
Parallel Implementation of Sorting Algorithms

Malika Dawra1, and Priti2

1Department of Computer Science & Applications

M.D. University, Rohtak-124001, Haryana, India

2Department of Computer Science & Applications

M.D. University, Rohtak-124001, Haryana, India

Abstract

A sorting algorithm is an efficient algorithm, which

perform an important task that puts elements of a list in a

certain order or arrange a collection of elements into a

particular order. Sorting problem has attracted a great

deal of research because efficient sorting is important to

optimize the use of other algorithms such as binary

search. This paper presents a new algorithm that will

split large array in sub parts and then all sub parts are

processed in parallel using existing sorting algorithms

and finally outcome would be merged. To process sub

parts in parallel multithreading has been introduced.

Keywords: sorting, algorithm, splitting, merging,

multithreading.

1. Introduction

Sorting is the process of putting data in order; either
numerically or alphabetically. It is necessary to
arrange the elements in an array in numerical or
lexicographical order, sorting numerical values in
descending order or ascending order and
alphabetical value like addressee key [5, 6]. Many
existing sorting algorithms were observed in terms
of the efficiency of the algorithmic complexity [9].
All sorting algorithms are appropriate for specific
kinds of problems. Some sorting algorithms work
on less number of elements, some are used for huge
number of data, some are used if the list has
repeated values, and some are suitable for floating
point numbers. Sorting is used in many important
applications and there have been a plenty of
performance analysis [7]

Sorting algorithms are classified by:

 Computational complexity in terms of
number of swaps. Sorting methods
perform various numbers of swaps in order
to sort a data.

 System complexity of computational. In
this case, each method of sorting algorithm
has different cases of performance. They
are worst case, when the integers are not in
order and they have to be swapped at least
once. The term best case is used to
describe the way an algorithm behaves
under optimal conditions.

 Usage of memory and other computer
resources is also a factor in classifying the
sorting algorithms.

 Recursion: some algorithms are either
recursive or non recursive, while others
may be both.

 Whether or not they are a comparison sort
examines the data only by comparing two
elements with a comparison operator.

There are several sorting algorithms available to
sort the elements of an array. Some of the sorting
algorithms are:

Bubble sort

In the bubble sort, as elements are sorted they
gradually “bubble” (or rise) to their proper location
in the array. Bubble sort was analyzed as early as
1956 [1]. The bubble sort compares adjacent
elements of an array until the complete list gets
sorted.

Selection Sort

The selection sort is a combination of sorting and
searching. During each pass, the unsorted element
with the smallest (or largest) value is moved to its
proper position in the array. The selection sort has
a complexity of O(n

2
) [3].

Insertion Sort

The insertion sort splits an array into two sub-

arrays. The first sub-array is sorted and increases in

size as the sort continues. The second sub-array is

unsorted, contains all the elements yet to be

inserted into the first sub-array, and decreases in

size as the sort continues. If an application only

needs to sort smaller amount of data, then it is

suitable to use this algorithm [2].

Shell Sort
The shell sort repeatedly compares elements that

are a certain distance away from each other. The

shell sort is a “diminishing increment sort”, better

known as a “comb sort” [8]. The algorithm makes

multiple passes through the list, and each time sorts

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 164

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

a number of equally sized sets using the insertion

sort [4].

Quick Sort
The quick sort is considered to be very efficient

with its “divide and conquer” algorithm. This sort

starts by dividing the original array into two

sections (partitions) based upon the value of the

pivot (can be first element in the array). The first

section will contain all the elements less than (or

equal to) the pivot and the second section will

contain all the elements greater than the pivot. This

sort uses recursion – the process of “calling itself”.

Quick sort was considered to be a good sorting

algorithm in terms of average theoretical

complexity and cache performance [7].

Merge Sort

The merge sort combines two arrays into one larger

array. The arrays to be merged must be sorted first.

It follows “divide and conquer” strategy. Firstly

divide the n-element sequence to be sorted into two

subsequence of n/2 element each. Sort the two

subsequences recursively using merge sort and then

merge the two sorted subsequences to produce the

sorted answer.

2. Proposed Model for Sorting

Algorithms

2.1 Divide Array in sub parts

Fig.1 Split the large array into smaller parts and store them in
new arrays

2.2 Use of Efficient Algorithms on sub parts

Fig.2 Use of efficient algorithm on sub parts

2.3 Algorithms are implemented in parallel

In order to implement sub arrays in parallel concept
of multithreading would be used.

The multithreading paradigm has become more
popular as efforts to further exploit instruction level
parallelism have stalled since the late-1990s. This
allowed the concept of throughout computing to re-
emerge to prominence from the more specialized
field of transaction processing:

 Even though it is very difficult to further
speed up a single thread or single
program, most computer systems are
actually multi-tasking among multiple
threads or programs.

 Techniques that would allow speed up of
the overall system throughout of all tasks
would be a meaningful performance gain.

The two major techniques for throughout
computing are multiprocessing and multithreading.

Fig.3 Parallel implementation and merging

2.4 Parallel implementation can be done using

multithreading

Multithreading is similar in concept to preemptive
multitasking but is implemented at the thread level
of execution in modern superscalar processors.
Simultaneous multithreading (SMT) is one of the
two main implementations of multithreading, the
other form being temporal multithreading. In
temporal multithreading, only one thread of
instructions can execute in any given pipeline stage
at a time. In simultaneous multithreading,
instructions from more than one thread can be
executing in any given pipeline stage at a time.
This is done without great changes to the basic
processor architecture.

 The main additions needed are the ability
to fetch instructions from multiple threads
in a cycle.

 A larger register file to hold data from
multiple threads.

Large array [A]

Sub array [A1]

Sub array [A2]

Sub array [A3]

Sub array [A1] Sub array [A2] Sub array [A3]

Quick sort Quick sort

Quick sort

 Split array

 Sort A3

 Sort A2

Merge array

 Sort A1

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 165

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2.5 After sorting all sub parts are merged

After merging new array will store sorted
information and would be displayed on screen.

3. Implementation

The various steps involved in implementing the

above model are:

 Classify the data in separate arrays on the

basis of data type and number of digit

 Use sorting techniques on them in parallel.

And parallel implementation is done using

multithreading.

 Merge sorted array of 1 digit, 2digit, 3

digit ,4 digit, 5 digit , 6 digit and more

digit integer and create a large array

 Apply merge sort on that large array and

sorted real number and create array of all

numerical values.

 Merge all sorted numerical values with

sorted string array.

Classifying algorithm works at the insertion time. It

will check whether number is string, real or

numerical, and if number is numerical then it

checks whether it is 1 digit, 2 digit , 3 digit, 4 digit,

5 digit ,6 digit number or more. We have following

arrays:

Strarray[] to store string,

Oned[] to store one digit no

Twod[] to store 2 digit no

Threed[]to store 3 digit no

Fourd[] to store 4 digit no

Fived[] to store 5 digit no

Sixd[] to store 6 digit no

Mored[] to store more than 6 digit no.

Realn[] to store real number.

3.1 Classifying algorithm

Step 1

Read the user string a

Step 2

If a is string then put it in strarray[] and exit

Step 3

If a is real number then put it in realn[] and exit

Step 4

i) If a is number then divide a by 1000000 and find

remainder r

ii) r = a%1000000

If (r>0) then put it in Mored[];

exit

iii) r = a%100000

If (r>0) then put it in Sixd[];

exit

iv) r = a%10000

If (r>0) then put it in Fived[];

exit

v) r = a%1000

If (r>0) then put it in Fourd[];

exit

vi) r = a%100

If (r>0) then put it in Threed[];

exit

vii) r = a%10

If (r>0) then put it in Twod[];

else put it in Oned[];

exit

Step 5

Exit

Eight arrays will be sorted parallel as all sorting

function will be in running as thread

3.2 Algorithm to put element in array

3.2.1 Algorithm for Insertion of an element in

an array

Suppose, the array be arr[max], pos be the position

at which the element num has to be inserted. For

insertion, all the elements starting from the position

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 166

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

pos are shifted towards their right to make a vacant

space where the element num is inserted.

1. FOR I = (max-1) TO pos

2. arr[I] = arr[I-1]

3. arr[I] = num

3.2.2 Algorithm for Deletion of an element in

an array

Suppose, now pos be the position from which the

element has to be deleted. For deletion, all the

elements to the right of the element at position pos

are shifted to their left and the last vacant space is

filled with 0.

1. FOR I = pos TO (max-1)

2. arr[I-1] = arr[I]

3. arr[I-1] = 0

3.3 Algorithm to sort array using Quick sort

Quicksort is a divide and conquer algorithm. Quick

sort first divides a large list into two smaller sub-

lists: the low elements and the high elements.

Quick sort can then recursively sort the sub-lists.

The steps involved are:

1. Pick an element, called a pivot, from the

list.

2. Reorder the list so that all elements with

values less than the pivot come before the

pivot, while all elements with values

greater than the pivot come after it (equal

values can go either way). After this

partitioning, the pivot is in its final

position. This is called the partition

operation.

3. Recursively sort the sub-list of lesser

elements and the sub-list of greater

elements.

quick sort('array')

if length('array') ≤ 1

return 'array' /* an array of zero or one elements is

already sorted*/

select and remove a pivot value 'pivot' from 'array'

create empty lists 'less' and 'greater'

for each 'x' in 'array'

if 'x' ≤ 'pivot' then append 'x' to 'less'

else append 'x' to 'greater'

return concatenate(quick sort('less'), 'pivot', quick

sort('greater')) // two recursive calls

3.4 Algorithm to sort using merge sort

Conceptually, a merge sort works as follows

1. Divide the unsorted list into n sub lists,

each containing 1 element (a list of 1

element is considered sorted).

 merge_sort(list m)

/*if list size is 1, consider it sorted and

return it*/

if length(m) <= 1

return m

/* else list size is > 1, so split the list into

two sublists*/

var list left, right

var integer middle = length(m) / 2

for each x in m before middle

add x to left

for each x in m after or equal middle

add x to right

 /* recursively call merge_sort() to further

 split each sublist until sublist size is 1*/

left = merge_sort(left)

right = merge_sort(right)

/* merge the sublists returned from prior

calls to merge_sort() and return the

resulting merged sublist*/

return merge(left, right)

2. Repeatedly merge sub lists to produce new

sub lists until there is only 1 sub list

remaining.

merge(left, right)

var list result

while length(left) > 0 or length(right) > 0

if length(left) > 0 and length(right) > 0

if first(left) <= first(right)

append first(left) to result

left = rest(left)

else

append first(right) to result

right = rest(right)

else if length(left) > 0

append first(left) to result

left = rest(left)

else if length(right) > 0

append first(right) to result

right = rest(right)

end while

return result

3.5 Function to sort String arrays

The C# language and .NET Framework has several

collection sorting methods and also there is LINQ

query syntax. We benchmark and demonstrate the

sort methods on arrays, such as Array.Sort, and

Lists. We can call the static Array.Sort method and

use it to sort a string array in place. The result is an

alphabetical sort. This console program

demonstrates how to use the Array.Sort method.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 167

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3.5.1 Program that uses Array.Sort [C#]

using System;

class Program

{

static void Main()

{

string[] a = new string[]

{

"Egyptian",

"Indian",

"American",

"Chinese",

"Filipino",

};

Array.Sort(a);

foreach (string s in a)

{

Console.WriteLine(s);

}

}

}

Output:
American

Chinese

Egyptian

Filipino

Indian

3.6 Algorithm to merge sorted arrays

In the article we present an algorithm for merging

two sorted arrays. One can learn how to operate

with several arrays and master read/write indices.

Also, the algorithm has certain applications in

practice, for instance in merge sort. Assume, that

both arrays are sorted in ascending order and we

want resulting array to maintain the same order.

Algorithm to merge two arrays A[0..m-1] and

B[0..n-1] into an array C[0..m+n-1] is as following:

1. Introduce read-indices i , j to traverse

arrays A and B, accordingly. Introduce

write-index k to store position of the first

free cell in the resulting array. By default

i = j = k = 0.

2. At each step: if both indices are in range (i

< m and j < n), choose minimum of (A[i] ,

B[j]) and write it to C[k]. Otherwise go to

step 4.

3. Increase k and index of the array,

algorithm located minimal value at, by

one. Repeat step 2.

4. Copy the rest values from the array, which

index is still in range, to the resulting

array.

4. Result

When we split a large array into equal parts and

apply efficient sorting functions on sub arrays in

parallel, then parallel execution results in faster

processing. It takes less time to merge all sorted

arrays that have been processed quickly in separate

thread in parallel. Algorithm could be enhanced in

many ways. For instance, it is reasonable to check,

if A[m - 1] < B[0] or B[n - 1] < A[0]. In any of

those cases, there is no need to do more

comparisons. Algorithm could just copy source

arrays in the resulting one in the right order. More

complicated enhancements may include searching

for interleaving parts and run merge algorithm for

them only. It could save up much time, when sizes

of merged arrays differ in scores of times. Merge

algorithm's time complexity is O(n + m).

Additionally, it requires O(n + m) additional space

to store resulting array. One and only limitation is

that the systems that does not support

multithreading will not be eligible to get benefit.

But most of the computers in this era are

multithreaded based, so there are negligible

technical issues.

References

[1] Astrachanam O., Bubble Sort: An

Archaeological Algorithmic Analysis,

Duk University, 2003.

[2] Cormen T., Leiserson C., Rivest R. and

Stein C., Introduction to Algorithms,

McGraw Hill, 2001.

[3] Levitin A., Introduction to the Design and

Analysis of Algorithms, Addison Wesley,

2007.

[4] Nyhoff L., An Introduction to Data

Structures, Nyhoff Publishers,

Amsterdam, 2005.

[5] G. Franceschini and V. Geffert, An In-

place Sorting with O (n logn) comparisons

and O(n) moves, In Proc. 44
th

 Annual

IEEE Symposium on Foundations of

Computer Science, pages 242-250, 2003.

[6] Knuth D., The Art of Computer

programming Sorting and Searching, 2
nd

edition, vol. 3. Addison – Wesley, 1998.

[7] J.L. Bentley and R. Sedgewick, Fast

Algorithms for Sorting and Searching

Strings, ACM-SIAM SODA” 97, 360-

369, 1997.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 168

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[8] Box R. and Lacey S., A Fast Sort,

Computer Journal of Byte Magazine, vol.

16, no. 4, pp. 315-315, 1991.

[9] Basti Shahzad and Muhammad Tanvir

Afzal Enhanced Shell Sorting Algorithm.

World Academy of Science, Engineering

and Technology 27, 2007.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 3, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 169

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

