
Providing an Object Allocation Algorithm in Distributed
Databases Using Efficient Factors

Golnoosh Keshani 1, Arash Ghorbannia Delavar 2

 1 Department of Computer Engineering and Information Technology, Payam Noor University,

PO BOX 19395-3697, Tehran, IRAN

2 Department of Computer Engineering and Information Technology, Payam Noor University,

PO BOX 19395-3697, Tehran, IRAN

Abstract
Data replication is a common method used to improve the
performance of data access in distributed database systems. In
this paper, we present an object replication algorithm in
distributed database systems (ORAD). We optimize the created
replicated data in distributed database systems by using activity
functions of previous algorithms, changing them with new
technical ways and applying ORAD algorithm for making
decisions. We propose ORAD algorithm with using effective
factors and observe its results in several valid situations. Our
objective is to propose an optimum method that replies read and
write requests with less cost in distributed database systems.
Finally, we implement ORAD and ADRW algorithms in a PC
based network system and demonstrate that ORAD algorithm is
superior to ADRW algorithm in the field of average request
servicing cost.
Keywords: object replication, Database system, Servicing cost,
ADRW algorithm, ORAD algorithm.

1. Introduction

We are presently moving towards a distributed, wholly
interconnected information environment. Generally, in
distributed database systems an object will be accessed, i.e.
read and written, from multiple processors [4]. The
requests for an object that come from a processor may be
answered in two ways and the first is when the system has
the object on its local memory and the requests are
responded locally and the second is when the system does
not have the object on its local memory and must send the
request to another system that has it on its local memory
and can send (should be a server) it to the requesting
system. Replication strategies are part of most distributed
storage mechanisms [10].

Replication reduces data access time and improves the
performance of the system [2]. One thing that is important
in distributed databases is to warrant the consistency of
multiple replicas of an object in multiple systems. So

every change to an object must be transferred to all the
other available replicas, this will incur considerable
communication cost [1].

Generally, when more copies of an object are created, the
average write request servicing cost will increase, but the
average read request servicing cost will decrease.
Therefore, in order to manage the number of copies of
objects, we need an efficient replication mechanism that
can be optimized to respond to read and write requests
with minimal cost in distributed database systems. A
replication mechanism specifies which file should be
replicated, when to create new replicas and where the new
replicas should be placed [5].

In this paper, we introduce ORAD algorithm with a cost
model and a correct mechanism in designing request
windows. As the distributed database systems are dynamic,
there is not any information about the number of requests.
Thus the decisions at each stage of ORAD algorithm are
based on the history of recent requests. Then we
implement ADRW and ORAD algorithms and analyze the
performance of both algorithms in several valid situations.

2. Related work

Various static and adaptive data replication algorithms and
on-line problems in distributed systems were proposed [8],
[10], [11], [12]. One of them is SA algorithm [6] (static
algorithm).

2.1 SA algorithm

The allocation scheme of a distributed system determines
how many replicas of each object are created and to which
processors these replicas are allocated [6]. At all times, SA
keeps a fixed allocation scheme Q which is of size t. All
the processors in the system know which are the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 170

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

processors of Q. SA performs read-one-write-all. Namely,
in response to a write request issued by a processor p, SA
sends the object from p to each one of the processors in Q.
In turn, each processor of Q outputs the object in its local
database. In response to a read request issued by a
processor p, SA requests a copy of the object from some
processor y ∊ Q; in turn, y retrieves the replica from its
local database and sends it to p [6].
Another algorithm that was introduced after SA algorithm
is DA algorithm (Dynamic algorithm)

2.3 DA algorithm

The DA algorithm receives as parameters a set F of t – 1
processors, and a processor p that is not in F. The
processors of F are called the servers, and p is called the
floating processor.

All the processors in the system know the id of the
processors in F ⋃ {p}. The initial allocation scheme
consists of F ⋃	 {p}. Subsequently, at any point in time all
the servers are in the allocation schema and at least one
additional processor is there as well; however, the floating
processor is not necessarily in the allocation scheme. For
example, for non server, non floating processors q and r, F
⋃ {q} ⋃ {r} is a possible allocation scheme at some point
in time [6].

The DA algorithm services read and write requests as
follows. A read request from a processor of the allocation
scheme is satisfied by inputting the object from the local
database. A read request from a processor r outside the
allocation scheme is satisfied by requesting a copy of the
object from some server processor u; r saves the object in
its local database (thus joining the allocation scheme), and
u remembers that r is in the current allocation scheme by
entering r in u’s “join-list.” The join-list of u consists of
the set of processors that have read the object from u since
the latest write.

A write request from some processor q outputs the object
to the local database at q and sends it to all the servers;
then, each server outputs the object in its local database.
If q is a server, then q also sends a copy of the object to
the floating processor (in order to satisfy the availability
constraint). Additionally, the write request results in the
invalidation of the copies of the object at all the other
processors (since their version is obsolete). This is done as
follows.

Each server, upon receiving the write, sends an
“invalidate” control-message to the processors in its “join-
list” (except that, obviously, if q is in some join list, the
invalidation message is not sent to q). To summarize the

effects of a write, consider the allocation scheme A
immediately after a write from a processor q. If q is in F,
then A = F ⋃ {p}, and if q is not in F, then A = F ⋃ {q} [6].

2.4 ADRW Algorithm

The goal of the ADRW algorithm is to dynamically adjust
the replication and allocation of objects in order to
minimize the total servicing cost of the requests coming to
the distributed database system [1, 3]. The servicing cost
is defined to consist of three components as follows;

Cc: Cost of sending the query for the object.

Cio: Cost of fetching/updating the object to/from the local
memory of the processor.

Cd: Cost of transferring the object from the main memory
of the hosting (i.e. data) processor to the requesting (i.e.
non-data) processor.

S(o): Initial allocation servers for object o.

The processor is considered a data processor for a
particular object if the object is hosted in the local memory
of the processor. All other processors are non-data
processors for the object. Assuming we have three
processors p1, p2, and p3 and p2 is the data processor for
object o. The cost for p2 to access object o is one unit of
time. Moreover, p2 will create a k-bit size window
corresponding to object o. For every new request coming
to p2 for object o from p1, a 0 is added to Win(o, p1), while
a 1 is added to Win(o, p3) for every new request coming to
p2 from p3 for object o. If another process, say p3, is
writing to the object o, then p2 will add 1 to the window.
So, if the number of read, Nr, from p1 is greater than the
write, Nw, from p3, then p2 will make a replication for o to
p1 with its window and add p1 to the data_list(o) which is a
list of all the processors that have a replica of the object o.
p1 now is a data processor. It will save the object in its
local memory and access it directly. If any write to the
object arrived to p2 then it will update the object and send
the update to all the processors that hold the object found
in the data_list(o). Now, if processor p1 reads the object, it
will add 0 to the window and 1 if others write to it. If the
number of writes is greater than the number of reads, then
it will delete the replication and return the window to the
owner processor p2 [3].

3. Proposed Algorithm

In this approach, we suggest a dynamic replication
algorithm method. A replication method is a way of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 171

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

describing the actual replication process. For the
implementation of the method of ORAD algorithm, we
change the method of ADRW algorithm and discuss other
cost factors in addition to the cost of the three factors
mentioned in ADRW algorithm. The algorithm changes the
replication scheme, i.e., number of replicas and their
location in the distributed database system, to optimize the
amount of communication [1]. We also introduce flag bits
in servers and say how they are created and initialized.

We consider a distributed database system with n nodes (n
processors), denoted as p1, p2 ,…, pn. Each node has a
processor and a local memory. All the local memories are
private and accessible only by their local processors and
assume that there exist at least 1 ≤ t ≤ n replicas in the
system.

In ORAD algorithms, we divide the processors into two
parts based on their recent access history, denoted as data
processors and non-data processors. To illustrate the
operation of ORAD algorithm, at first we assume that all
processors are non-data processor for all objects and do
not have the objects on their local memories. Each server
creates a flag bit FPi

o for object o and processor pi on its
local memory if processor pi sends at least one request for
object o to it. While processor pi is selected by ORAD
algorithm for object o as a data processor, pi saves the
object on its local memory. Furthermore, while a data
processor pi is changed to the non-data processor for
object o by the algorithm, the server updates the flag bit to
1. The non-data-processor pi keeps object o temporary
until the server sends the invalid message to it. After
receiving the invalid message, the non-data processor
deletes object o from its local memory. We dissect the
method of ORAD algorithm with an example.

In Fig. 1, at first we consider all processors (p1, p2, p3, p4,
p5, p6) as a non-data processor and s1, s2 as a server for an
object o.

Fig. 1 Step 1 of the method of ORAD algorithm

After receiving these requests “WP1, RP4, RP4, WP6, RP2, RP5,
WP1” for object o, the role of processors is changed as
shown in Fig. 2. The processors p2, p4 and p6 are changed
to the data processor by the algorithm and they keep the
copy of object o in their local memory (o’). 	

Fig. 2 Step 2 of the method of ORAD algorithm

In addition to the requests as mention above, these
requests are also received; “RP5, RP4, RP2, WP5, RP5, WP5,
WP3, RP4, WP5”. Now the request sequence is “WP1, RP4,
RP4, WP6, RP2, RP5, WP1, RP5, RP4, RP2, WP5, RP4, RP5, WP5”,
so ORAD algorithm decides to remove p5 from data-list(o),
but p5 keeps o’ in its local memory temporary until
receiving a write request on the object o such as WP3 (Fig.
3).

Fig. 3 Step 3 of the method of ORAD algorithm

In the end p5 deletes o’ from its local memory (Fig. 4, Fig.
5).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 172

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig. 4 Step 4 of the method of ORAD algorithm

Fig. 5 The last step of the method of ORAD algorithm

Table 1 presents a glossary of notation used throughout
this paper.

TABLE 1: GLOSSARY OF NOTATION

Req Request
RPi

o Read request from processor pi for object o

WPi
o Write request from processor Pi for object o

CostA(Req)
Cost of servicing a request Req using an
algorithm A

S(o) Server set of an object o

Ao Allocation scheme of object o

MRw (o,pi) Message & request window

RLd
local read request from a data processor for an
object

RRn
Remote read request from a non-data processor
for an object

RLn local read request from non-data processor

WLd
local write request from a data processor for an
object

WRd
Remote write request that is propagated form a
server for an object

Inv
Invalid control message from a server for an
object

F Flag bit

FPi
o Flag bit of processor pi for object o

3.4 Cost model

We now present our method to compute the cost of
servicing a read or write request.
Read request: consider servicing a read request (RPi

o) from
pi for object o and let Ao be the allocation scheme of
object o on this request and F be the flag bit in server pj

(the nearest server in S(o) to pi) for object o and processor
pi . Then,
 1 if pi ∊	Ao
 1 if pi ∉	Ao and F is 1
CostORAD(RPi

o) 1+Cc+Cd if pi ∉	 Ao and F is not 1 and R is
 not saving request
 2+Cc+Cd if pi ∉	Ao and F is not 1 and R is
 saving request
 (1)
In Eq. (1), While pi ∊	 Ao, it means that pi is a data
processor for object o. Thus for every read request, it is
enough to read object o from its local memory, incurring
only I/O cost. We assume that Cio=1 (like ADRW
algorithm). On the other hand, if	 pi ∉	 Ao and F is 0, then pi
is a non-data processor for object o, but the object is still
on its local memory (the object is still valid), incurring
only Cio cost and if	 pi ∉	Ao	 and	 F	 is	 1,	 it means that pi is a
non-data processor for object o and does not have the
object on its local memory. So pi will send a read request
to the nearest server (since the server set is known to each
processor), say pj, in S(o), incurring Cc units of cost. After
receiving the read request, pj will then retrieve object o
from its local memory and send it to pi, incurring (Cio +
Cd) units of cost. Finally, if pi saves object o into its local
memory (saving-read), then the servicing cost will be one
unit higher than if pi does not save object o into local
memory (non-saving-read). As ADRW algorithm [1], Once
server pj decides that the request is a saving-read request,
pj will add processor pi into a data processor list, denoted
by data-list(o) (since pi now is a data processor), so that
following write requests for the object o can be propagated
to the processors in data-list(o) for data consistency.

Write request: Consider servicing a write request (WPi

o)
from processor pi for object o. Let Ao be the allocation
scheme of object o on the request before servicing this
request, A’o be the allocation scheme of object o after
servicing this request, NFo be the number of flag bits with

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 173

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

value 1 for object o before servicing this request and N
’
Fo

be the number of flag bits with value 1 for object o after
servicing this request.

 (|Ao| - 1) Cd + |A’o|		+ NFo + NFo Cc + N’Fo

 if pi ∊	Ao
Cost ORAD(WPi

o) =					
 	|Ao| Cd + |A’o|		+ NFo+ NFo Cc + N’Fo			
																																																																																																		otherwise

(2)

In order to maintain the object consistency, when a write
request for object o is issued, the new version of object o
should be transferred to all data processors. Each data
transfer will incur Cd units of cost. If pi ∊	 Ao, then object o
will be transferred to all the data processors in Ao other
than pi, incurring (|Ao |- 1) Cd units of cost. Otherwise,
object o will be transferred to all the data processors in Ao,
incurring (|Ao| Cd) units of cost [1]. The processor pi first
sends the new version to all the servers in S(o). All the
servers then propagate the new version to the processors in
their respective data-list(o) to maintain the object
consistency. According to our ORAD algorithm, some data
processors in Ao which are not in S(o), may exit the
allocation scheme to minimize the total servicing cost of
future requests. Only those processors in A’o	 save the new
version into their respective local memories, incurring |A’o|	
units of I/O cost [1]. Furthermore, for each flag bit of
object o which is 1 in the server of object o, the server
should send an invalid message to the non-data processor
corresponding to that flag bit, incurring (NFo Cc) units of
cost and then the server updates all flag bits of object o to
0 , incurring ((NFo Cio) = (NFo)) units of cost. Finally, after
servicing the write request, according to new allocation
scheme A’o, some data processor may be changed to the
non-data processor for object o. Therefore the flag bits of
object o should be 1 by the server, incurring ((N’

Fo Cio) =
(N’

Fo)) units of cost.

3.2 Distributed message & request window
mechanism

As mentioned above, a non-data processor pi refers to its
nearest server pj for servicing its requests on object o.
Then server pj creates a message & request window
MRw(o,pi) for processor pi unless MRw(o,pi) already
exists. For every message or request related to object o
that pj receives from pi, pj initializes MRw(o,pi). When
ORAD algorithm decides to select pi as a data processor,
server pj sends MRw(o,pi) to pi for saving other requests
and messages because now, pi is a data processor for
object o and all messages and requests should be sent to it.
Furthermore, when ORAD algorithm decides to remove pi
from data-list(o), the server sets FPi

o=1, but pi will not

transfer MRw(o,pi) to the server until the server sends the
invalid message Invo to it1.

3.3 Read request:

Servicing a read request on object o which is issued by a
non-data processor pi, is done in two ways;

 If the non-data processor has object o on its local
memory (FPi

o is 1), it means that pi have already
been a data processor for object o and ORAD
algorithm removed it from data-list(o), but pj
have had temporarily object o on its local
memory yet. In this case pi has not transferred
object o to the server yet. So pi services the
request locally and then inserts RLn in MRw(o,pi).

 If the non-data processor pi does not have the
object, it should refer to the server. After
servicing the request, Because the server has
MRw(o,pi), inserts RRn in MRw(o,pi).

3.4 Write request:

When a processor pi wants to write on an object o, at first
sends the write request to the server. After that the server
sends the new version of object o to all data processors.
Note that if pi is a data processor, it is not required that the
server sends the new version of object o to pi because pi
has the new version of object o. So if a data processor
receives a write request for object o, at first the processor
updates the object on its local memory and after that if the
request comes from itself, it inserts Wld in MRw(o,pi) and if
it is propagated form the server, it inserts WRd in
MRw(o,pi).

3.5 Invalid message:

This message is sent from server pi to non-data processor
pj that has object o temporarily. The message shows that a
new version of object o is created and object o in pi is
invalid. When pi receives the invalid message, inserts Inv in
MRw(o,pi), removes object o on its local memory and
transfers MRw(o,pi) to pj for saving its future requests.

3.6 Flag bit (FPi
o)

As mentioned above, server pj creates a bit flag (FPi
o) for

each non-data processor pi sends at least one read or write
request to it for object o. When a data processor pk is

1 It means that the object o on its local memory is invalid and
changed by another processor

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 174

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

changed to the non-data processor for an object o by
ORAD algorithm, server pj will insert 1 to flag bit FPk

o and
after that if object o will be changed, server pj will send
invalid message InvPk

o to pk and update value of the flag
bit to 0. So can conclude that the number of changing flag
bit FPk

o is twice the number of invalid message InvPk
o.

3.7 Calculating the servicing cost of the requests:

Now, we want to compute cost of mentioned requests and
messages in message & request window.

Rld : it is a local read request that is issued by a data
processor for an object and will be serviced locally by
reading from the local memory of data processor pi,
incurring Cio units of cost (1).

WId : it is a local write request which is sent to data
processor pi for object o by its self, incurring Cio units of
cost for updating the new value of object o. It not required
that the server sends the new version of object o to pi
because pi has changed the object itself and it has the new
version of object o.

WRd : it is a remote write request that is propagated form
server pj to data processor pi for object o, incurring (Cd+1)
units of cost, Cd units of cost for sending data message and
one unit of cost for updating the object on the local
memory of data processor pj.

Although it was said in ADRW algorithm that in the same
write request Wld, no need to send the new version of
object o, but when it calculated the servicing cost, it
defined only one type of write request, incurring (Cd + 1)
units of cost [1] and it is one of the main differences
between ORAD algorithm and ADRW algorithm.

RRn : It is a remote read request that is sent from non-data
processor pk to server pj for an object o, incurring (Cd + Cc

+ 1) units of cost; Cc units of cost for of sending the query
from non-data processor pk to the server for the object, 1
unit of cost for fetching the object from the local memory
of the server and Cd units of cost for transferring the object
from the local memory of the server to the non-data
processor.

RLn : It is a local read request from non-data processor pk
that will be serviced locally by reading from its local
memory, incurring 1 unit of cost. Because non-data
processor pk does not have the object on its local memory,
or has it temporary, no write request will be reached to it.

Inv: It is an invalid control message that is sent from a
server to a non-data processor, incurring Cc units of cost.

The non-data processor has an object on its local memory
temporary. When the server sends the invalid message to
the non-data processor, it means that object has been
changed and the copy of object that is placed on the local
memory of the non-data processor is invalid and should be
removed from the local memory of the non-data processor.

3.8 Updating the flag bit:

This operation is performed in two modes by a server. The
first is when a data processor is changed to the non-data
processor by ORAD algorithm and the server updates the
flag bit to 1, incurring Cio units of cost and the second is
when the server sends invalid message Inv to the non-data
processor and the server updates flag bit FPi

o to 0,
incurring Cio units of cost. So the cost of all the operations
is twice the cost of all invalid messages Inv for an object
o, incurring NInv

o × 2 × Cio units of cost (2 NInv
o).

Due to the cost calculated in above, ORAD algorithm
decides to select a processor pi as a data processor or non-
data processor for an object o by comparing the cost in
each state.

Cost of being a data processor;
NRld + NWld + NWrd (Cd + 1) (3)

Cost of being non-data processor;
NRln + NRrn (Cd + Cc + 1) + NInv Cc + 2 NInv. (4)

Consider NTr as total number of read requests and NTw as
total number of write requests, so;
NTr = NRld , NTw = NWld + NWrd if	pi		∊	Ao 	 		 (5)
NTr = NRln + NRrn , NTw if	pi ∉	Ao 	 	 			 (6) 																												

Thus;
Cost of being data processor;
NTr + NWld + (NTw - NWld) (Cd +1) = NTr + NTw Cd + NTw - NWld Cd
 (7)

Cost of being non-data processor;
NRln + (NTr - NRln) (Cd + Cc + 1) + NInv Cc + 2 NInv = NTr + NTr (Cc
+ Cd) - NRln (Cd + Cc) + NInv Cc + 2 NInv (8)

If our ORAD algorithm found that;
NTr + NTw (Cd + 1) - NWld Cd < NTr + NTr (Cc + Cd) - NRln (Cd + Cc)
+ NInv Cc + 2 NInv, i.e.,
NTw (Cd + 1) - NWld Cd < NTr (Cc + Cd) - NRln (Cd + Cc) + NInv (Cc
+ 2) (9)
then, server pj would consider pi as a data processor and if
the algorithm found that;
NTw (Cd + 1) - NWld Cd ≥ NTr (Cc + Cd) - NRln (Cd + Cc) + NInv (Cc
+ 2) (10)
then, removes pi from data-list(o).
When ORAD algorithm decides to add pi to data-list(o),
the server transfers MRw(o,pi) to pi. So pi can register next

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 175

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

requests or messages. Furthermore, when ORAD algorithm
decides to remove pi from data-list(o), pi does not transfer
MRw(o,pi) to the server until removes object o that is
temporary on its local memory1.

We refer to this whole process of ORAD algorithm as tree
policies. The first is Test-Enter-Data-list (TED) policy, the
second is Test-Exit-Data-list (TXD) policy and the third is
Test-Flag (TF) policy. The pseudocode in Table 2 presents
the TED policy of our request & message window
mechanism in server pj and in table 3 presents the TXD
policy of it in data processor pi and in Table 4 presents the
TF policy of it in non-data processor pk.

In Table 2, the Test-Enter-Data-list (TED) pseudocode
presents the TED policy of our request & message window
mechanism in server pj for object o. We assume that the
arriving request Req is issued from pi for object o.

TABLE 2: TEST-ENTER-DATA-LIST (TED)

If (Req is a read request) /*RPi
o*/

 {if (pi==pi) /*the read request Req is issued from pj itself*/
 {No change to the message & request window in

 pi;} /*satisfy Req locally*/
 Else /*pi ≠ pj , pi must be a non-data processor*/
 {if Req is the first read request
 {Generate an initial MRw(o,pi);}
 Insert RRn into MRw(o,pi) ;
 Send o to pi ;
 If (NTw (Cd + 1) - NWld Cd < NTr (Cc + Cd) - NRln (Cd +

 Cc) + Ninv (Cc + 2))
 {Indicate pi to enter Ao;
 Add processor pi into data-list(o)
 Transfer MRw(o,pi) to pi;
 Delete MRw(o,pi) in pj;
 pi saves object o; /*data processor*/
 }
 }
 }
Else /*Req is a write request for object o*/
 {Send invalid control message to all non-data processors

 pK that FPki
o in pj equals 1;

 Write on object o;
 Update all flag for object o in pj to 0;
 Insert WRd into all existing message & request windows

 for object o in pj except MRw(o,pi) if it exists;
 Send the new version of object o to all data processors of

 object o;
 }

In Table 3, there is another operation called Test-Exit-
Data-list (TXD) policy which is processed in a data
processor but not in a server, of an object o. We assume

1 Processor pi removes object o from its local memory after
receiving the invalid message for object o.

that there is a data processor of an object o pi (pi ∉ S(o)),
and its nearest server in S(o) is pj.

TABLE 3: TEST-EXIT-DATA-LIST (TXD)

If (Req is a read request) /*it must be issued by pi*/
 {insert Rld into MRw(o,pi);} /*satisfy Req locally*/
Else /*Req is a write request*/
 {if (Req is assued by pi)
 {Send the write request to pj;
 Write on object o;
 Insert Wld into MRw(o,pi);}
 Else /*Req is propagated from pj*/
 {Write on object o;
 Insert WRd into MRw(o,pi);
 If (NTw (Cd + 1) - NWld Cd ≥ NTr (Cc + Cd) - NRln (Cd

 + Cc) + Ninv (Cc + 2))
 {Indicate pj to delete pi from data-list(o) and also to

 update FPi
o to 1;}

 }
 }

In Table 4, the third operation called Test-Flag (TF) policy
which is processed in a non-data processor of an object o
pk , and its nearest server in S(o) is pj.

TABLE 4: TEST-FLAG (TF)

If Req is a read request /*Satisfy Req locally*/
 {Insert Rld into MRw(o,pi);}

 Else /*Req is an invalid message*/
 {Insert Inv into MRw(o,pi) ;
 Transfer MRw (o,pk) to pj ;
 Delete o from the local memory of pk;
 }

4. Experimental results

In this section, we implement the ORAD algorithm and
ADRW algorithm in a real-life system and study their
performance behavior under a variety of situations. We
compare the performance of the ORAD algorithm with the
ADRW algorithm.

We consider a distributed database system with the
following assumptions; In addition, we set the I/O cost,
control message transferring cost and data message
transferring cost as Cio = 1, Cc = 5, and Cd = 10,
respectively, in our experiments.

We introduce;
o = Object
p = Processor

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 176

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

s = Server
si = {s1,s2}
pi = {p1,p2,p3,p4,p5,p6,p7}
oi = {o1,o2,o3,o4,o5}

At first, we consider that all processor are non-data
processors for all objects and then we observe the results
of these tow algorithms by using many different states of
requests.

We show the cost performance algorithms in the following
experiments where the maximum size of request is 100
and each node has the same probability of read/write
request. Note that the number and type of requests in each
state is random. For example in the first row, the number
of random requests is 90 and the mean random probability
of read requests is 0.1.

TABLE 5: RANDOM REQUEST TABLE

Maximum size of request 100

number of request
Mean random probability

of read request

90 0.1

34 0.2

99 0.3

48 0.4

87 0.5

22 0.6

67 0.7

75 0.8

43 0.9

Fig. 6 Cost performance of ORAD and ADRW algorithm when the
maximum number of request is 100 and each node has the same
probability of read/write request.

Fig. 6 shows that in random requests, ORAD algorithm is
more adaptive in terms of the average cost of servicing a
request. In all probability of read request, we observe that
the ORAD algorithm can perform much better than ADRW
algorithm in random requests.

We can see in Fig. 6 that performance of ORAD algorithm
improved about 6.07 percent compared with ADRW
algorithm.

Now, we want to show the cost performance of these tow
algorithms where each node has the same probability of
read/write request and the number of requests is fixed in
all states, but the type of requests (read/write) in each state
is random. In distributed database systems, the number of
requests is not fixed, but we suppose it to compare the
performance of ORAD algorithm and ADRW algorithm for
various read request probabilities in same situations (same
number of request). The cost performance of ORAD and
ADRW are shown in Fig. 7 and Fig. 8.

TABLE 6: RANDOM REQUESTS TABLE WITH FIXED NUMBER OF REQUEST

(100)

The number of request=100
Cost of ORAD

algorithm
Cost of ADRW

algorithm
Mean probability
of read request

1251 1342 0.1

1344 1383 0.2

1720 1773 0.3

1780 1812 0.4

1960 1976 0.5

1774 1790 0.6

1533 1609 0.7

1291 1305 0.8

1009 1000 0.9

Fig. 7 Cost performance of ORAD and ADRW algorithm when the
number of request is fixed (100) and each node has the same probability
of read/write request.

TABLE 7: RANDOM REQUESTS TABLE WITH FIXED NUMBER OF REQUEST

(1000)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 177

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

The number of request=1000
Cost of ORAD

algorithm
Cost of ADRW

algorithm
Mean probability
of read request

16409 16271 0.1

16177 16364 0.2

15590 15824 0.3

15548 15727 0.4

16188 16466 0.5

15964 16560 0.6

15392 16856 0.7

13127 13758 0.8

10542 10124 0.9

Fig. 8 Cost performance of ORAD and ADRW algorithm when the
number of request is fixed (1000) and each node has the same probability
of read/write request

As Fig. 6, it is clear in Fig. 7 and Fig. 8 that ORAD
algorithm can perform better than ADRW algorithm.
Because the number of requests in each probability of read
request is the same, we can conclude that these
experiments (Fig. 7 and Fig. 8) are more useful than Fig. 6
to compare these tow algorithms. We also observe that the
average cost of servicing a request improved about 2.34
percent in Fig. 7 and 2.18 percent in Fig. 8 by ORAD
algorithm compared with ADRW algorithm.

Further, we also perused the performance of these tow
algorithms with several request sequences as the Table 8.

In Fig. 9, we observe the cost performance of these tow
algorithms in several request sequences. Fig. 9 shows that
the average cost of servicing a request improved about
5.68 percent by ORAD algorithm in comparison with
ADRW algorithm.

Table 8: Request Sequence table

Sequence
name

Request sequence
Cost of
ORAD
algorithm

Cost of
ADRW
algorithm

A

RP3
O4, RP6

O4, WP2
O4,

RP3
O2, WP7

O5, RP4
O3,

WP5, WP2
O3, RP4

O2,
RP5

O1, WP4
O5, WP5

O1,
WP7

O5, WP5
O1, WP4

O1,
WP6

O4, WP2
O2, RP5

O4,
RP5

O3, RP4
O5, WP3

O4,
RP5

O2

429 455

B

RP3
O2, W

P6
O4, R

P3
O4,

WP2
O4, R

P5
O4, W

P1
O5,

WP3
O2, R

P6
O2, R

P5
O3,

RP4
O3, W

P3
O2

180 188

C

WP5
O4, R

P4
O3, R

P2
O2,

WP1
O5, W

P3
O5, R

P2
O4,

WP2
O1, R

P4
O3, R

P7
O5,

WP1
O1, R

P4
O5, R

P6
O2,

RP5
O2, R

P5
O1, W

P6
O2,

WP7
O5, R

P3
O4, R

P4
O5,

RP3
O2, W

P1
O5

303 323

D

RP3
O2, R

P2
O2, W

P5
O2,

RP2
O3, W

P2
O3, R

P6
O2,

WP5
O2, R

P3
O2, R

P2
O1,

WP4
O3, R

P4
O3, R

P3
O2

246 253

E

RP4
O3, R

P6
O2, W

P6
O2,

RP5
O3, W

P7
O3, W

P4
O5,

WP2
O2, R

P5
O3, W

P2
O1,

RP4
O3, R

P6
O4, W

P6
O2,

RP2
O2, R

P5
O2, R

P7
O5

242 267

F

RP3
O2, R

P2
O2, W

P4
O5,

RP6
O4, W

P2
O2, R

P2
O3,

RP1
O5, R

P4
O4, W

P3
O4,

RP5
O4, R

P2
O1

194 204

Fig. 9 Cost performance of ORAD and ADRW algorithm in several
request sequences and each node has the same probability of read/write
request

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 178

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Conclusions

In this paper, we have proposed an optimum object
replication algorithm, referred to as ORAD algorithm, for
servicing random requests in distributed database systems.
We explained the mechanism of ORAD algorithm with
pictures. We also presented ORAD algorithm with using
TED/ TXD/ TF policy. Our objective is to adjust the
replica allocation that minimizes the access time over all
servers and objects [7]. We simulated ORAD and ADRW
algorithm on a PC based network and compared their
performance under several conditions. We observed in the
figures how each algorithm works in verify probability of
read request and also, in several request sequences. In all
experiments we saw that ORAD algorithm is superior to
ADRW algorithm in the field of average request servicing
cost and it is because of two used tricks in the mechanism
of ORAD algorithm1.

From the above experiments, we can conclude that if the
mean probability of read request in a system is certain or
uncertain, it is recommended to use ORAD algorithm. It is
because ORAD algorithm can obtain the minimum average
cost for servicing a request.

References
[1] Wujuan, L. and Veeravalli, An Adaptive, “Object Allocation

and Replication Algorithm In Distributed Databases",
ELSEVIER Computer Communications, 31 (2008) 2005-
2015.

[2] Nazanin. Saadat, Amir. Masoud Rahmani, “A new pre-
fetching based dynamic data replication algorithm in data
grids”, ELSEVIER Future Generation Computer Systems
(2012) 666–681.

[3] Sleit, AlMobaideen, Al-Areqi , Yahya “Design and analysis
of an adaptive object replication algorithm in distributed
network systems”, ISSN 1546-9239 (2007)

[4] Y. Huang, O. Wolfson, “Object Allocation in Distributed
Database and Mobile Computers”, ACM Trans. On computer
Systems, 4: (4).,Nov (1986) 273-298.

[5] Ming Tang, Bu-Sung Lee1, Chai-Kiat Yeo, Xueyan Tang,
“Dynamic replication algorithms for the multi-tier Data
Grid” , Future Generation Computer Systems, 21 (2005)
775–790.

[6] Y. Huang, O. Wolfson, “A competitive dynamic data
replication algorithm”, IEEE Proceedings of the 9th
International Conference on Data Engineering, (1993) 310–
317.

1 In the mechanism of ORAD algorithm, a data processor of an
object can write on the object locally and it is not required that
the server sends the object to it. Furthermore, in this mechanism,
a non-data processor of an object can read temporary the object
from its local memory.

[7] Sharrukh Zaman, Student Member, IEEE, and Daniel Grosu,
Senior Member, IEEE, “A Distributed Algorithm for the
Replica Placement Problem”, IEEE TRANSACTIONS ON
Parallel and Distributed Systems”, VOL. 22, NO. 9,
SEPTEMBER (2011).

[8] Wujuan Lin, Bharadwaj Veeravalli, “Object Management in
Distributed Database Systems for Stationary and Mobile
Computing Environments A Competitive Approach”,
Kluwer Academic Publishers, (2003).

[9] Amir Mohammad Dastgheib, “Introducing a Suggestive
Dynamic Data Replication Algorithm”, 2010 2nd
International Conference on Electronic Computer
Technology, (2010) 97-101.

[10] T. Loukopoulos, I. Ahmad, “Static and adaptive data
replication algorithms for fast information access in large
distributed systems”, Proceedings of the 20th IEEE
International Conference on Distributed computing
Systems, (2000) 385–392.

[11] S. Albers, “Competitive Online Algorithms”, BRICS LS-96-
2,LSSN 1395-2048, September (1996).

[12] M. Rabinovich, I. Rabinovich, R. Rajaraman, A. Aggarwal,
A dynamic object replication and migration protocol for an
internet hosting service, IEEE International Conference on
Distributed Computing Systems, (May) (1999).

Golnoosh Keshani received a B.Sc. in computer engineering
from Azad University, Mobarakeh, IRAN, in 2007, and M.Sc.
student in computer engineering in Payam Noor University, Tehran,
IRAN. Her research interests are in the areas of distributed
databases, designing Algorithms, analyzing systems, designing
databases.

Arash Ghorbannia Delavar received the MSc and Ph.D. degrees
in computer engineering from Sciences and Research University,
Tehran, IRAN, in 2002 and 2007. He obtained the top student
award in Ph.D. course. He is currently an assistant professor in the
Department of Computer Science, Payam Noor University, Tehran,
IRAN. He is also the Director of Virtual University and Multimedia
Training Department of Payam Noor University in IRAN. Dr.Arash
Ghorbannia Delavar is currently editor of many computer science
journals in IRAN. His research interests are in the areas of
computer networks, microprocessors, data mining, Information
Technology, and E-Learning.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 179

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

