query is sent to multiple search engines; once the search results 
returned, they are received by the MSE, then merged into a 
single ranked list and the ranked list is presented to the user. 
When a query is submitted to a MSE, decisions are made with 
respect to the underlying search engines to be used, what 
modifications will be made to the query and how to score the 
results. These decisions are typically made by considering only 
the user’s keyword query, neglecting the larger information need. 
The cornerstone of their technology is their rank aggregation 
method. In other words, Result merging is a key component in a 
MSE. The effectiveness of a MSE is closely related to the result 
merging algorithm it employs. In this paper, we want to 
investigate a variety of result merging methods based on a wide 
range of available information about the retrieved results, from 
their local ranks, their titles and snippets, to the full documents of 
these results.  

 
Keywords: Search, Merge, Web, Meta-Search, MetaSearch 
Engine, Ranking. 

1. Introduction 

MetaSearch Engines (MSEs) are tools that help the user 
identify such relevant information. Search engines retrieve 
web pages that contain information relevant to a specific 
subject described with a set of keywords given by the user. 
MSEs work at a higher level. They retrieve web pages 
relevant to a set of keywords, exploiting other already 
existing search engines. The earliest MSE is the 
MetaCrawler system that became operational since June 
1995 [5,16]. Over the last years, many MSEs have been 
developed and deployed on the web. Most of them are 
built on top of a small number of popular general-purpose 
search engines but there are also MSEs that are connected 
to more specialized search engines and some are 
connected to over one thousand search engines. 

 
 
 

 
 
 

 
MSE is a system that provides unified access to 

multiple existing search engines [5]. After the results 
returned from all used component search engines are 
collected, the MetaSearch system merged the results into a 
single ranked list. The major benefits of MSEs are their 
capabilities to combine the coverage of multiple search 
engines and to reach deep web. To increase the precision 
of the results, some MSEs do not always send the user’s 
query to the same search engines. The existing methods 
assign scores according to objective criteria; but most 
current methods lack personalization [1,10].  

In this paper, we investigate different result merging 
algorithms; The rest of the paper is organized as: In 
Section 2 motivation, In Section 3 overview of MSE, 
Section 4 provides scientific principles of MSE, Section 5 
discusses about why MSE, Section 6 discusses 
architecture of MSE, Section 7 describes ranking 
aggregation methods, In Section 8 we express key 
parameters to evaluating the ranking strategies, Section 9 
gives conclusions and Section 10 present future works. 

2. Motivation 

There are some primarily factors behind developing a 
MSE, are: 
 The World Wide Web (WWW) is a huge unstructured 

corpus of information; MSE covers a larger portion of 
WWW;  

 By MSE we can have the latest updated information 
and it increases the web coverage; 

 Improved convenience for users; 
 MSE provides fast and easy access to the desired 

search [5]; better retrieval effectiveness [2]; 
 MSE provides a broader overview of a topic [12]; 
 MSE has ability to search the invisible Web, thus 

increasing the precision, recall and quality of result;  
 MSE makes the user task much easier by searching 

and ranking the results from multiple search engine; 
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 MSE provides a quick way to determine which search 
engines are retrieving the best match for user's 
information need [4]. 

3. Overview of a MetaSearch Engine 

MSE search several engines at once; it does not crawl 
the web or maintain a database of web pages; instead, they 
act as a middle agent, passing the user’s query 
simultaneously to other search engines or web directories 
or deep web, returning the results,   collecting them, 
remove the duplicate links, merge and rank them into a 
single list and display it to the user [5,8]. Some samples of 
MSEs are Vivisimo, MetaCrawler, Dogpile, Mamma, and 
Turbo10. 

3.1 Differences (Search vs. MetaSearch) 

 MSE does not crawl the Web [2,4]; 
 MSE does not have a Database [4,10]; 
 MSE sends search queries to several search engines at 

once [2,5]; 
 MSE increased search coverage (but is limited by the 

engines they use with respect to the number and 
quality of results) and a consistent interface [6,12]; 

 MSE is an effective mechanism to reach deep web. 

3.2 MetaSearch Engine Definitions 

 Dictionary meaning for Meta: more comprehensive, 
transcending; 

 The term MetaSearch is a list of search engines, but  it 
is also used to describe the paradigm of searching 
multiple data sources in real time; 

 A MSE allows you to search multiple search engines 
at once, returning more comprehensive and relevant 
results, fast [5,9]; 

 A search engine which does not gather its own 
information directly from web sites but rather passes 
the queries that it receives onto other search engines. 
It then compiles, summarizes and displays the found 
information; 

 MSE is a hub of search engines/databases accessible 
by a common interface providing the user with results 
which may/may not be ranked independently of the 
original search engine/source ranking [6,10]. 

3.3 The Types of MetaSearch Engine 

 MSEs which present results without aggregating 
them; 

 Searches multiple search engines, aggregates the 
results obtained from them and returns a single list of 
results [1,3], often with duplicate removed; 

 MSEs for serious deep digging. 

3.4 MetaSearch Engine Issues 

 Performing search engine/database selection [5,6]; 
 How to pass user queries to other search engines; 
 How to identify correct search results returned from 

search engines; an optimal algorithm for 
implementing minimum cost bipartite matching; 

 How to search results extraction, requiring a 
connection program and an extraction program 
(wrapper) for each component search engine [14]; 

 Expensive and time-consuming to produce/maintain 
wrapper programs [14]; 

 merging the results from different search sources; 
 Different search engines produce result pages in 

different formats [6,8]. 

3.5 Principles of MetaSearch Engine   

 Accept the User query; 
 Convert the query into the correct syntax for 

underlying search engines, launch the multiple 
queries, wait for the result; 

 Analyze, eliminate duplicates and merge results; 
 Deliver the post processed result to the users. 

4. Scientific Fundamentals 

4.1 Search Engine Selection 

To enable search engine selection, some information 
that can represent the contents of the documents of each 
component search engine needs to be collected first. Such 
information for a search engine is called the representative 
of the search engine [5,17]. The representatives of all 
search engines used by the MSE are collected in advance 
and are stored with the MSE. During search engine 
selection for a given query, search engines are ranked 
based on how well their representatives match with the 
query. Different search engine selection techniques often 
use different types of representatives. A simple 
representative of a search engine may contain only a few 
selected key words or a short description. This type of 
representative is usually produced manually but it can also 
be automatically generated [5]. As this type of 
representatives provides only a general description of the 
contents of search engines, the accuracy of using such 
representatives for search engine selection is usually low. 
More elaborate representatives consist of detailed 
statistical information [5] for each term in each search 
engine; include, 
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 The document frequency and collection frequency of 
each term in each search engine is used to compute 
the cue validity variance of each query term, which 
measures the skew of the distribution of the query 
term across all component search engines, to help 
rank search engines for each query [6,17]; 

 The adjusted maximum normalized weight of each 
term across all documents in a search engine is used 
to represent a search engine [5]; 

 The notion of optimal search engine ranking is 
proposed based on the objective of retrieving the m 
most similar documents with respect to a given query 
q from across all component search engines: n search 
engines are said to be optimally ranked with order 
[S1, S2, . . ., Sn] if for any integer m, an integer k can 
be found such that the m most similar documents are 
contained in [S1, . . ., Sk] and each of these k search 
engines contain at least one of the m most similar 
documents [5,9,17]. It is shown that a necessary and 
sufficient condition for the component search engines 
to be optimally ranked is to order the search engines 
in descending order of the similarity of the most 
similar document with respect to q in each search 
engine.  

There are also techniques that create search engine 
representatives by learning from the search results of past 
queries. Essentially such type of representatives is the 
knowledge indicating the past performance of a search 
engine with respect to different queries. 

4.2 Automatic Search Engine Connection 

In most cases, the HTML form tag of a MSE contains 
all information needed to make the connection to the 
search engines. The form tag of each search engine 
interface is usually pre-processed to extract the 
information needed for program connection and the 
extracted information is saved at the MSE [5,17]. After the 
MSE receives a query and a particular search engine, 
among possibly other search engines, is selected to 
evaluate this query, the query is assigned to the name of 
the query textbox of the search engine and sent to the 
server of the search engine using the HTTP request 
method. After the query is evaluated by the search engine, 
one or more result pages containing the search results are 
returned to the MSE for further processing. 

4.3 Automatic Search Result Extraction 

A result page returned by a search engine is a 
dynamically generated HTML page. In addition to the 
search result records (SRRs) for a query, a result page 
usually also contains some unwanted information/links 
[5]. It is important to correctly extract the SRRs on each 

result page. A typical SRR corresponds to a retrieved 
document and it usually contains the URL, title and a 
snippet of the document. Since different search engines 
produce result pages in different format, a separate 
wrapper program needs to be generated for each search 
engine [5,14]. Most of them analyze the source HTML 
files of the result pages as text strings or tag trees to find 
the repeating patterns of the SRRs. 

4.4 Results Merging 

Result merging is to combine the search results returned 
from multiple search engines into a single ranked list. 
Early search engines often assigned a numerical matching 
score to each retrieved search result and the result merging 
algorithms were designed to normalize the scores returned 
from different search engines into values within a common 
range with the goal to make them more comparable [16]; 
Normalized scores will then be used to ranking all the 
search results [1,6]. Score normalization and rank 
aggregation may also take into consideration the estimated 
usefulness of each selected search engine with respect to 
the query [3,7], which is obtained during the search engine 
selection step. The normalized score of a result can be 
weighted by the usefulness score of the search engine that 
returned the result. This increases the chance for the 
results from more useful search engines to be ranked 
higher. When matching scores are not available, the ranks 
of the search results from component search engines can 
be aggregated using voting-based techniques.  

Another result merging technique is to download all 
returned documents from their local servers and compute 
their matching scores using a common similarity function 
employed by the MSE; The results will then be ranked 
based on these scores [1,6]. The advantage of this 
approach is that it provides a uniform way to compute 
ranking scores. Its main drawback is the longer response 
time due to the delay caused by downloading the 
documents and analyzing them [17]. Most modern search 
engines display the title and snippet of each retrieved 
result [16]. These features can often provide good clues on 
whether or not the result is relevant to a query. As a result, 
result merging algorithms that rely on titles and snippets 
have been proposed recently. When titles and snippets are 
used to perform the merging, a matching score of each 
result with the query can be computed based on several 
factors such as the number of unique query terms that 
appear in the title/snippet and the proximity of the query 
terms in the title/snippet [1]. 

It is possible that the same result is retrieved from 
multiple search engines; such results are more likely to be 
relevant to the query; To help rank these results higher in 
the merged list, the ranking scores of these results from 
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different search engines can be added up to produce the 
final score for the result. Then search results are ranked in 
descending order of the final scores [1,5]. 

5. Why Are MetaSearch Engines Useful? 

5.1 Why MetaSearch? 

 Individual Search engines do not cover all the web; 
 Individual Search Engines are prone to spamming [5]; 
 Difficulty in deciding and obtaining results with 

combined searches on different search engines [6]; 
 Data Fusion (multiple formats supported  ) and take 

less effort of user. 

5.2 Why MetaSearch Engines? 

 General search engines have difference in search 
syntax, frequency of updating, display results/search 
interface and incomplete database [5,16]; 

 MSE improves the search quality with 
comprehensive, efficient and one query queries all; 

 MSE is good for quick search results overview with 1 
or 2 keywords; 

 MSE convenient to search different content sources 
from one page. 

5.3 Key Applications of MetaSearch Engine 

 Effective mechanism to search surface/deep web;  
 MSE provides a common search interface over 

multiple search engines [5,10]; 
 MSE can support interesting special applications. 

5.4 General Features of MetaSearch Engine 

 Unifies the search interface and provides a consistent 
user interface; 

 Standardizes the query structure [5]; 
 May make use of an independent ranking method for 

the results [6]; 
 May have an independent ranking system for each 

search engine/database; 
 MetaSearch is not a search for Meta data. 

6. MetaSearch Engine Architecture 

A MSE is a search tool that sends user requests to 
several other search engines/databases, aggregates the 
results, merges/renks them into a single list and displays 
them to user [5]. MSEs enable users to enter search criteria 
once and access several search engines simultaneously. 
This also may save (a lot of time) the user from having to 

use multiple search engines separately (by initiating the 
search at a single point).  

MSEs create a virtual database; They do not compile a 
physical web database. Instead, they take a user's request, 
pass it to several heterogeneous databases and then 
compile the results in a homogeneous manner. No two 
MSEs are alike; some search only the most popular search 
engines while others also search lesser-known engines, 
newsgroups, and other databases [10]. They also differ in 
how the results are presented and the quantity of engines 
that are used. Some will list results according to search 
engine/database. Others return results according to 
relevance, often concealing which search engine returned 
which results. This benefits the user by eliminating 
duplicate hits and grouping the most relevant ones at the 
top of the list. 

6.1 Standard Architecture 

 

Fig. 1 How works a MSE? 

 

 

Fig. 2 Block diagram and components (block representation) 

 
 User Interface: similar search engine interfaces with 

options for types of search and search engines to use; 
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 Dispatcher: generates actual queries to the search 
engines by using the user query; may involve 
choosing/expanding search engines to use; 

 Display: generates results page from the replies 
received; May involve ranking, parsing and clustering 
of the search results or just plain stitching; 

 Personalization/Knowledge: may contain either or 
both. Personalization may involve weighting of search 
results/query/engine for each user. 

6.2 The Architecture of a MetaSearch Engine with 
Concerns User Preferences 

Current MSEs make several decisions on be-half of the 
user, but do not consider the user’s complete information 
need. A MSE must decide which sources to query, how to 
modify the submitted query to best utilize the underlying 
search engines, and how to order the results. Some MSEs 
allow users to influence one of these decisions, but not all 
three [4,5]. 

 

Fig. 3 The architecture of a MSE with user needs 

 

A typical MSE, submits a user’s query (with minor 
modifications) to a set of search engines, and returns the 
results in the order returned by the search engines. This 
order might not make sense if the user has a specific need. 
User’s information needs are not sufficiently represented 
by a keyword query alone [4,10]. For example we can use 
of decision theory to ranking results from a single search 
engine while capturing more of a user’s information need 
than a text query alone. 

This architecture has an explicit notion of user 
preferences. These preferences or a search strategy, are 
used to choose the appropriate search engines (source 
selection), query modifications and influence the order the 
results (result scoring). Allowing the user to control the 
search strategy can provide relevant results for several 
specific needs, with a single consistent interface [4]. The 
current user interface provides the user with a list of 
choices. The specification of preferences allows users with 
different needs, but the same query, to not only search 
different search engines (or the same search engines with 

different “modified” queries), but also have results ordered 
differently [4]. Sometimes Even though users have 
different information needs, they might type the same 
keyword query, and even search some of the same search 
engines. This architecture guarantees consistent scoring of 
results by downloading page contents and analyzing the 
pages on the server, as opposed to relying on the reported 
scores and short summaries from the original search 
engines [1,4]. By downloading pages locally, we are 
assured to have the most recent version of any page and 
eliminating dead links and old content. 
 

Table 1: Information needs categories 
Name Description 

Research papers 
Detailed pages, preferably an actual 
article 

Individual 
homepages 

The homepages of the individual listed in 
the query 

Organizational 
homepage 

The homepages of the organization listed 
in the query 

Current events, news 
recent 

Recent articles, or content about the 
given query, with significant content 

General introductory 
about 

Getting started, references, "what is", etc 

6.2.1 Choosing a Search Engine (Source Selection) 

Currently, the search strategies are human generated. In 
future work includes use of learning techniques to improve 
the source selection decision. MSEs, allow the user some 
control of which search engines are chosen. Each of these 
engines has had experimental methods for automatic 
source selection based on the user query. A difficulty of 
automatic source selection is the metric used to compare 
sources. One metric is the average number of results 
returned for a given query. This metric is similar to the 
recall measure, if one assumes all returned results are 
relevant. Unfortunately, there is not necessarily a 
correlation between number of results returned and their 
usefulness.  

Some MSE attempted to consider user satisfaction with 
results for some given query based on user feedback. 
Although this approach considers user statements about 
result values, it assumes that the user’s valuations are 
mapped to the query, which is not true if there is more 
than a one-to-one mapping of needs to queries [4].  

Other MSE contains a function for predicting the value 
of documents. This function is specific to the individual 
user. Given a reasonable model of user value, it is possible 
to determine how good any given source is for a given 
need (on average), as opposed to associating the “worth” 
of a given source to a query. By evaluating the worth of a 
source based on the need, not the query, it is possible to 
make reasonable judgments for previously unseen queries. 
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6.2.2 Modifying the Query (Query Modification) 

Query modification is one method of causing the 
underlying search engines to provide more valuable results 
for given information need [4]. One of the problems of a 
MSE is its dependence on the underlying search engines to 
provide a reasonable set of results. Just because a search 
engine contains very good results for the current user’s 
need, there is no guarantee that those results will be 
returned for any given query [16]. To enhance the 
precision of the results and deal with the problems caused 
by search engine result limits, some MSEs allow query 
modification. Some types of modification performed: use 
of the search engine specific options; pre-pending terms; 
or appending terms.  
One method for modification is using search engine 
specific options. Most search engines provide the ability to 
influence their result ordering or to add constraints. The 
choice of options depends on the user’s information need, 
not only his keyword query [4]. 

The second modification adds keywords. Depending on 
the user’s information need, it might be desirable to locate 
pages by type. By adding some keywords to a query, the 
precision can be significantly increased. It is important to 
note that query modification does not affect the scoring 
function; documents are scored based on the user-provided 
query and preferences, not modification [1,4].  

Some MSEs allow query terms to be added before or 
after the provided query. For the information need 
category of "general resources", both types of modification 
are used. One modification is pre-pending “what is” to the 
query, while another adds the keywords “resources links” 
[4]. 

Query modifications can increase coverage. However, 
with a constraint, it is possible to get many valuable (both 
topically relevant and recent) results. The use of such 
options depends on the user’s need, and is applied 
differently to different search engines. 

6.2.3 Information Extractor and Result Merger/Ranker 

The information extractor component is responsible for 
extraction of results from the result pages. It consists of a 
Record collector component and a Result Collector 
component. The Record Collector component is 
responsible for identification of the record section from 
the result page and Result Collector component is 
responsible to extract the exact field from the identified 
record section. Information extraction often performed by 
using wrappers. Wrappers can be constructed manually, 
semi-automatically and automatically for record section 
identification [14]. For identification of record section, 
different approaches (include automatic, supervised or 
data mining wrapper generation) can be utilized. After 

identification of record section, a MetaSearch result 
identifier component is utilized for the extraction of exact 
results by using a domain ontology or information 
extraction tool [14]. Result extracted from different search 
engines need to be merged and then stored in a database or 
in XML format for future use. For schema matching and 
merging it is required to normalize the terms. Stemming 
can be utilized for term normalization process. The 
stemming process is useful to find similar terms by only 
considering the word stem in search engines, natural 
language and text processing.  

The most important decision made by a MSE is results 
ordering. A typical search engine scores results based on 
the keywords in the query and the terms in the document 
[16]. Typical MSEs score documents based on the original 
scores returned from the search engines queried, running 
the risk that the actual pages are no longer relevant, or that 
the page scored high as a result of keyword spamming. 
Some MSEs download web pages and order them based 
on the full content. Other MSEs using an ordering policy 
defined by the user’s preferences [4]; Different users, even 
with the same query and the same set of documents, will 
have results presented in an order meaningful to their 
individual need. MSEs also can use utility theory for 
evaluating the results; the ordering policy is “sort by 
value” where utility theory provides the mechanism for 
predicting the value. Each user-selected information need 
category has an associated additive value function of the 
form [17], 
U (dj) = ∑kWkVk (xjk); 

Where Wk is the weight of the kth attribute and by 
convention totals one. Vk is the value function for the kth 
attribute; xjk is the level of the kth attribute for the jth 
document, and by convention [17]: any k, d: Vk (d) is 
member of [0, 1]; The page analyzer extracts the attributes 
(xjk) for every page. Table 2 lists several page specific 
attributes. Each information need category is described as 
a value function allowing a balance between several 
attributes [4,17]. 
 

Table 2: List of some of the page specific attributes and their description 
Name Description 
Word count Number of words per pages 

Homepage 
A measure of the number of homepage like 
features present 

Genscore 
A measure of features indicative of a general 
page 

researchpaper 
A measure of features indicative of a 
researchpaper page 

Imagecount 
The number of unique images present on a 
page 

Numkeywords 
The number of keywords in the query matched 
on a page 
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Sectioncount The number of sections on a page 

Summary 
An automatically generated summarization of 
the document 

 
Some MSEs that downloading all web pages can be 

time consuming, and presents an interface issue. If the 
ordering policy is sort by value, the standard approach is 
to wait until all results are downloaded, scored and then 
sort. An alternative is a dynamic interface that inserts each 
result as it is scored. If by coincidence the very first 
downloaded web page is perfect, it will be immediately 
available and the user can stop the search. Likewise, if 
there are mixtures of good and bad results, the better ones 
will be displayed on top. As a new result is downloaded 
and scored, it is immediately available for the user to see, 
thus reducing the effect of the latency, and improving over 
many MSEs that force the user to wait before seeing 
results. These MSEs provide the user with an optional 
JAVA applet that provides this dynamic-sorting and 
display functionality, plus the ability to change the 
ordering policy during or after searches. 

6.3 Helios Architecture 

In this section we describe the architecture of Helios. 
The Web Interface allows users to submit their queries and 
select the desired search engines among those supported 
by the system. This information is interpreted by the Local 
Query Parser & Emitter that re-writes queries in the 
appropriate format for the chosen engines. The Engines 
Builder maintains all the settings necessary to 
communicate with the remote search engines. The HTTP 
Retrievers modules handle the network communications. 
Once search results are available, the Search Results 
Collector & Parser extracts the relevant information and 
returns it using XML. Users can adopt the standard 
Merger & Ranker module for search results or integrate 
their customized one [12]. To achieve its high-
performance, Helios utilizes a-sync I/O and parallel TCP 
connections, with the remote search engines. This is useful 
for two reasons: (i) the system is not overloaded with 
hundreds of threads; (ii) the connection cost is reduced to 
a few µsec, since parallel connections allow to retrieve 
data from one server while starting the connection to a 
second one, sending data to a third one. We remark that 
for a given query, it is possible to exploit both parallelisms 
among different search engines and within a single engine 
[12]. 

The integration of a new engine is simple: a 
configuration file is used to specify the engine parameters 
and a parser script provides the parser engine the 
necessary information to extract the relevant data. This 
MSE include a simple but efficient parsing language 

which allows searching strings, maintaining a cursor over 
a string, extracting substring, deleting or rewriting them. 
The language also provides some constructs such as if, 
until, jump and processes the search results in a fast and 
efficient way [12]. 

 

Fig. 4 The architecture of HELIOS MSE 

6.4 A Tadpole Architecture 

In this architecture, when a user issues a search request, 
multiple threads are created in order to fetch the results 
from various search engines. Each of these threads is 
given a time limit to return the results, failing which a time 
out occurs and the thread is terminated [5,11]. 

 

Fig. 5 Basic component architecture of a typical MSE 

 

MSEs are web services that receive user queries and 
dispatch them to multiple crawl-based search engines. 
Then, they collect the returned results, reorder them and 
present the ranked result list to the end user [11]. The 
ranking fusion algorithms that MSEs utilize are based on a 
variety of parameters, such as the ranking a result receives 
and the number of its appearances in the component 
engine’s result lists [15]. These parameters are being 
exploited to compute a weight (score) for each collected 
result. Better results classification can be achieved by 
employing ranking fusion methods that take into 
consideration additional information about a web page. 
Another core step is to implicitly/explicitly collect some 
data concerning the user that submits the query. This will 
assist the engine to decide which results suit better to his 
informational needs [4,11,15]. 
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6.5 A TreeMap Architecture 

Each process converts the given query to the format 
specific to the search engine it is dealing with. This 
request is sent to the search engine via the java URL 
object and the results are obtained in the form of a HTML 
page [11,16]. This HTML results page is parsed by the 
process and for each result the URL, title, description, 
rank and search source are stored; creating a result object. 
These results are entered into a TreeMap data structure 
with the key as the URL and the item as the result object. 
The GUI provides advanced search options for entering 
Boolean queries, Phrase searches, selecting the number of 
results per search engine and the selection of search 
engines to be queried [11]. 

 

Fig. 6 The Architecture of TreeMap 

7. Results Merging and Ranking Strategies 

Some important techniques for ranking search results 
from different search engines in MSEs are: 
 Normalizing the scores of search results and 

uniformly ranked them by the normalized scores 
[1,6];  

 Some ways do not presuppose any information about 
these scores [1,7]; 

 The similarity measure in several search engines may 
be different. Therefore, normalization is required to 
achieve a common measure of comparison. Moreover, 
the reliability of each search engine must be 
incorporated in the ranking algorithm through a 
weight factor [6]; 

 Stress that the scores of various search engines are not 
compatible and comparable even when normalized. 
For example, notes that the same document receives 
different scores in various search engines and 
concludes that the score depends on the document 
collection used by a search engine; 

 Some ranking algorithms are proposed which 
completely ignore the scores assigned by the search 
engines to the retrieved web pages [1]: bayes-fuse 

uses probabilistic theory to calculate the probability of 
a result to be relevant to the query, while borda-fuse is 
based on democratic voting [6,7]; 

 The contents associated with the SRRs can be used to 
rank/merge retrieved results. In other words, Merging 
based on titles, snippets, local rank and different 
similarity functions of retrieved results [6]; 

 Some of algorithms also consider the frequencies of 
query terms in each SRR, the order and the closeness 
of these terms; 

 Approaches based on full document analysis. 
Attention to this point that the comparison is not 

feasible even among engines using the same ranking 
algorithm and claims that search engines should provide 
statistical elements together with the results [7]. We want 
to investigate result merging algorithms for MSEs, to 
merge results from different search engines into a single 
ranked list. Most of the current generation search engines 
present more informative search result records (SRRs) of 
retrieved results to the user. A typical SRR consists of the 
URL, title and snippet of the retrieved document [6]. We 
are aware of only two works that utilize such SRRs. if a 
SRR contains enough information for merging so that the 
corresponding full document need not be fetched rather 
than a merging technique. The available evidences that can 
be used for result merging are identified; such as the 
document title, snippet, local rank, search engine 
usefulness. In follow, some algorithms based on different 
combinations of these evidences are proposed [6,7].  

7.1 Take the Best Rank 

In this algorithm, we try to place a URL at the best rank 
it gets in any of the search engine rankings [13]. That is 
[17],  
 MetaRank (x) = Min (Rank1(x), Rank2(x), …, 

Rankn(x)); 
Clashes are avoided by an ordering of the search 

engines based on popularity. That means, if two results 
claim the same position in the MetaRank list, the result 
from a more popular search engine, is preferred to the 
result from a less popular one. 

7.2 Borda’s Positional Method 

In this algorithm, the MetaRank of a URL is obtained 
by computing the Lp-Norm of the ranks in different search 
engines. That is [8,17], 
 MetaRank(x) =∑ (Rank1(x) p, Rank2(x) p, …, 

Rankn(x) p) 1/p; 
This algorithm has considered the L1-Norm which is 

the sum of all the ranks in different search engine result 
lists. Clashes are avoided by search engine popularity. 
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7.3 Weighted Borda-Fuse 

In this algorithm, search engines are not treated equally, 
but their votes are considered with weights depending on 
the reliability of each search engine. These weights are set 
by the users in their profiles. Thus, the votes that the i 
result of the j search engine receive are [9,17],  
 V (ri,j) = wj * (maxk (rk)-i+1); 

Where wj is the weight of the j search engine and rk is 
the numbers of results rendered by search engine k. 
Retrieved pages that appear in more than one search 
engines receive the sum of their votes. 

7.4 The Original KE Algorithm 

KE Algorithm on its original form is a score-based 
method [1]. It exploits the ranking that a result receives by 
the component engines and the number of its appearances 
in the component engines’ lists. All component engines 
are treated equally, as all of them are considered to be 
reliable. Each returned ranked item is assigned a score 
based on the following formula [10], 
 Wke = ∑m

i=1(r (i)) / ((n) m * (k/10 + 1) n); 
Where ∑mi=1(r(i))  is the sum of all rankings that the 

item has taken, n is the number of search engine top-k lists 
the item is listed in, m is the total number of search 
engines exploited and k is the total number of ranked 
items that the KE Algorithm uses from each search engine. 
Therefore, it is clear that the less weight a result scores the 
better ranking it receives. 

7.5 Fetch Retrieved Documents 

A straightforward way to perform result merging is to 
fetch the retrieved documents to the MSE and compute 
their similarities with the query using a global similarity 
function. The main problem of this approach is that the 
user has to wait a long time before the results can be fully 
displayed. Therefore, most result merging techniques 
utilize the information associated with the search results as 
returned by component search engines to perform 
merging. The difficulty lies in the heterogeneities among 
the component search engines.  

7.6 Borda Count 

Borda Count is a voting-based data fusion method [15]. 
The returned results are considered as the candidates and 
each component search engine is a voter. For each voter, 
the top ranked candidate is assigned n points (n 
candidates), the second top ranked candidate is given n–1 
points, and so on. For candidates that are not ranked by a 
voter (i.e., they are not retrieved by the corresponding 
search engine), the remaining points of the voter will be 

divided evenly among them. The candidates are then 
ranked on their received total points in descending order 
[13,15,17]. 

7.7 D-WISE Method 

In D-WISE, the local rank of a document (ri) returned 
from search engine j is converted to a ranking score (rsij) 
by using the formula [6],  
 rsij = 1 – (ri - 1) * Smin / (m * Sj) ; 

Where Sj is the usefulness score of the search engine j, 
Smin is the smallest search engine score among all 
component search engines selected for this query, and m is 
the number of documents desired across all search 
engines. This function generates a smaller difference 
between the ranking scores of two consecutively ranked 
results retrieved from a search engine with a higher search 
engine score. This has the effect of ranking more results 
from higher quality search engines (with respect to the 
given query) higher. One problem of this method is that 
the highest ranked documents returned from all the local 
systems will have the same ranking score 1. 

7.8 Merging Based on Combination Documents 
Records (SRRs) 

Among all the proposed merging methods, the most 
effective one is based on the combination of the evidences 
of document such as title, snippet, and the search engine 
usefulness. These methods work as follows [1,2]:  

At first, for each document, the similarity between the 
query and its title, and the similarity between the query 
and its snippet are computed. Then the two similarities are 
linearly aggregated as this document’s estimated global 
similarity. For each query term, its weight in every 
component search engine is computed based on the Okapi 
probabilistic model [6]. The Okapi model requires the 
information of document frequency (df) of each term. 
Since the df information cannot be obtained in a MSE 
context, the df of the term t in search engine j is 
approximated by the number of documents in the top 10 
documents returned by search engine j containing term t 
within their titles and snippets. The search engine score is 
the sum of all the query term weights of this search 
engine. Finally, the estimated global similarity of each 
result is adjusted by multiplying the relative deviation of 
its source search engine’s score to the mean of all the 
search engine scores. Major general purpose search 
engines have a certain amount of overlaps between them. 
It is very possible that for a given query, the same 
document is returned from multiple component search 
engines. In this case, their (normalized) ranking scores 
need to be combined [1]. A number of linear combination 
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fusion functions have been proposed to solve this problem 
include min, max, sum, average and etc [15]. 

7.9 Use Top Document to Compute Search Engine 
Score (TopD) 

Let Sj denote the score of search engine j with respect 
to q. The TopD algorithm uses the similarity between q 
and the top ranked document returned from search engine j 
(denoted dij) to estimate Sj [6,7]. In general, the highest 
ranked document is the most relevant to the user query 
based on the search engine’s ranking criteria. Its content 
can reflect how “good” the search engine is with respect to 
the user query. Fetching the top ranked document from its 
local server will introduce some extra network delay to the 
merging process, but we believe that this delay is tolerable 
since only one document is fetched from each used search 
engine for a query. For the similarity function, we tried 
both the Cosine function and the Okapi function. In 
Cosine function, the weight associated with each term in q 
and dij is the tf weight (we also tried tf*idf weight and the 
results are similar). The similarity between query q and dij 
using Okapi function is the sum of the Okapi weight of 
each query term T. The formula is [6], 
 ∑TEq W * (((K1 + 1) * tf) / (K + tf)) * (((K3 + 1) * qtf) 

/ (K3 + qtf)) ; 
 With W = Log ((N-n+0.5) /(n+0.5)) and K = K1 * ((1-

b)+b*(dl/avgdl)) ; 
Where tf is the frequency of the query term T within the 

processed document, qtf is the frequency of T within the 
query, N is the number of documents in the collection, n is 
the number of documents containing T, dl is the length of 
the document, and avgdl is the average length of all the 
documents in the collection. K1, k3 and b are the constants 
with values 1.2, 1,000 and 0.75, respectively [6]. Since N, 
n, and avgdl are unknown, we use some approximations to 
estimate them. The ranking scores of the top ranked results 
from all used search engines will be 1[1,6]. We remedy 
this problem by computing an adjusted ranking score arsij 
by multiplying the ranking score computed by above 
formula, namely rsij, by Sj [6], arsij = ∑ (rsij * Sj); 

If a document is retrieved from multiple search engines, 
we compute its final ranking score by summing up all the 
adjusted ranking scores. 

7.10 Use Top Search Result Records (SRRs) to 
Compute Search Engine Score (TopSRR) 

This algorithm is the same as the TopD algorithm 
except that a different method is used to compute the 
search engine score. When a query q is submitted to a 
search engine j, the search engine returns the SRRs of a 
certain number of top ranked documents on a dynamically 

generated result page. In the TopSRR algorithm, the SRRs 
of the top n returned results from each search engine, 
instead of the top ranked document, are used to estimate 
its search engine score [6]. Intuitively, this is reasonable as 
a more useful search engine for a given query is more 
likely to retrieve better results which are usually reflected 
in the SRRs of these results. Specifically, all the titles of 
the top n SRRs from search engine j are merged together 
to form a title vector TVj, and all the snippets are also 
merged into a snippet vector SVj. The similarities between 
query q and TVj, and between q and SVj are computed 
separately and then aggregated into the score of search 
engine j [6], 
 Sj = C1 * Similarity (q, TVj) + (1 – C1) * Similarity (q, 

SVj); 
Where for example C1 = 0.5 and n = 10. Again, both 

the Cosine similarity function with tf weight and the Okapi 
function are used. In the Okapi function, the average 
document lengths (avgdl) of the title vector TVj and the 
snippet vector SVj are estimated by the average length of 
the titles and the snippets of the top 10 results on the result 
page [6,7]. 

7.11 Compute Simple Similarities between SRRs and 
Query (SRRsim) 

Since each SRR can be considered as the representative 
of the corresponding full document, we may rank SRRs 
returned from different search engines based on their 
similarities with the query directly using an appropriate 
similarity function. In the SRRsim algorithm, the 
similarity between a SRR (R) and a query q is defined as a 
weighted sum of the similarity between the title (T) of R 
and q and the similarity between the snippet (S) of R and q 
[6,7], 
 Sim(R , q) = C2 * Similarity (q, T) + (1 – C2) * 

Similarity (q , S) ; 
 Where, C2 is constant (C2 = 0.5). Again both the 

Cosine similarity function with tf weight and the Okapi 
function are tried. If a document is retrieved from multiple 
search engines with different SRRs (different search 
engines usually employ different ways to generate SRRs), 
then the similarity between the query and each such SRR 
will be computed and the largest one will be used as the 
final similarity of this document with the query for result 
merging. 

7.12 Rank SRRs Using More Features (SRRRank) 

The similarity function used in the SRRsim algorithm, 
no matter it is the Cosine function or the Okapi function, 
may not be sufficiently powerful in reflecting the true 
matches of the SRRs with respect to a given query [6]. For 
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example, these functions do not take proximity 
information such as how close the query terms occur in the 
title and snippet of a SRR into consideration, nor does it 
consider the order of appearances of the query terms in the 
title and snippet. Intuitively, if a query contains one or 
more phrases, the order and proximity information has a 
significant impact on the match of phrases versus just 
individual terms. To better rank SRRs, this algorithm 
defines five features with respect to the query terms; that 
are [6,7], 
 NDT: The number of distinct query terms appearing 

in title and snippet; 
 TNT: total number occurrences of the query terms in 

the title and snippet; 
 TLoc: The locations of the occurred query terms; 
 ADJ: whether the occurred query terms appear in the 

same order as they are in the query and whether they 
occur adjacently; 

 WS: the window size containing distinct occurred 
query terms. 

For each SRR of the returned result, the above pieces of 
information are collected. The SRRRank algorithm works 
as follows [6]:  
 All the SRRs are grouped based on the number of 

distinct query terms (NDT) in their title and snippet 
fields. The groups having more distinct terms are 
ranked higher; 

 Within each group, the SRRs are further put into three 
subgroups based on the location of the occurred 
distinct query terms (TLoc). The subgroup with these 
terms in the title ranks highest, the subgroup with the 
distinct terms in the snippet and the subgroup with the 
terms scattered in both title and snippet;  

 Finally, within each subgroup, the SRRs that have 
more occurrences of query terms (TNT) appearing in 
the title and the snippet are ranked higher. If two 
SRRs have the same number of occurrences of query 
terms, first the one with distinct query terms 
appearing in the same order and adjacently (ADJ) as 
they are in the query is ranked higher, and then, the 
one with smaller window size is ranked higher. 

If there is any tie, it is broken by the local ranks. The 
result with the higher local rank will have a higher global 
rank in the merged list. If a result is retrieved from 
multiple search engines, we only keep the one with the 
highest global rank [3,6]. 

7.13 Compute Similarities between SRRs and Query 
Using More Features (SRRSimMF) 

This algorithm is similar to SRRRank except that it 
quantifies the matches based on each feature identified in 
SRRRank so that the matching scores based on different 
features can be aggregated into a numeric value [1,3]. 

Consider a given field of a SRR, say title (the same 
methods apply to snippet). For the number of distinct 
query terms (NDT), its matching score is the ratio of NDT 
over the total number of distinct terms in the query 
(QLEN), denoted SNDT=NDT/QLEN. For the total 
number of query terms (TNT), its matching score is the 
ratio of TNT over the length of title, denoted 
STNT=TDT/TITLEN. For the query terms order and 
adjacency information (ADJ), the matching score SADJ is 
set to 1 if the distinct query terms appear in the same order 
and adjacently in the title; otherwise the value is 0. The 
window size (WS) of the distinct query terms in the 
processed title is converted into score SWS= (TITLEN–
WS)/TITLEN. All the matching scores of these features 
are aggregated into a single value, which is the similarity 
between the processed title T and q, using this formula [6], 
 Sim(T , q) = SNDT + (1/QLEN) * (W1 * SADJ + W2 * 

SWS + W3 * STNT) ; 
This formula guarantees that titles containing more 

distinct query terms will have larger similarities. For each 
SRR, the similarity between the title and the query (Sim 
(T, q)) and the similarity between the snippet S and the 
query (Sim(S, q)) are computed separately first and then 
merged into one value as, 
 Similarity = (TNDT/QLEN) * (C3 * Sim(T , q) + (1 – 

C3) * Sim (S , q)) ; 
Where TNDT is the total number of distinct query 

terms appeared in title and snippet. By multiplying by 
TNDT/QLEN, we guarantee that the SRR containing more 
distinct query terms will be ranked higher [6,7]. A genetic 
algorithm based training method is used to determine the 
values of the parameters involved in this method. 

8. Evaluation Key Parameters for Ranking 
Strategies 

8.1 Algorithmic Complexity (Time Complexity) 

The positional methods take linear time [11,16]. 

8.2 Rank Aggregation Time 

This parameter was measured with respect to each other 
and with normal search engines [3,11]. 

8.3 Overlap across Search Engines (Relative Search 
Engine Performance) 

Among the top 10 results obtained for each query, there 
is overlap across multiple search engines' results. An 
interesting observation would be to find which search 
engines rank the overlapping results better. An intuition 
behind such a measure is that a search engine, which ranks 
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the overlapping results, better, can be regarded as a better 
search engine considering that the overlapping results are 
more relevant [5]. 

8.4 Performance of the Various Rank Aggregation 
Methods 

In evaluating the performance of the ranking strategies 
for all the queries, some ways have chosen precision as a 
good measure of relative performance; because all the 
ranking strategies work on the same set of results and try 
to get the most relevant ones to the top [11]. Hence, a 
strategy that has a higher precision at the top can be rated 
better from the user’s perspective. These ways have 
plotted the precision of the ranking strategies with respect 
to both the number of search results and the recall [7,8]. In 
considering the recall, these ways have taken the total 
number of relevant documents based on user evaluation of 
all the top 10 results retrieved by each search engine [11]. 

8.4.1 Precision with Respect to Number of Results 
Returned 

8.4.2 Precision vs. Recall 

9. Conclusion 

In this paper, we have presented an overview and some 
ranking strategies in MSEs. We also reported our study on 
how to merge the search results returned from multiple 
component search engines into a single ranked list; this is 
an important issue in MSE research. An effective and 
efficient result merging strategy is essential for developing 
effective MetaSearch systems [2]. We investigated 
merging algorithms that utilize a wide range of 
information available for merging, from local ranks by 
component search engines, search engine scores, titles and 
snippets of search result records to the full documents. We 
discuss methods for improving answer relevance in MSEs; 
propose several strategies for combining the ranked results 
returned from multiple search engines. Our study has 
several interesting results; that are: 
 A simple, efficient and easily result merging 

algorithm can help a MSE significantly outperform 
the best single search engine in effectiveness [2]; 

 Merging based on the titles and snippets of returned 
search result records can be more effective than using 
the full documents of these results. This implies that a 
MSE can achieve better performance than a 
centralized retrieval system that contains all the 
documents from the component search engines;  

 We have observed that the computational complexity 
of ranking algorithms used and performance of the 
MSE are conflicting parameters; 

 A simply result merging algorithm can perform as 
well as more sophisticated ones; 

 MSEs are useful, because  
 Integration of search results provided by different 

engines; 
 Comparison of rank positions; 
 Advanced search features on top of commodity 

engines; 
 A complete MSE can be used for retrieving, 

parsing, merging and reporting results provided 
by many search engines. 

10. Future Works 

Component search engines employed by a MSE may 
change their connection parameters and result display 
format anytime. These changes can make the affected 
search engines unusable in the MSE unless the 
corresponding connection programs and result extraction 
wrappers are changed accordingly [14]. How to monitor 
the changes of search engines and make the corresponding 
changes in the MSE automatically and timely is an area 
that needs urgent attention from MSE researchers and 
developers. 

Most of today’s MSEs employ only a small number of 
general purpose search engines. Building large-scale 
MSEs using numerous specialized search engines is 
another area that deserves more attention. Challenges 
arising from building very large-scale MSEs include 
automatic generation and maintenance of high quality 
search engine representatives needed for efficient and 
effective search engine selection, and highly automated 
techniques to add search engines into MSEs and to adapt 
to changes of search engines. 
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