

Low Power GALS Interface Implementation with Stretchable
Clocking Scheme

Anju C and Kirti S Pande

 Department of ECE, Amrita Vishwa Vidyapeetham, Amrita School of Engineering
Bangalore, Karnataka, India

Abstract
Complex SoC imply the seamless integration of numerous IPs
performing different functions and operating at different clock
frequencies. The integration of several heterogeneous
components into a single system gives rise to new challenges.
Major issue includes controlling the clock frequencies of the
different modules. As chips become faster and larger, designers
face significant challenges including global clock distribution
and power dissipation.
In-order to achieve global synchronization with high
performance and low power conception globally asynchronous
locally synchronous (GALS) method is used. In GALS, local
modules can operate with their own clock and the entire module
is communicating asynchronously. In this paper we implemented
a low power GALS interface with stretchable clocking scheme
in verilog HDL and compare the dynamic power of the interface
with and without stretchable clocking with Synopsys Design
Compiler.
Keywords: Globally asynchronous locally synchronous,
System on Chip, Stretchable clocking scheme, Asynchronous
wrapper

1. Introduction

Synchronous circuits use a central clock distribution for
its operation. As speed increased, distributing the timing
signals has become more and more difficult. These
problems may be worse on large soc design. System
complexity and demand for higher processing frequencies
revealed several inherent problems with synchronous
design styles. In synchronous circuit, the clock’s rhythm
must be slow enough to accommodate the slowest action
in the chip’s circuit. If it takes a billionth of a second for
one circuit to complete its operation, the chip cannot run
faster than one gigahertz. Even though many other
circuits on that chip may be able to complete their
operations in less time, these circuits must wait until the
clock ticks again before proceeding to the next logical
step. Whereas in asynchronous system, each part can

operate with its own speed independent of the rhythm of
the central clock. Asynchronous circuits communicate via
handshakes. The handshake consists of a series of signal
events send back and forth between the communicating
elements. However because of high implementation costs
and difficulties asynchronous circuit is seldom used on
digital system design.

To integrate both the advantages of synchronous and
asynchronous circuits, the globally asynchronous locally
synchronous (GALS) methodology was proposed. The
GALS provides a reliable communication between
different modules in a SoC. GALS provide global
synchronization with high performance and low power
conception. In GALS locally synchronous modules are
wrapped around an asynchronous wrapper which provides
asynchronous communication between the modules.
Stretchable clocking scheme stretches the clock whenever
required; otherwise it will release the clock. This method
helps to reduce the dynamic power of the entire module.

The outline of the paper is as follows: related works is
reviewed in section 2. Design approach and the main
architecture are described in section 3. Implementation
details are presented in section 4. Section 5 discusses the
simulation results obtained for the different modules of
the system. Conclusions are drawn in the section 6.

2. Related Works

A.Device and S.M.Nowick provide an introduction to
asynchronous digital circuit design [1]. Where they
compare synchronous and asynchronous design
methodologies and provide an idea about different classes
of asynchronous circuits. Synchronous circuits are based
on global clock distribution, this clock must be carefully
controlled since it must be globally distributed, this often

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 209

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

provides to be difficult. Different control signals are used
for the proper operation of the asynchronous circuits.

They also discuss about different classes of asynchronous
circuits. A delay-insensitive (DI) circuit is one which is
designed to operate correctly regardless of the delays on
its gates and wires. That is an unbounded gate and wire
delay is assumed. A quasi delay-insensitive (QDI) circuit
is delay-insensitive except that isochronic forks are
required. An isochronic fork is a froked wire where all
branches have exactly the same delay. A self timed circuit
contains a group of self timed elements. Each element
contained in an equi-potential region, where wires have
negligible or well bounded delay.

Yun and Donohue describe a novel communication
scheme that is pausible clocking which can be used in
heterogeneous systems [2]. In this scheme,
communication between every pair of modules is done
through an asynchronous FIFO channel; communication
between a module and the FIFO is done using a
request/acknowledge handshaking. The local clock built
out of a ring oscillator is paused or stretched, if necessary,
to ensure that the handshaking signal satisfies setup and
hold time constraints with respect to the local clock.

The upper bound on the local clock rate is due to the ring
oscillator, not the pausible clocking control. However
tuning the ring oscillator frequency would require more
control pins and hence are more expensive. Furthermore,
anything in the clock path designed to generate multiple
frequencies and/or to minimize jitter creates a problem for
pausible clocking. Its main drawback is that a meta-
stability state could occur when the request and the rising
edges of the clock arrive simultaneously.

Through “Practical design of globally asynchronous
locally synchronous systems” J.Muttersbach, T.Villiger
and W.Fichtner [3] describe a complete design
methodology for a globally asynchronous on-chip
communication network connecting both locally-
synchronous and asynchronous modules. Synchronous
modules are equipped with asynchronous wrappers which
adapt their interfaces to the self-timed environment and
prevent meta-stability.

Equipping LS modules with an asynchronous interface
adds a high degree of modularity. Surrounding a
synchronous module with an asynchronous wrapper aims
at making its external interface completely asynchronous.
Each data vector entering or leaving the module is
accompanied by a request-acknowledge pair of handshake

signals (bundled data). To signal validity of data they use
a four phase protocol.

S.Zhuang, W.Li, J.Carlsson, K.Palmkvist, L.Wanhammar
propose an asynchronous wrapper with novel handshake
circuits for data communication to be used in GALS
systems [4]. The handshake circuits include two
communication ports and a local clock controller. The
paper presents two approaches for the implementation of
communication ports; one with pure standard cells and
the other with Muller C elements. The interface circuits
with Muller C elements can operate at higher frequency
than those with standard cells.

Y.T.Chang, W.C.Chen, H.Y.Tsai, W. M. Cheng, C. J.
Chen, F. C. Cheng introduce a GALS interface scheme
using stretchable clocking scheme [5]. The design
operates correctly when the sender and the receiver work
in different clock rates. While this implementation
reduces latency, it has complex design. However they did
not use any FIFO to store the data so there is a chance for
data loss if the receiver clock rate is less than that of the
sender.

In this paper we proposed a new GALS interface using
the stretchable clocking scheme. This design consists of
an asynchronous wrapper module which wraps the locally
synchronous module. Operation of the locally
synchronous module is based on its own clock frequency
whereas the asynchronous wrappers communicate each
other based on the handshaking protocols.

3. Design Approach

3.1 GALS Interface

In a large SoC, each components or IPs may be designed
by different teams or even different companies.
Integrating them on a single die may be a very difficult
job. The most important reason is that these different
designs have to operate correctly in different clock
frequencies.

Fig. 1 GALS interface
The GALS methodology tries to wrap the synchronous
circuit with asynchronous wrapper which is shown in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 210

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.1. Thus, the whole system can communicate through
asynchronous channels, while each local circuit can
operate in their own local clock

3.2 STG of the proposed scheme

STG of the GALS system is shown in Fig. 2. It is based
on a stretchable clocking method. Here st signal is used to
stretch the clock during data transfer. wr+ means that the
LS module is ready to accept data and will set st signal
high (st+). Whenever st+ occurs (st signal become logic
1) stretchable clock generator stretches the clock. After
data transmission st signal will set to st- (st signal become
logic 0).

Fig. 2 STG of the GALS interface

3.3 Stretchable clocking scheme

In plausible clocking method there is a chance for meta-
stability when request and rising edge of the clock arrives
simultaneously. We can eliminate that problem by using
stretchable clocking scheme. With stretching the clock we
can provide the locally synchronous module a highly
flexible clock to avoid synchronization failure.

In this paper we used a clock gating circuit to reduce the
power consumption. As shown in Fig. 3 the lclk signal
depends upon the state of the input signal st, whenever st
signal goes high it will stretch the lclk signal.

Fig. 3 Stretchable clock generator

3.4 Asynchronous wrapper

A digital system may be integrated with many different
modules. By using the GALS methodology, all these

modules are designed with traditional synchronous way
and encapsulated within an asynchronous wrapper as
shown in Fig. 4.

The basic behavior of asynchronous wrapper is described
as follows:
 When the locally synchronous module needs to

receive data from its predecessor, it will enable the
input controller by setting wr signal high which
intern will set st signal high and the clock of the
respective receiver will be stopped subsequently.

 When the locally synchronous module needs to send
data, it will enable the output controller by setting rd
signal high, which sends a request to input controller
of the receiver, and the input controller acknowledge
it only if the receiver needs data.

 After the handshake completes, the input controller
will notify the clock generator. Afterward the two
synchronous modules continue to operate.

Fig. 4 Asynchronous wrapper

To ensure operation correctness, the clock of synchronous
modules must be stopped when the data transfer occurs.

The asynchronous wrapper shown in Fig. 4 has two major
parts: input controller and output controller.

For the input controller in Fig. 5:
 Initially req1, wr, ack1 and lst are all logic 0.
 Signal wr is asserted if the receiver needs to accept

data from the sender.

Fig. 5 Input controller

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 211

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 If there is no request (req1) from the sender (sender
is not ready to send the data) then stretch (st1)
becomes logic1 and ack1signal will be in logic 0.

 After req1 signal is received, the input controller
resets st signal and pulls up ack1 signal.

 After st signal become logic 0, clock of the receiver is
restored.

For the output controller in Fig. 6:
 Initially rd, ack2 and req2 are all logic 0.
 Signal rd is asserted if the sender needs to transfer

data to the receiver.
 Then request (req2) is generated and send to the

input port controller of the receiver.
 If the receiver is ready to accept the data it will set

ack2 signal high.
 After ack2 signal is received, the output controller

resets req2 signal.

Fig. 6 Output controller

4. Implementation

The proposed design is implemented using verilog HDL
using ModelSim SE6.5. Synopsys Design Compiler is
used to synthesis the design. Here we compare the power
analysis of the wrapper with and without stretchable
clocking scheme.

5. Result

Input controller controls the data entering into the
synchronous module. Inputs to the input controller are wr
and req signals. Outputs are st and ack signals. As shown
in Fig. 7(a) if the synchronous module is in write mode
and if there is no request from other modules then it will
stretch clock by setting st signal high. When the request
comes the clock will retain its value by resetting the
stretch signal and it will set ack signal high.

Output controller controls the data leaving from the
synchronous module. Inputs to the output controller are rd
and ack and outputs is req. As shown in Fig. 7(b) when
the system is in read mode, then it will send a request to
the receiver. If the receiver is ready to accept the data then
it will send an acknowledgement.

Stretchable clocking is used to reduce the power by
stretching the clock signal. As shown in Fig. 7(c)
stretchable clock generator uses a stretch signal to control
the clock. If the stretch signal is high then it will stretch
the clock. Otherwise it will release the clock.

(a) Input controller

(b) Output controller

(c) Stretchable clock generator

(d) Asynchronous wrapper

Fig. 7 Simulation results

Asynchronous wrapper helps the communication between
synchronous and asynchronous module. Inputs to the
wrapper are din, req1, ack2, clk, and clr. Outputs are
dout, ack1 and req2. As shown in Fig. 7(d) when wr
signal is in logic 1 and if a request (req1) comes then it
will send back an acknowledgement (ack1) informing the
sender that it is ready to accept the data and will release
the clock.

Here we designed a 4 bit accumulator as the locally
synchronous module. When operation takes place inside
the accumulator, it will be in busy mode and when the
output data is ready, it will set rd signal high.

In the read mode if the module wants to send a data, it
will send a request (req2) to the receiver. If the receiver is

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 212

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

ready to accept the data then it will send an
acknowledgement (ack2) back to the sender.

6. Conclusion

Globally asynchronous locally synchronous (GALS)
method is used for communication between modules in
system on chip (SoC). In order to provide reliable
communication between modules with different clock
frequencies, we propose an asynchronous wrapper circuit
based on stretchable clocking scheme.

Table 1 show that the wrapper with stretchable clocking
has less dynamic power than that without stretchable
clocking. From the table it is clear that with stretchable
clocking scheme we can achieve around 20% reduction in
dynamic power.

Table 1: Dynamic power of GALS interface

To reduce the latency during the communication, we can
introduce a FIFO in between the asynchronous wrapper
modules.

References
[1] A. Davis and S.M. Nowick, “An Introduction to
Asynchronous Circuit Design”, Technical Report, UUCS- 97-
013, Computer Science Department, University of Utah, Sep.
1997, pp.1-54
[2] K. Y. Yun and R. P. Donohue, “Pausible clocking: A first
step toward heterogeneous systems”, International Conf.
Computer Design (ICCD), Oct. 1996, pp.1-6.
[3] J.Muttersbach, T.Villiger, and W.Fichtner. “Practical Design
of Globally-Asynchronous Locally-Synchronous Systems”,
International Symposium on Advanced Research in
Asynchronous Circuits and Systems, April 2000, pp.1-8.
[4] S. Zhuang; Weidong Li, J. Carlsson, K. Palmkvist, L.
Wanhammar, “An asynchronous wrapper with novel handshake
circuits for GALS systems,” International Conference on
Communications, Circuits and Systems and West Sino
Expositions, 2002, Vol. 2, pp. 1521 - 1525.
[5] Yuan-Teng Chang, Wei-Che Chen, Hung-Yue Tsai, Wei-
Min Cheng, Chang-Jiu Chen, Fu-Chiung Cheng “A low latency
GALS interface implementation, ” IEEE Asia Pacific
Conference on Circuits and systems (APCCAS)2010,pp.1-4

Anju C received her B.Tech degree in Electronics and
Communication from Cochin University of Science and Technology,
Kerala, India in 2009 and currently pursuing M.Tech in VLSI Design
from Amrita Vishwa Vidyapeetham. Her research interests include
VLSI design and system on chip.

Kirti S Pande She graduated from Nagpur University in 2001. She
completed post graduation from Amrita Vishwa Vidyapeetham in
2010. She worked as a lecturer at various universities like Nanded
University, Visvesvaraya Technological University. Presently she is
working as an Asst.Professor at Amrita Vishwa Vidyapeetham and
has been engaged with research in VLSI design, processor based
design and FSM based digital design.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 213

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

