
Search Result Merging and Ranking Strategies in Meta-Search
Engines: A Survey

Abstract

MetaSearch is utilizing multiple other search systems to perform
simultaneous search. A MetaSearch Engine (MSE) is a search
system that enables MetaSearch. To perform a MetaSearch, user
query is sent to multiple search engines; once the search results
returned, they are received by the MSE, then merged into a
single ranked list and the ranked list is presented to the user.
When a query is submitted to a MSE, decisions are made with
respect to the underlying search engines to be used, what
modifications will be made to the query and how to score the
results. These decisions are typically made by considering only
the user’s keyword query, neglecting the larger information need.
The cornerstone of their technology is their rank aggregation
method. In other words, Result merging is a key component in a
MSE. The effectiveness of a MSE is closely related to the result
merging algorithm it employs. In this paper, we want to
investigate a variety of result merging methods based on a wide
range of available information about the retrieved results, from
their local ranks, their titles and snippets, to the full documents of
these results.

Keywords: Search, Merge, Web, Meta-Search, MetaSearch
Engine, Ranking.

1. Introduction

MetaSearch Engines (MSEs) are tools that help the user
identify such relevant information. Search engines retrieve
web pages that contain information relevant to a specific
subject described with a set of keywords given by the user.
MSEs work at a higher level. They retrieve web pages
relevant to a set of keywords, exploiting other already
existing search engines. The earliest MSE is the
MetaCrawler system that became operational since June
1995 [5,16]. Over the last years, many MSEs have been
developed and deployed on the web. Most of them are
built on top of a small number of popular general-purpose
search engines but there are also MSEs that are connected
to more specialized search engines and some are
connected to over one thousand search engines.

MSE is a system that provides unified access to

multiple existing search engines [5]. After the results
returned from all used component search engines are
collected, the MetaSearch system merged the results into a
single ranked list. The major benefits of MSEs are their
capabilities to combine the coverage of multiple search
engines and to reach deep web. To increase the precision
of the results, some MSEs do not always send the user’s
query to the same search engines. The existing methods
assign scores according to objective criteria; but most
current methods lack personalization [1,10].

In this paper, we investigate different result merging
algorithms; The rest of the paper is organized as: In
Section 2 motivation, In Section 3 overview of MSE,
Section 4 provides scientific principles of MSE, Section 5
discusses about why MSE, Section 6 discusses
architecture of MSE, Section 7 describes ranking
aggregation methods, In Section 8 we express key
parameters to evaluating the ranking strategies, Section 9
gives conclusions and Section 10 present future works.

2. Motivation

There are some primarily factors behind developing a
MSE, are:
 The World Wide Web (WWW) is a huge unstructured

corpus of information; MSE covers a larger portion of
WWW;

 By MSE we can have the latest updated information
and it increases the web coverage;

 Improved convenience for users;
 MSE provides fast and easy access to the desired

search [5]; better retrieval effectiveness [2];
 MSE provides a broader overview of a topic [12];
 MSE has ability to search the invisible Web, thus

increasing the precision, recall and quality of result;
 MSE makes the user task much easier by searching

and ranking the results from multiple search engine;

Hossein Jadidoleslamy

Department of Information Technology, Anzali International Branch, The University of Guilan
Zahedan, Sistan and Balouchestan, Zip: 9815687389, Iran

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 239

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 MSE provides a quick way to determine which search
engines are retrieving the best match for user's
information need [4].

3. Overview of a MetaSearch Engine

MSE search several engines at once; it does not crawl
the web or maintain a database of web pages; instead, they
act as a middle agent, passing the user’s query
simultaneously to other search engines or web directories
or deep web, returning the results, collecting them,
remove the duplicate links, merge and rank them into a
single list and display it to the user [5,8]. Some samples of
MSEs are Vivisimo, MetaCrawler, Dogpile, Mamma, and
Turbo10.

3.1 Differences (Search vs. MetaSearch)

 MSE does not crawl the Web [2,4];
 MSE does not have a Database [4,10];
 MSE sends search queries to several search engines at

once [2,5];
 MSE increased search coverage (but is limited by the

engines they use with respect to the number and
quality of results) and a consistent interface [6,12];

 MSE is an effective mechanism to reach deep web.

3.2 MetaSearch Engine Definitions

 Dictionary meaning for Meta: more comprehensive,
transcending;

 The term MetaSearch is a list of search engines, but it
is also used to describe the paradigm of searching
multiple data sources in real time;

 A MSE allows you to search multiple search engines
at once, returning more comprehensive and relevant
results, fast [5,9];

 A search engine which does not gather its own
information directly from web sites but rather passes
the queries that it receives onto other search engines.
It then compiles, summarizes and displays the found
information;

 MSE is a hub of search engines/databases accessible
by a common interface providing the user with results
which may/may not be ranked independently of the
original search engine/source ranking [6,10].

3.3 The Types of MetaSearch Engine

 MSEs which present results without aggregating
them;

 Searches multiple search engines, aggregates the
results obtained from them and returns a single list of
results [1,3], often with duplicate removed;

 MSEs for serious deep digging.

3.4 MetaSearch Engine Issues

 Performing search engine/database selection [5,6];
 How to pass user queries to other search engines;
 How to identify correct search results returned from

search engines; an optimal algorithm for
implementing minimum cost bipartite matching;

 How to search results extraction, requiring a
connection program and an extraction program
(wrapper) for each component search engine [14];

 Expensive and time-consuming to produce/maintain
wrapper programs [14];

 merging the results from different search sources;
 Different search engines produce result pages in

different formats [6,8].

3.5 Principles of MetaSearch Engine

 Accept the User query;
 Convert the query into the correct syntax for

underlying search engines, launch the multiple
queries, wait for the result;

 Analyze, eliminate duplicates and merge results;
 Deliver the post processed result to the users.

4. Scientific Fundamentals

4.1 Search Engine Selection

To enable search engine selection, some information
that can represent the contents of the documents of each
component search engine needs to be collected first. Such
information for a search engine is called the representative
of the search engine [5,17]. The representatives of all
search engines used by the MSE are collected in advance
and are stored with the MSE. During search engine
selection for a given query, search engines are ranked
based on how well their representatives match with the
query. Different search engine selection techniques often
use different types of representatives. A simple
representative of a search engine may contain only a few
selected key words or a short description. This type of
representative is usually produced manually but it can also
be automatically generated [5]. As this type of
representatives provides only a general description of the
contents of search engines, the accuracy of using such
representatives for search engine selection is usually low.
More elaborate representatives consist of detailed
statistical information [5] for each term in each search
engine; include,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 240

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 The document frequency and collection frequency of
each term in each search engine is used to compute
the cue validity variance of each query term, which
measures the skew of the distribution of the query
term across all component search engines, to help
rank search engines for each query [6,17];

 The adjusted maximum normalized weight of each
term across all documents in a search engine is used
to represent a search engine [5];

 The notion of optimal search engine ranking is
proposed based on the objective of retrieving the m
most similar documents with respect to a given query
q from across all component search engines: n search
engines are said to be optimally ranked with order
[S1, S2, . . ., Sn] if for any integer m, an integer k can
be found such that the m most similar documents are
contained in [S1, . . ., Sk] and each of these k search
engines contain at least one of the m most similar
documents [5,9,17]. It is shown that a necessary and
sufficient condition for the component search engines
to be optimally ranked is to order the search engines
in descending order of the similarity of the most
similar document with respect to q in each search
engine.

There are also techniques that create search engine
representatives by learning from the search results of past
queries. Essentially such type of representatives is the
knowledge indicating the past performance of a search
engine with respect to different queries.

4.2 Automatic Search Engine Connection

In most cases, the HTML form tag of a MSE contains
all information needed to make the connection to the
search engines. The form tag of each search engine
interface is usually pre-processed to extract the
information needed for program connection and the
extracted information is saved at the MSE [5,17]. After the
MSE receives a query and a particular search engine,
among possibly other search engines, is selected to
evaluate this query, the query is assigned to the name of
the query textbox of the search engine and sent to the
server of the search engine using the HTTP request
method. After the query is evaluated by the search engine,
one or more result pages containing the search results are
returned to the MSE for further processing.

4.3 Automatic Search Result Extraction

A result page returned by a search engine is a
dynamically generated HTML page. In addition to the
search result records (SRRs) for a query, a result page
usually also contains some unwanted information/links
[5]. It is important to correctly extract the SRRs on each

result page. A typical SRR corresponds to a retrieved
document and it usually contains the URL, title and a
snippet of the document. Since different search engines
produce result pages in different format, a separate
wrapper program needs to be generated for each search
engine [5,14]. Most of them analyze the source HTML
files of the result pages as text strings or tag trees to find
the repeating patterns of the SRRs.

4.4 Results Merging

Result merging is to combine the search results returned
from multiple search engines into a single ranked list.
Early search engines often assigned a numerical matching
score to each retrieved search result and the result merging
algorithms were designed to normalize the scores returned
from different search engines into values within a common
range with the goal to make them more comparable [16];
Normalized scores will then be used to ranking all the
search results [1,6]. Score normalization and rank
aggregation may also take into consideration the estimated
usefulness of each selected search engine with respect to
the query [3,7], which is obtained during the search engine
selection step. The normalized score of a result can be
weighted by the usefulness score of the search engine that
returned the result. This increases the chance for the
results from more useful search engines to be ranked
higher. When matching scores are not available, the ranks
of the search results from component search engines can
be aggregated using voting-based techniques.

Another result merging technique is to download all
returned documents from their local servers and compute
their matching scores using a common similarity function
employed by the MSE; The results will then be ranked
based on these scores [1,6]. The advantage of this
approach is that it provides a uniform way to compute
ranking scores. Its main drawback is the longer response
time due to the delay caused by downloading the
documents and analyzing them [17]. Most modern search
engines display the title and snippet of each retrieved
result [16]. These features can often provide good clues on
whether or not the result is relevant to a query. As a result,
result merging algorithms that rely on titles and snippets
have been proposed recently. When titles and snippets are
used to perform the merging, a matching score of each
result with the query can be computed based on several
factors such as the number of unique query terms that
appear in the title/snippet and the proximity of the query
terms in the title/snippet [1].

It is possible that the same result is retrieved from
multiple search engines; such results are more likely to be
relevant to the query; To help rank these results higher in
the merged list, the ranking scores of these results from

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 241

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

different search engines can be added up to produce the
final score for the result. Then search results are ranked in
descending order of the final scores [1,5].

5. Why Are MetaSearch Engines Useful?

5.1 Why MetaSearch?

 Individual Search engines do not cover all the web;
 Individual Search Engines are prone to spamming [5];
 Difficulty in deciding and obtaining results with

combined searches on different search engines [6];
 Data Fusion (multiple formats supported) and take

less effort of user.

5.2 Why MetaSearch Engines?

 General search engines have difference in search
syntax, frequency of updating, display results/search
interface and incomplete database [5,16];

 MSE improves the search quality with
comprehensive, efficient and one query queries all;

 MSE is good for quick search results overview with 1
or 2 keywords;

 MSE convenient to search different content sources
from one page.

5.3 Key Applications of MetaSearch Engine

 Effective mechanism to search surface/deep web;
 MSE provides a common search interface over

multiple search engines [5,10];
 MSE can support interesting special applications.

5.4 General Features of MetaSearch Engine

 Unifies the search interface and provides a consistent
user interface;

 Standardizes the query structure [5];
 May make use of an independent ranking method for

the results [6];
 May have an independent ranking system for each

search engine/database;
 MetaSearch is not a search for Meta data.

6. MetaSearch Engine Architecture

A MSE is a search tool that sends user requests to
several other search engines/databases, aggregates the
results, merges/renks them into a single list and displays
them to user [5]. MSEs enable users to enter search criteria
once and access several search engines simultaneously.
This also may save (a lot of time) the user from having to

use multiple search engines separately (by initiating the
search at a single point).

MSEs create a virtual database; They do not compile a
physical web database. Instead, they take a user's request,
pass it to several heterogeneous databases and then
compile the results in a homogeneous manner. No two
MSEs are alike; some search only the most popular search
engines while others also search lesser-known engines,
newsgroups, and other databases [10]. They also differ in
how the results are presented and the quantity of engines
that are used. Some will list results according to search
engine/database. Others return results according to
relevance, often concealing which search engine returned
which results. This benefits the user by eliminating
duplicate hits and grouping the most relevant ones at the
top of the list.

6.1 Standard Architecture

Fig. 1 How works a MSE?

Fig. 2 Block diagram and components (block representation)

 User Interface: similar search engine interfaces with

options for types of search and search engines to use;

S E 1 S E 2 S E 3

Dispatcher

Display

U
ser Interface

Knowledge
Personalize

Query

Feedback

User

Web

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 242

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Dispatcher: generates actual queries to the search
engines by using the user query; may involve
choosing/expanding search engines to use;

 Display: generates results page from the replies
received; May involve ranking, parsing and clustering
of the search results or just plain stitching;

 Personalization/Knowledge: may contain either or
both. Personalization may involve weighting of search
results/query/engine for each user.

6.2 The Architecture of a MetaSearch Engine with
Concerns User Preferences

Current MSEs make several decisions on be-half of the
user, but do not consider the user’s complete information
need. A MSE must decide which sources to query, how to
modify the submitted query to best utilize the underlying
search engines, and how to order the results. Some MSEs
allow users to influence one of these decisions, but not all
three [4,5].

Fig. 3 The architecture of a MSE with user needs

A typical MSE, submits a user’s query (with minor
modifications) to a set of search engines, and returns the
results in the order returned by the search engines. This
order might not make sense if the user has a specific need.
User’s information needs are not sufficiently represented
by a keyword query alone [4,10]. For example we can use
of decision theory to ranking results from a single search
engine while capturing more of a user’s information need
than a text query alone.

This architecture has an explicit notion of user
preferences. These preferences or a search strategy, are
used to choose the appropriate search engines (source
selection), query modifications and influence the order the
results (result scoring). Allowing the user to control the
search strategy can provide relevant results for several
specific needs, with a single consistent interface [4]. The
current user interface provides the user with a list of
choices. The specification of preferences allows users with
different needs, but the same query, to not only search
different search engines (or the same search engines with

different “modified” queries), but also have results ordered
differently [4]. Sometimes Even though users have
different information needs, they might type the same
keyword query, and even search some of the same search
engines. This architecture guarantees consistent scoring of
results by downloading page contents and analyzing the
pages on the server, as opposed to relying on the reported
scores and short summaries from the original search
engines [1,4]. By downloading pages locally, we are
assured to have the most recent version of any page and
eliminating dead links and old content.

Table 1: Information needs categories
Name Description

Research papers
Detailed pages, preferably an actual
article

Individual
homepages

The homepages of the individual listed in
the query

Organizational
homepage

The homepages of the organization listed
in the query

Current events, news
recent

Recent articles, or content about the
given query, with significant content

General introductory
about

Getting started, references, "what is", etc

6.2.1 Choosing a Search Engine (Source Selection)

Currently, the search strategies are human generated. In
future work includes use of learning techniques to improve
the source selection decision. MSEs, allow the user some
control of which search engines are chosen. Each of these
engines has had experimental methods for automatic
source selection based on the user query. A difficulty of
automatic source selection is the metric used to compare
sources. One metric is the average number of results
returned for a given query. This metric is similar to the
recall measure, if one assumes all returned results are
relevant. Unfortunately, there is not necessarily a
correlation between number of results returned and their
usefulness.

Some MSE attempted to consider user satisfaction with
results for some given query based on user feedback.
Although this approach considers user statements about
result values, it assumes that the user’s valuations are
mapped to the query, which is not true if there is more
than a one-to-one mapping of needs to queries [4].

Other MSE contains a function for predicting the value
of documents. This function is specific to the individual
user. Given a reasonable model of user value, it is possible
to determine how good any given source is for a given
need (on average), as opposed to associating the “worth”
of a given source to a query. By evaluating the worth of a
source based on the need, not the query, it is possible to
make reasonable judgments for previously unseen queries.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 243

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

6.2.2 Modifying the Query (Query Modification)

Query modification is one method of causing the
underlying search engines to provide more valuable results
for given information need [4]. One of the problems of a
MSE is its dependence on the underlying search engines to
provide a reasonable set of results. Just because a search
engine contains very good results for the current user’s
need, there is no guarantee that those results will be
returned for any given query [16]. To enhance the
precision of the results and deal with the problems caused
by search engine result limits, some MSEs allow query
modification. Some types of modification performed: use
of the search engine specific options; pre-pending terms;
or appending terms.
One method for modification is using search engine
specific options. Most search engines provide the ability to
influence their result ordering or to add constraints. The
choice of options depends on the user’s information need,
not only his keyword query [4].

The second modification adds keywords. Depending on
the user’s information need, it might be desirable to locate
pages by type. By adding some keywords to a query, the
precision can be significantly increased. It is important to
note that query modification does not affect the scoring
function; documents are scored based on the user-provided
query and preferences, not modification [1,4].

Some MSEs allow query terms to be added before or
after the provided query. For the information need
category of "general resources", both types of modification
are used. One modification is pre-pending “what is” to the
query, while another adds the keywords “resources links”
[4].

Query modifications can increase coverage. However,
with a constraint, it is possible to get many valuable (both
topically relevant and recent) results. The use of such
options depends on the user’s need, and is applied
differently to different search engines.

6.2.3 Information Extractor and Result Merger/Ranker

The information extractor component is responsible for
extraction of results from the result pages. It consists of a
Record collector component and a Result Collector
component. The Record Collector component is
responsible for identification of the record section from
the result page and Result Collector component is
responsible to extract the exact field from the identified
record section. Information extraction often performed by
using wrappers. Wrappers can be constructed manually,
semi-automatically and automatically for record section
identification [14]. For identification of record section,
different approaches (include automatic, supervised or
data mining wrapper generation) can be utilized. After

identification of record section, a MetaSearch result
identifier component is utilized for the extraction of exact
results by using a domain ontology or information
extraction tool [14]. Result extracted from different search
engines need to be merged and then stored in a database or
in XML format for future use. For schema matching and
merging it is required to normalize the terms. Stemming
can be utilized for term normalization process. The
stemming process is useful to find similar terms by only
considering the word stem in search engines, natural
language and text processing.

The most important decision made by a MSE is results
ordering. A typical search engine scores results based on
the keywords in the query and the terms in the document
[16]. Typical MSEs score documents based on the original
scores returned from the search engines queried, running
the risk that the actual pages are no longer relevant, or that
the page scored high as a result of keyword spamming.
Some MSEs download web pages and order them based
on the full content. Other MSEs using an ordering policy
defined by the user’s preferences [4]; Different users, even
with the same query and the same set of documents, will
have results presented in an order meaningful to their
individual need. MSEs also can use utility theory for
evaluating the results; the ordering policy is “sort by
value” where utility theory provides the mechanism for
predicting the value. Each user-selected information need
category has an associated additive value function of the
form [17],
U (dj) = ∑kWkVk (xjk);

Where Wk is the weight of the kth attribute and by
convention totals one. Vk is the value function for the kth
attribute; xjk is the level of the kth attribute for the jth
document, and by convention [17]: any k, d: Vk (d) is
member of [0, 1]; The page analyzer extracts the attributes
(xjk) for every page. Table 2 lists several page specific
attributes. Each information need category is described as
a value function allowing a balance between several
attributes [4,17].

Table 2: List of some of the page specific attributes and their description
Name Description
Word count Number of words per pages

Homepage
A measure of the number of homepage like
features present

Genscore
A measure of features indicative of a general
page

researchpaper
A measure of features indicative of a
researchpaper page

Imagecount
The number of unique images present on a
page

Numkeywords
The number of keywords in the query matched
on a page

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 244

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Sectioncount The number of sections on a page

Summary
An automatically generated summarization of
the document

Some MSEs that downloading all web pages can be

time consuming, and presents an interface issue. If the
ordering policy is sort by value, the standard approach is
to wait until all results are downloaded, scored and then
sort. An alternative is a dynamic interface that inserts each
result as it is scored. If by coincidence the very first
downloaded web page is perfect, it will be immediately
available and the user can stop the search. Likewise, if
there are mixtures of good and bad results, the better ones
will be displayed on top. As a new result is downloaded
and scored, it is immediately available for the user to see,
thus reducing the effect of the latency, and improving over
many MSEs that force the user to wait before seeing
results. These MSEs provide the user with an optional
JAVA applet that provides this dynamic-sorting and
display functionality, plus the ability to change the
ordering policy during or after searches.

6.3 Helios Architecture

In this section we describe the architecture of Helios.
The Web Interface allows users to submit their queries and
select the desired search engines among those supported
by the system. This information is interpreted by the Local
Query Parser & Emitter that re-writes queries in the
appropriate format for the chosen engines. The Engines
Builder maintains all the settings necessary to
communicate with the remote search engines. The HTTP
Retrievers modules handle the network communications.
Once search results are available, the Search Results
Collector & Parser extracts the relevant information and
returns it using XML. Users can adopt the standard
Merger & Ranker module for search results or integrate
their customized one [12]. To achieve its high-
performance, Helios utilizes a-sync I/O and parallel TCP
connections, with the remote search engines. This is useful
for two reasons: (i) the system is not overloaded with
hundreds of threads; (ii) the connection cost is reduced to
a few µsec, since parallel connections allow to retrieve
data from one server while starting the connection to a
second one, sending data to a third one. We remark that
for a given query, it is possible to exploit both parallelisms
among different search engines and within a single engine
[12].

The integration of a new engine is simple: a
configuration file is used to specify the engine parameters
and a parser script provides the parser engine the
necessary information to extract the relevant data. This
MSE include a simple but efficient parsing language

which allows searching strings, maintaining a cursor over
a string, extracting substring, deleting or rewriting them.
The language also provides some constructs such as if,
until, jump and processes the search results in a fast and
efficient way [12].

Fig. 4 The architecture of HELIOS MSE

6.4 A Tadpole Architecture

In this architecture, when a user issues a search request,
multiple threads are created in order to fetch the results
from various search engines. Each of these threads is
given a time limit to return the results, failing which a time
out occurs and the thread is terminated [5,11].

Fig. 5 Basic component architecture of a typical MSE

MSEs are web services that receive user queries and
dispatch them to multiple crawl-based search engines.
Then, they collect the returned results, reorder them and
present the ranked result list to the end user [11]. The
ranking fusion algorithms that MSEs utilize are based on a
variety of parameters, such as the ranking a result receives
and the number of its appearances in the component
engine’s result lists [15]. These parameters are being
exploited to compute a weight (score) for each collected
result. Better results classification can be achieved by
employing ranking fusion methods that take into
consideration additional information about a web page.
Another core step is to implicitly/explicitly collect some
data concerning the user that submits the query. This will
assist the engine to decide which results suit better to his
informational needs [4,11,15].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 245

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

6.5 A TreeMap Architecture

Each process converts the given query to the format
specific to the search engine it is dealing with. This
request is sent to the search engine via the java URL
object and the results are obtained in the form of a HTML
page [11,16]. This HTML results page is parsed by the
process and for each result the URL, title, description,
rank and search source are stored; creating a result object.
These results are entered into a TreeMap data structure
with the key as the URL and the item as the result object.
The GUI provides advanced search options for entering
Boolean queries, Phrase searches, selecting the number of
results per search engine and the selection of search
engines to be queried [11].

Fig. 6 The Architecture of TreeMap

7. Results Merging and Ranking Strategies

Some important techniques for ranking search results
from different search engines in MSEs are:
 Normalizing the scores of search results and

uniformly ranked them by the normalized scores
[1,6];

 Some ways do not presuppose any information about
these scores [1,7];

 The similarity measure in several search engines may
be different. Therefore, normalization is required to
achieve a common measure of comparison. Moreover,
the reliability of each search engine must be
incorporated in the ranking algorithm through a
weight factor [6];

 Stress that the scores of various search engines are not
compatible and comparable even when normalized.
For example, notes that the same document receives
different scores in various search engines and
concludes that the score depends on the document
collection used by a search engine;

 Some ranking algorithms are proposed which
completely ignore the scores assigned by the search
engines to the retrieved web pages [1]: bayes-fuse

uses probabilistic theory to calculate the probability of
a result to be relevant to the query, while borda-fuse is
based on democratic voting [6,7];

 The contents associated with the SRRs can be used to
rank/merge retrieved results. In other words, Merging
based on titles, snippets, local rank and different
similarity functions of retrieved results [6];

 Some of algorithms also consider the frequencies of
query terms in each SRR, the order and the closeness
of these terms;

 Approaches based on full document analysis.
Attention to this point that the comparison is not

feasible even among engines using the same ranking
algorithm and claims that search engines should provide
statistical elements together with the results [7]. We want
to investigate result merging algorithms for MSEs, to
merge results from different search engines into a single
ranked list. Most of the current generation search engines
present more informative search result records (SRRs) of
retrieved results to the user. A typical SRR consists of the
URL, title and snippet of the retrieved document [6]. We
are aware of only two works that utilize such SRRs. if a
SRR contains enough information for merging so that the
corresponding full document need not be fetched rather
than a merging technique. The available evidences that can
be used for result merging are identified; such as the
document title, snippet, local rank, search engine
usefulness. In follow, some algorithms based on different
combinations of these evidences are proposed [6,7].

7.1 Take the Best Rank

In this algorithm, we try to place a URL at the best rank
it gets in any of the search engine rankings [13]. That is
[17],
 MetaRank (x) = Min (Rank1(x), Rank2(x), …,

Rankn(x));
Clashes are avoided by an ordering of the search

engines based on popularity. That means, if two results
claim the same position in the MetaRank list, the result
from a more popular search engine, is preferred to the
result from a less popular one.

7.2 Borda’s Positional Method

In this algorithm, the MetaRank of a URL is obtained
by computing the Lp-Norm of the ranks in different search
engines. That is [8,17],
 MetaRank(x) =∑ (Rank1(x) p, Rank2(x) p, …,

Rankn(x) p) 1/p;
This algorithm has considered the L1-Norm which is

the sum of all the ranks in different search engine result
lists. Clashes are avoided by search engine popularity.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 246

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

7.3 Weighted Borda-Fuse

In this algorithm, search engines are not treated equally,
but their votes are considered with weights depending on
the reliability of each search engine. These weights are set
by the users in their profiles. Thus, the votes that the i
result of the j search engine receive are [9,17],
 V (ri,j) = wj * (maxk (rk)-i+1);

Where wj is the weight of the j search engine and rk is
the numbers of results rendered by search engine k.
Retrieved pages that appear in more than one search
engines receive the sum of their votes.

7.4 The Original KE Algorithm

KE Algorithm on its original form is a score-based
method [1]. It exploits the ranking that a result receives by
the component engines and the number of its appearances
in the component engines’ lists. All component engines
are treated equally, as all of them are considered to be
reliable. Each returned ranked item is assigned a score
based on the following formula [10],
 Wke = ∑m

i=1(r (i)) / ((n) m * (k/10 + 1) n);
Where ∑mi=1(r(i)) is the sum of all rankings that the

item has taken, n is the number of search engine top-k lists
the item is listed in, m is the total number of search
engines exploited and k is the total number of ranked
items that the KE Algorithm uses from each search engine.
Therefore, it is clear that the less weight a result scores the
better ranking it receives.

7.5 Fetch Retrieved Documents

A straightforward way to perform result merging is to
fetch the retrieved documents to the MSE and compute
their similarities with the query using a global similarity
function. The main problem of this approach is that the
user has to wait a long time before the results can be fully
displayed. Therefore, most result merging techniques
utilize the information associated with the search results as
returned by component search engines to perform
merging. The difficulty lies in the heterogeneities among
the component search engines.

7.6 Borda Count

Borda Count is a voting-based data fusion method [15].
The returned results are considered as the candidates and
each component search engine is a voter. For each voter,
the top ranked candidate is assigned n points (n
candidates), the second top ranked candidate is given n–1
points, and so on. For candidates that are not ranked by a
voter (i.e., they are not retrieved by the corresponding
search engine), the remaining points of the voter will be

divided evenly among them. The candidates are then
ranked on their received total points in descending order
[13,15,17].

7.7 D-WISE Method

In D-WISE, the local rank of a document (ri) returned
from search engine j is converted to a ranking score (rsij)
by using the formula [6],
 rsij = 1 – (ri - 1) * Smin / (m * Sj) ;

Where Sj is the usefulness score of the search engine j,
Smin is the smallest search engine score among all
component search engines selected for this query, and m is
the number of documents desired across all search
engines. This function generates a smaller difference
between the ranking scores of two consecutively ranked
results retrieved from a search engine with a higher search
engine score. This has the effect of ranking more results
from higher quality search engines (with respect to the
given query) higher. One problem of this method is that
the highest ranked documents returned from all the local
systems will have the same ranking score 1.

7.8 Merging Based on Combination Documents
Records (SRRs)

Among all the proposed merging methods, the most
effective one is based on the combination of the evidences
of document such as title, snippet, and the search engine
usefulness. These methods work as follows [1,2]:

At first, for each document, the similarity between the
query and its title, and the similarity between the query
and its snippet are computed. Then the two similarities are
linearly aggregated as this document’s estimated global
similarity. For each query term, its weight in every
component search engine is computed based on the Okapi
probabilistic model [6]. The Okapi model requires the
information of document frequency (df) of each term.
Since the df information cannot be obtained in a MSE
context, the df of the term t in search engine j is
approximated by the number of documents in the top 10
documents returned by search engine j containing term t
within their titles and snippets. The search engine score is
the sum of all the query term weights of this search
engine. Finally, the estimated global similarity of each
result is adjusted by multiplying the relative deviation of
its source search engine’s score to the mean of all the
search engine scores. Major general purpose search
engines have a certain amount of overlaps between them.
It is very possible that for a given query, the same
document is returned from multiple component search
engines. In this case, their (normalized) ranking scores
need to be combined [1]. A number of linear combination

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 247

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

fusion functions have been proposed to solve this problem
include min, max, sum, average and etc [15].

7.9 Use Top Document to Compute Search Engine
Score (TopD)

Let Sj denote the score of search engine j with respect
to q. The TopD algorithm uses the similarity between q
and the top ranked document returned from search engine j
(denoted dij) to estimate Sj [6,7]. In general, the highest
ranked document is the most relevant to the user query
based on the search engine’s ranking criteria. Its content
can reflect how “good” the search engine is with respect to
the user query. Fetching the top ranked document from its
local server will introduce some extra network delay to the
merging process, but we believe that this delay is tolerable
since only one document is fetched from each used search
engine for a query. For the similarity function, we tried
both the Cosine function and the Okapi function. In
Cosine function, the weight associated with each term in q
and dij is the tf weight (we also tried tf*idf weight and the
results are similar). The similarity between query q and dij
using Okapi function is the sum of the Okapi weight of
each query term T. The formula is [6],
 ∑TEq W * (((K1 + 1) * tf) / (K + tf)) * (((K3 + 1) * qtf)

/ (K3 + qtf)) ;
 With W = Log ((N-n+0.5) /(n+0.5)) and K = K1 * ((1-

b)+b*(dl/avgdl)) ;
Where tf is the frequency of the query term T within the

processed document, qtf is the frequency of T within the
query, N is the number of documents in the collection, n is
the number of documents containing T, dl is the length of
the document, and avgdl is the average length of all the
documents in the collection. K1, k3 and b are the constants
with values 1.2, 1,000 and 0.75, respectively [6]. Since N,
n, and avgdl are unknown, we use some approximations to
estimate them. The ranking scores of the top ranked results
from all used search engines will be 1[1,6]. We remedy
this problem by computing an adjusted ranking score arsij
by multiplying the ranking score computed by above
formula, namely rsij, by Sj [6], arsij = ∑ (rsij * Sj);

If a document is retrieved from multiple search engines,
we compute its final ranking score by summing up all the
adjusted ranking scores.

7.10 Use Top Search Result Records (SRRs) to
Compute Search Engine Score (TopSRR)

This algorithm is the same as the TopD algorithm
except that a different method is used to compute the
search engine score. When a query q is submitted to a
search engine j, the search engine returns the SRRs of a
certain number of top ranked documents on a dynamically

generated result page. In the TopSRR algorithm, the SRRs
of the top n returned results from each search engine,
instead of the top ranked document, are used to estimate
its search engine score [6]. Intuitively, this is reasonable as
a more useful search engine for a given query is more
likely to retrieve better results which are usually reflected
in the SRRs of these results. Specifically, all the titles of
the top n SRRs from search engine j are merged together
to form a title vector TVj, and all the snippets are also
merged into a snippet vector SVj. The similarities between
query q and TVj, and between q and SVj are computed
separately and then aggregated into the score of search
engine j [6],
 Sj = C1 * Similarity (q, TVj) + (1 – C1) * Similarity (q,

SVj);
Where for example C1 = 0.5 and n = 10. Again, both

the Cosine similarity function with tf weight and the Okapi
function are used. In the Okapi function, the average
document lengths (avgdl) of the title vector TVj and the
snippet vector SVj are estimated by the average length of
the titles and the snippets of the top 10 results on the result
page [6,7].

7.11 Compute Simple Similarities between SRRs and
Query (SRRsim)

Since each SRR can be considered as the representative
of the corresponding full document, we may rank SRRs
returned from different search engines based on their
similarities with the query directly using an appropriate
similarity function. In the SRRsim algorithm, the
similarity between a SRR (R) and a query q is defined as a
weighted sum of the similarity between the title (T) of R
and q and the similarity between the snippet (S) of R and q
[6,7],
 Sim(R , q) = C2 * Similarity (q, T) + (1 – C2) *

Similarity (q , S) ;
 Where, C2 is constant (C2 = 0.5). Again both the

Cosine similarity function with tf weight and the Okapi
function are tried. If a document is retrieved from multiple
search engines with different SRRs (different search
engines usually employ different ways to generate SRRs),
then the similarity between the query and each such SRR
will be computed and the largest one will be used as the
final similarity of this document with the query for result
merging.

7.12 Rank SRRs Using More Features (SRRRank)

The similarity function used in the SRRsim algorithm,
no matter it is the Cosine function or the Okapi function,
may not be sufficiently powerful in reflecting the true
matches of the SRRs with respect to a given query [6]. For

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 248

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

example, these functions do not take proximity
information such as how close the query terms occur in the
title and snippet of a SRR into consideration, nor does it
consider the order of appearances of the query terms in the
title and snippet. Intuitively, if a query contains one or
more phrases, the order and proximity information has a
significant impact on the match of phrases versus just
individual terms. To better rank SRRs, this algorithm
defines five features with respect to the query terms; that
are [6,7],
 NDT: The number of distinct query terms appearing

in title and snippet;
 TNT: total number occurrences of the query terms in

the title and snippet;
 TLoc: The locations of the occurred query terms;
 ADJ: whether the occurred query terms appear in the

same order as they are in the query and whether they
occur adjacently;

 WS: the window size containing distinct occurred
query terms.

For each SRR of the returned result, the above pieces of
information are collected. The SRRRank algorithm works
as follows [6]:
 All the SRRs are grouped based on the number of

distinct query terms (NDT) in their title and snippet
fields. The groups having more distinct terms are
ranked higher;

 Within each group, the SRRs are further put into three
subgroups based on the location of the occurred
distinct query terms (TLoc). The subgroup with these
terms in the title ranks highest, the subgroup with the
distinct terms in the snippet and the subgroup with the
terms scattered in both title and snippet;

 Finally, within each subgroup, the SRRs that have
more occurrences of query terms (TNT) appearing in
the title and the snippet are ranked higher. If two
SRRs have the same number of occurrences of query
terms, first the one with distinct query terms
appearing in the same order and adjacently (ADJ) as
they are in the query is ranked higher, and then, the
one with smaller window size is ranked higher.

If there is any tie, it is broken by the local ranks. The
result with the higher local rank will have a higher global
rank in the merged list. If a result is retrieved from
multiple search engines, we only keep the one with the
highest global rank [3,6].

7.13 Compute Similarities between SRRs and Query
Using More Features (SRRSimMF)

This algorithm is similar to SRRRank except that it
quantifies the matches based on each feature identified in
SRRRank so that the matching scores based on different
features can be aggregated into a numeric value [1,3].

Consider a given field of a SRR, say title (the same
methods apply to snippet). For the number of distinct
query terms (NDT), its matching score is the ratio of NDT
over the total number of distinct terms in the query
(QLEN), denoted SNDT=NDT/QLEN. For the total
number of query terms (TNT), its matching score is the
ratio of TNT over the length of title, denoted
STNT=TDT/TITLEN. For the query terms order and
adjacency information (ADJ), the matching score SADJ is
set to 1 if the distinct query terms appear in the same order
and adjacently in the title; otherwise the value is 0. The
window size (WS) of the distinct query terms in the
processed title is converted into score SWS= (TITLEN–
WS)/TITLEN. All the matching scores of these features
are aggregated into a single value, which is the similarity
between the processed title T and q, using this formula [6],
 Sim(T , q) = SNDT + (1/QLEN) * (W1 * SADJ + W2 *

SWS + W3 * STNT) ;
This formula guarantees that titles containing more

distinct query terms will have larger similarities. For each
SRR, the similarity between the title and the query (Sim
(T, q)) and the similarity between the snippet S and the
query (Sim(S, q)) are computed separately first and then
merged into one value as,
 Similarity = (TNDT/QLEN) * (C3 * Sim(T , q) + (1 –

C3) * Sim (S , q)) ;
Where TNDT is the total number of distinct query

terms appeared in title and snippet. By multiplying by
TNDT/QLEN, we guarantee that the SRR containing more
distinct query terms will be ranked higher [6,7]. A genetic
algorithm based training method is used to determine the
values of the parameters involved in this method.

8. Evaluation Key Parameters for Ranking
Strategies

8.1 Algorithmic Complexity (Time Complexity)

The positional methods take linear time [11,16].

8.2 Rank Aggregation Time

This parameter was measured with respect to each other
and with normal search engines [3,11].

8.3 Overlap across Search Engines (Relative Search
Engine Performance)

Among the top 10 results obtained for each query, there
is overlap across multiple search engines' results. An
interesting observation would be to find which search
engines rank the overlapping results better. An intuition
behind such a measure is that a search engine, which ranks

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 249

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the overlapping results, better, can be regarded as a better
search engine considering that the overlapping results are
more relevant [5].

8.4 Performance of the Various Rank Aggregation
Methods

In evaluating the performance of the ranking strategies
for all the queries, some ways have chosen precision as a
good measure of relative performance; because all the
ranking strategies work on the same set of results and try
to get the most relevant ones to the top [11]. Hence, a
strategy that has a higher precision at the top can be rated
better from the user’s perspective. These ways have
plotted the precision of the ranking strategies with respect
to both the number of search results and the recall [7,8]. In
considering the recall, these ways have taken the total
number of relevant documents based on user evaluation of
all the top 10 results retrieved by each search engine [11].

8.4.1 Precision with Respect to Number of Results
Returned

8.4.2 Precision vs. Recall

9. Conclusion

In this paper, we have presented an overview and some
ranking strategies in MSEs. We also reported our study on
how to merge the search results returned from multiple
component search engines into a single ranked list; this is
an important issue in MSE research. An effective and
efficient result merging strategy is essential for developing
effective MetaSearch systems [2]. We investigated
merging algorithms that utilize a wide range of
information available for merging, from local ranks by
component search engines, search engine scores, titles and
snippets of search result records to the full documents. We
discuss methods for improving answer relevance in MSEs;
propose several strategies for combining the ranked results
returned from multiple search engines. Our study has
several interesting results; that are:
 A simple, efficient and easily result merging

algorithm can help a MSE significantly outperform
the best single search engine in effectiveness [2];

 Merging based on the titles and snippets of returned
search result records can be more effective than using
the full documents of these results. This implies that a
MSE can achieve better performance than a
centralized retrieval system that contains all the
documents from the component search engines;

 We have observed that the computational complexity
of ranking algorithms used and performance of the
MSE are conflicting parameters;

 A simply result merging algorithm can perform as
well as more sophisticated ones;

 MSEs are useful, because
 Integration of search results provided by different

engines;
 Comparison of rank positions;
 Advanced search features on top of commodity

engines;
 A complete MSE can be used for retrieving,

parsing, merging and reporting results provided
by many search engines.

10. Future Works

Component search engines employed by a MSE may
change their connection parameters and result display
format anytime. These changes can make the affected
search engines unusable in the MSE unless the
corresponding connection programs and result extraction
wrappers are changed accordingly [14]. How to monitor
the changes of search engines and make the corresponding
changes in the MSE automatically and timely is an area
that needs urgent attention from MSE researchers and
developers.

Most of today’s MSEs employ only a small number of
general purpose search engines. Building large-scale
MSEs using numerous specialized search engines is
another area that deserves more attention. Challenges
arising from building very large-scale MSEs include
automatic generation and maintenance of high quality
search engine representatives needed for efficient and
effective search engine selection, and highly automated
techniques to add search engines into MSEs and to adapt
to changes of search engines.

References
[1] M. E. Renda, and U. Straccia, "Web Metasearch: Rank vs.

Score based Rank Aggregation Methods", 2003.
[2] W. Meng, C. Yu, and K. Liu, "Building Efficient and

Effective Metasearch Engines", In ACM Computing Surveys,
2002.

[3] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee,
"Comparing and Aggregating Rankings with Ties", In PODS,
2004.

[4] J. E. Glover, S. Lawrence, P. W. Birmingham, and C. L.
Giles, "Architecture of a Metasearch Engine that Supports
User Information Needs", NEC Research Institute, Artificial
Intelligence Laboratory, University of Michigan, In ACM,
1999.

[5] W. MENG, "Metasearch Engines", Department of Computer
Science, State University of New York at Binghamton, 2008.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 250

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[6] Y. Lu, W. Meng, L. Shu, C. Yu, and K. Liu, "Evaluation of
Result Merging Strategies for Metasearch Engines", 6th
International Conference on Web Information Systems
Engineering (WISE Conference), New York, 2005.

[7] C. Dwork, R. Kumar, M. Naor, and D. Sivakumar, "Rank
Aggregation Methods for the Web", Proceedings of ACM
Conference on World Wide Web (WWW), 2001.

[8] R. Fagin, R. Kumar, M. Mahdian, D. Sivakumar, and E. Vee,
"Comparing partial rankings", Proceedings of ACM
Symposium on Principles of Database Systems (PODS),
2004.

[9] R. Fagin, R. Kumar, and D. Sivakumar, "Comparing Top k
Lists", SIAM Journal on Discrete Mathematics, 2003.

[10] S. Souldatos, T. Dalamagas, and T. Sellis, "Captain Nemo:
A Metasearch Engine with Personalized Hierarchical Search
Space", School of Electrical and Computer Engineering,
National Technical University of Athens, November, 2005.

[11] S. M. Mahabhashyam, and P. Singitham, "Tadpole: A
Metasearch Engine Evaluation of Meta Search ranking
Strategies", University of Stanford, 2004.

[12] A. Gulli, and A. Signorini, "Building an Open Source Meta
Search Engine", University of Pisa, Informatica, May, 2005.

[13] J. Aslam, and M. Montague, "Models for Metasearch", In
Proceedings of the ACM SIGIR Conference, 2001.

[14] H. Zhao, W. Meng, Z. Wu, V. Raghavan, and C. Yu, "Fully
Automatic Wrapper Generation for Search Engines", World
Wide Web Conference, Chiba, Japan, 2005.

[15] L. Akritidis, D. Katsaros, and P. Bozanis, "Effective
Ranking Fusion Methods for Personalized Metasearch
Engines", Panhellenic Conference on Informatics (IEEE),
2008.

[16] C. D. Manning, P. Raghavan, and H. Schutze, "Introduction
to Information Retrieval", Cambridge University Press, 2008.

[17] J. Dorn, and T. Naz, "Structuring Meta-search Research by
Design Patterns", International Computer Science and
Technology Conference, San Diego, April, 2008.

Author Biography

H. Jadidoleslamy is a Master of Science student
at the Guilan University in Iran. He received his
Engineering Degree in Information Technology
(IT) engineering from the University of Sistan and
Balouchestan (USB), Iran, in September 2009. He
will receive his Master of Science degree from the

University of Guilan, Rasht, Iran, in March 2011. His research
interests include Computer Networks (especially Wireless Sensor
Network), Information Security, and E-Commerce.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 251

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

