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Abstract 

 
Audio features combination has played an important role to 
improve environmental sound classification accuracy. In this paper 
we emerged in the visual domain to investigate these methods in 
the audio sounds recognition in order to enhance the performance 
of sound classification system. 

We present a robust environmental sound spectrograms 
classification approach, based on log-Gabor filters. This approach 
included two methods. The first method is based on extraction for 
each spectrogram a single log-Gabor filter followed by mutual 
information procedure. In the second method, the spectrogram is 
passed by the same steps of the first method but with an averaged 
bank of 12 log-Gabor filter. The classification results prove that the 
second method is the most efficient in our environmental sound 
classification system. These methods were tested on a large 
database containing 10 environmental sound classes. The best 
performance was obtained by using the multiclass support vector 
machines (SVM’s), producing an average classification accuracy 
of 89.62 %. 
 

Keywords: Environmental sounds, Visual features, 
Log-Gabor filters, Spectrogram, SVM Multiclass. 

 

1. Introduction 

  
Automatic recognition of environmental sound is an 

important problem in audio domain. Generally, a variety of 
features have been proposed for audio recognition [4],[5] 
including  different descriptors such as MFCCs, frequency 
roll-off, spectral centroid, zero-crossing, energy, Linear-
Frequencies Cepstral Coefficients (LFCCs). These 
descriptors can be used as a combination of some, or even 
all, of these 1-D audio features together, but sometimes the 
combination between descriptors increases the classification 
performance compared with the individual used features. 
Recently, some efforts emerge in the new research direction, 
which demonstrate that the visual techniques can be applied 
in musical [17]. 

In order to explore the visual information of environmental 
sounds, our last work consists of integrate the audio texture 
concept as image textures [18]. Our goal has to develop an 
environmental sounds classification method, using advanced 
visual descriptors. The feature extraction method uses the 
structure time-frequency by means of translation-invariant 
wavelet decomposition and a patch transform alternated 
with two operations: local maximum, global maximum to 
reach scale and translation invariance. In order to enhance 
this work, we develop here a nonlinear feature extraction 
method in the visual domain using in this case log-Gabor 
filters applied to spectrograms. 
Besides, many studies likes [6], [19] show that spectro-
temporal modulations play an important role in sound 
perception, and stress recognition in speech [20], in 
particular the 2D Gabor, which are suitable and very 
efficient to feature extraction. 
In the recognition patterns, especially in image classification, 
Gabor filters are considerate as an efficient technique for 
obtaining a good feature. They offer an excellent 
simultaneous localization of spatial and frequency 
information [21]. They have many useful and important 
properties, in particular the capacity to decompose an image 
into its underlying dominant spectro-temporal components. 
The  Gabor filters represent  the  most effective  means  of 
packing the  information  space  with a  minimum of spread 
and  hence a  minimum of overlap between neighboring 
units in both space  and  frequency [22]. 
In this paper we develop two new methods, based on 
spectro-temporal components. The First method begin by 
spectrogram calculation, which then was passed through a 
single log-Gabor filter, and finally passed through an 
optimal feature procedure based on mutual information. The 
second method is similar than the first method but in this 
case, with an averaged 12 log-Gabor filters. In classification 
step, we use the SVM’s with multiclass approach: One-
Against-One. 

This paper is organized as follows. Section 2 describes 
the background review of environmental sound 
classification system. Section 3 devotes environmental 
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sound classification system using log-Gabor filters. 
Classification results are given in Section 4. Finally 
conclusions are presented in Section 5. 

 

2. Background Review 

 
  Recently, some studies were adopted the visual 

methods in the musical sounds domain [17], [23], based on a 
technique inspired by image texture approach [8].  
The proposed approach by [17] shows that the use of visual 
features for musical sounds obtains a good result for 
classification system. Of this fact, we had the idea to apply 
the visual features to environmental sounds. Indeed, the use 
of visual features makes the representation sparse, 
physically interpretable and the classification result very 
satisfactory. The advantages of this representation are the 
ability to capture the inherent structure within each type of 
environmental sound and to capture characteristics in the 
signal [4]. 
The feature method consists of four steps. First, a grey-scale 
spectrogram is generated from environmental sound which, 
passed in the translation-invariant wavelet transform phase 
(S1), to construct wavelet coefficients for three scales and 
three orientations. Then, we applied a local maximum (C1) 
for the obtained wavelet coefficients. After that we 
introduce a patch transform (S2), to group together the 
similar time-frequency geometries. Intuitively, for each 
patch, a global maximum (C2) is calculated, to select a 
representative time-frequency structure and to form feature 
vector for classification. This feature extraction method uses 
scale and translation invariance [8].  
We illustrated the visual descriptors extraction step below 
[17]. 

• Translation-invariant wavelet transform 

 Let  ���, �� be a spectrogram of the size  �	 × �� .We used 
the translation-invariant wavelet transform. The resulting 
wavelet coefficients will be defined by:             

�
��, �, �, �� = ∑ ∑ ���, �� 	
��

����	
����	 ������,���

�� �         (1) 

Where � = 1,2,3 is the orientation (horizontal, vertical, 
diagonal), ����, ��  is the wavelet function. 
 
 
 

Indeed, to build a translation-invariant wavelet 
representation, the scale is made discrete but not the 
translation parameter. The scale is sampled on a dyadic 
analysis #2$%$∈' . The use of the translation-invariant 
wavelet transform creates a redundancy of information that 
allows keeping the translation-invariance at all levels of 
factorization [1].  
The scale invariance is carried out by normalization, using 
the following formula:    

 (	��, �, �, �� = |*+��,�,$,��|
‖-‖²/011�2�3�

                                              (2) 

Where ‖(‖²4�55�6�3�   is the energy of spectrogram detail 

wavelet coefficients. 
In fact, the wavelet analysis or the multiresolution analysis 
are good tools for the analysis of scaling laws, thus helping 
to emphasize and characterize a scale invariance in a 
reliable way [1]. The introduction of the properties of scale 
invariance then leads to new multi-resolution spaces. 

Fig. 1 shows the spectrogram of signal "dog bark" and the 
translation-invariant wavelet coefficients according the three 
spatial orientations: horizontal, vertical and diagonal for 
three scales. 
 
 

 

Fig. 1 Representation of the Translation-invariant wavelet coefficients for 
three Orientations and three Levels of scales. 

 
 
 

• Local Maximum 

The continuation of translation invariance [8] is done by 

calculating the local maximum of 1S   : 

7	��, �, �, �� =
1

' 2 ( 1) 1,2 ), ' 2 ( 1) 1,2 )

( ', ', , )max
j j j ju u u v v v

S u v j k
 ∈ − + ∈ − +

    (3) 

The 7	 section is obtained by a subsampling of (	 using a 

cell grid of the 2$ × 2$  size that is then followed by the 
local maximum. Generally, the maximum being taken at 
each � scale and � direction of a spatial neighborhood of a 

size that is proportional to 2$ × 2$. The resulting 7	 at the � 
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scale and the � direction is therefore of the  �	 2$8 × �� 2$8  
size, where  � = 1,2,3. 
 

•  Patch Transform 

Mallat and Peyré [9] proposed in their researches the 
grouplet transform by using the Haar transform on the 
wavelet coefficients, which consists in replacing two 
neighbors’ coefficients �9, :�  by their mean and their 
difference. Inspired by this method, the idea consists of 
selecting �patch ;< , then the scalar product is calculated 
between these patch ;<, and the =>coefficients, followed by 
a sum. Indeed, for every patch, we get only one scalar:   

          

(���, �, �, ?� = @ @ @ 7	��A, �A, �, ��;<
B

��	

�� ��⁄

�D�	

�� ��⁄

�D�	
��A − �, �A − �, �� 

(4) 
 
Where ;<  of size F< × F< × 3

 
are the patch functions that 

group 3 wavelet orientations. The patch functions are 
extracted by a simple sampling at a random scale and a 
random position of the 7	Coefficients of a spectrogram [8], 
for instance a ;G  patch of the FG × FG 

 size contains 
FG × FG × 3

 
elements, FG  may take the following 

values �FG = 4,8,12�. 
 
 
 
 
• Global maximum 

The 7�coefficients are obtained by the application of the 
max function on (�:                                                  

7��?� =
2

, ,

( , , , )max
u v j

S u v j i

 ����  �                                          
(5) 

In this work, the obtained result is a vector of �7� values, 
where � corresponds to the number of extracted patches. In 
this way, the C�  obtained coefficients constitute the 
parameter vector for the classification with SVM. 
 

3. Environmental sound classification system 
with Log-Gabor Filters 

 
Our environmental sound classification system consists 

of three methods. In the first method, a spectrogram is 
generated from sound [10]. Next, it passed to single log-
Gabor filter extraction. Then, we applied mutual 
information in order to get an optimal feature. This feature 
is finally used in the classification. 

The second method consists of the same steps as first 
method, but with an averaged 12 log-Gabor filters instead of 
single log-Gabor filter.   

In the third method the idea is to segment each 
spectrogram into 3 patches. Intuitively, for each patch, an 
averaged 12 log-Gabor filters are calculated, after that we 
applied a mutual information selection to pass then in the 
classifier. In classification phase, we use SVM, in One-
Against-One configuration with the Gaussian kernel.  
 
2.1. Feature extraction methods 
 

 The feature extraction is based on three methods. These 
methods use the log-Gabor filters.  

  
2.1.1. Single log-Gabor filter 
 
The procedure for generating the single log-Gabor filter is 
shown in Fig. 3.This approach consists in computation of 12 
log-Gabor filters that are derived from the environmental 
sounds spectrograms, with 2 scales �1,2�  and 6  
orientations�1,2,3,4,5,6� , this extraction allows the best 
correlate of signal structures. Then, for each  single filter 
result we calculated the magnitude, after that, we passed 
through on mutual information (MI) algorithm to find an  
optimal feature vector (Fig.1) that next passed for 
classification phase [20].  
 
 

 
 

Fig. 2 Feature extraction using single log-Gabor filter. 
 
 

 
2.1.2. 12 log-Gabor Filters concatenation 
 
In this method, each environmental sound spectrogram was 
passed thought a bank of 12 log-Gabor filters. This 
produced a bank of 12 log-Gabor 
filters  #M		, M	�, … , M	O, M�	, … , M�P, M�O% , with each filter 
representing different scale and orientation. Thus, this result 
allows us to say that we obtain for each spectrogram a bank 
of 12 log-Gabor filters. These resulting feature values were 
next concatenated into 1D-vectors. Then the averaged 
computation, passed thought the MI criteria, and was sent to 
SVM for classification (Fig. 3). 
 

 
 

Fig. 3 Feature extraction using 12 log-Gabor filters. 
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2.2. Environmental Sound Spectrogram   
 
The spectrogram is the most current time-frequency 
representation. It is a visual energy representation across 
frequencies and over time. The horizontal axis represents 
time, and the vertical axis is frequency [11]. 
With spectrogram we can observe the complete spectrum of 
environmental sounds and express sound by combining the 
merit of time and frequency domains [24]. Furthermore, we 
can easily identify the environmental sounds spectrograms 
by their contrast, since they are considered as different 
textures Fig. 4 [23].These observations show that the 
spectrograms contain characteristics which can be used to 
differentiate between different environmental sounds class  
[21]. 
The sound time-frequency contains a large amount of 
information and provides a representation that can be easily 
interpreted [7].The Short-Time Fourier Transform (STFT) 
was used to calculate the spectrogram ���, �� , and the 
frames were taken to be 256-point frames with 192-point 
overlap. 
Let 
QRS  be an audio signal,   R = 0,1, … , � − 1. 
The time-frequency transform factorizes f over a family of 
time-frequency atoms UV�,�W�,� where �  and �  are 

respectively time and frequency. The short-time Fourier 
transform of f is defined by [10]: 

XQ�, �S = 〈
, V�,�〉 = ∑ 
QRS�−1[=0 V�,�∗ QRS                                 (6) (2) 

 
where ∗  is the conjugate. The atoms of the short-time 
Fourier transform are: 

g^,_QnS = wQn − lSexp fi2πkn
k j                                             �7� 

               
where lQRS is the Hamming window, for each  

0 ≤ � < �, XQ�, �S  is calculated for  0 ≤ � < � . The 
classification is based on the log-spectrogram: 
 
���, �� = log|FQx, yS|                                                           �8�   

 
Let us take the spectrograms of environmental sounds as 
illustrated in Fig. 3, each class contains sounds with very 
different temporal or spectral characteristics, levels, 
duration, and time alignment for example door slams 
present a wide frequency band but with a short duration.  
We also illustrate according to Fig. 3 that there are signals 
which present textural properties can be easily learned 
without explicit detailed analysis of the corresponding 
patterns [5], so easy to be distinguished, which influences in 
a positive way in the phase of the classification. 

 
 
               

 

 
Fig. 4 Audio waveform and Spectrograms of 8 classes environmental sound. 

 
 
2.3. Log-Gabor-filters 
 

Gabor filters offer an excellent simultaneous localization of 
spatial and frequency information [21]. They have many 
useful and important properties, in particular the capacity to 
decompose an image into its underlying dominant spectro-
temporal components [6]. The log-Gabor function in the 
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frequency domain can be described by the transfer function M�r, s� with polar coordinates [20]: 

 
M�r, s� = Mtuv<uw�r�. Mu[y�wut   �r�                                        (9) 
 
Where   Mtuv<uw�r� = z�{|}�t +~⁄ �� ����⁄ , is the frequency 
response of the radial component and Mu[y�wut�r� =
z�� �−�s sG⁄ �� 2���⁄ �, represents the frequency response of 
the angular filter component. 
We note that  �r, s�  are the polar coordinates, 
G represents 
the central filter frequency, sG  is the orientation angle, 
�t  and  ��  represent the scale bandwidth and angular 
bandwidth respectively.  
The log-Gabor feature representation |(��, ��|�,[  of a 
magnitude spectrogram  ���, ��  was calculated as a 
convolution operation performed separately for the real and 
imaginary part of the log-Gabor filters: 
 
�z�(��, ����,[ = ���, �� ∗ �z�M�r�, s[��        (10) 
 
���(��, ����,[ = ���, �� ∗ ���M�r�, s[��        (11) 
 
 ��, �� represent the time and frequency coordinates of a 
spectrogram, and � = 1, … , �t = 2  and R = 1, … , �� = 6  
where  �t  devotes the scale number and �� the orientation 
number. This was followed by the magnitude calculation for 
the filter bank outputs: 
 
|(��, ��|² =
���z�(��, ����,[ �

� + ���(��, ����,[�                         �12�     

 
2.4. Averaging outputs of log-Gabor filters. 
 

The averaged operation was calculated for each 12 log-
Gabor filter, appropriate for each spectrogram, which 
purpose is to obtain a single output array [20]: 

 

 �(���, ��� = 	
�� ��

∑ |(��, ��|�,[��,����	[�	
                                     (13)                               

 
 
 
 
 
 
2.5. Features optimization using mutual information.  
 

The information found commonly in two random 
variables is defined as the mutual information between two 
variables X and Y, and it is given as [12]: 

 

   ���; �� = ∑ ∑ ���, ����V 5��,��
5���5����∈��∈�                        (14) 

      Where ���� = ;r�� = �� is the marginal probability 
density function and ���� = ;r�� = ��, and ���, �� =
;r�� = �, � = ��  is the joint probability density function. 
 
2.6. SVM Classification 
 

For the classification, we employ a Support Vector 
Machines, in a One-against-One configuration [13].  
Let a set of data ��	, �	�, … , ���, ��� ∈ ℜv × #±1%  ∈
where � = #�	, … , ��% a dataset in ℜvwhere each   �<  is the 
feature vector of a signal. In the nonlinear case, the idea is to 
use a kernel function ���< , �$�, where ���< , �$� satisfies the 
Mercer conditions [14]. Here, we used a Gaussian RBF 
kernel witch formula is:  
 

���, �A� = z�� ������D��
��� �.                                                 (15) 

 

Where .  indicates the Euclidean norm in ℜv.  

Let  Ω be a nonlinear function which transforms the space of 
entry  ℜv  to an intern space �   called a feature space. Ω 
allows to perform a mapping to a large space in which the 
linear separation of data is possible  [2]. 
 
                               Ω: ℜv ⟶ � 

��< , �$� ⟼ Ω��<�Ω��$� = ���< , �$�   .               (16) 
 
The � space is a reproducing kernel Hilbert space (RKHS)  
of functions . 
Thus, the dual problem is presented by a Lagrangian 
formulation as follows:  
 

max ��¥� = ∑ ¥< − �
�

�<�G ∑ �<�$¥<¥$���< , �$�|<�	,…,��<,$�	   
(17) 

Under the following constraints:   
  
∑ ¥<�< = 0�<�	 , 0 ≤ ¥< ≤ 7.                                             (17) 

They ¥< 
are called Lagrange multipliers and ¦  is a 

regularization parameter which is used to allow 
classification errors. The decision function will be 
formulated as follows: 


��� = �VR�∑ ¥<�<�	 �<���, �<� + :�                              (18) 

We hence adopted one approach of multiclass 
classification: One-against-One. This approach consists of 
creating a binary classification of each possible combination 
of classes, and the result for � classes is ��� − 1�/2. The 
classification is then carried out in accordance with the 
majority voting scheme [16]. 
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4. Experimental Evaluation 
 
              4.1. Experimental Setup 
 
Our corpus of sounds comes from commercial CDs 
[26]. Among the sounds of the corpus we find: explosions, 
broken glass, door slamming, gunshot, etc. 
This database includes impulsive and harmonic sounds. We 
used 10 classes of environmental sounds as shown in Table 
1.  
All signals have a resolution of 16 bits and a sampling 
frequency of 44100 Hz that is characterized by a good 
temporal resolution and a wide frequency band.   
Most of the signals are impulsive; we took 2/3 for the 
training and 1/3 for the test. 

Among the big problems met during the classification by 
the SVM’s is the choice of the values of the kernel 
parameter γ  and the constant of regularizationC . To 

resolve this problem we suggested the cross-validation 
procedure [3]. 
Indeed, according to [25], this method consists in setting up 
a grid-search for γ and C. For the implementation of this 

grid, it is necessary to proceed iteratively, by creating a 
couple of valuesγ  and C.  

The radial basis kernel was adopted for all the experiments. 
The parameter C was used also for determined the trade-off 
between margin maximization and training error 
minimization [15]. 
 

Table 1: Classes of sounds and number of samples in the database used for 
performance evaluation. 

 
Classes Train  Test Total 

Door slams (Ds) 
Explosions (Ep) 
Class breaking (Cb) 
Dog barks (Db) 
Phone rings (Pr) 
Children voices (Cv) 
Gunshots (Gs) 
Human screams (Hs) 
Machines (Mc) 
Cymbals (Cy) 

208 
38 
38 
32 
32 
54 

150 
48 
38 
32 

104 
18 
18 
16 
16 
26 
74 
24 
18 
16 

312 
56 
56 
48 
48 
80 
224 
72 
56 
48 

Total 670 330 1000 
 
 
 

4.2 Experimental Results 
 

The results of the first method are summarized in Table 2, the 
classification rates for each single log-Gabor filter, which 
included 2 scales and 6 orientations, are relatively low, 
ranging from 42.85% to 99.67% for 10 sounds class. 
The best classification result based on first method belongs 
to the Door slams class with scale=1, and orientation=3.  
We obtained an average classification rate of order 79.63 %. 
To improve the first method result, features should be 
extracted either from all log-Gabor filters or from a selected 
group of best performing filters [20]. Both the second and 
the third method are concentrated to show them. 
Result of the second approach is illustrated in Table 3.

 
 

 
Table 2: Recognition Rates of 12 log-Gabor filters applied to one-against-one SVM’s based classifier with Gaussian RBF kernel 

 
Scale Orientation Ds Ep Cb Db Pr Cv Gs Hs Mc Cy 

1 

1 99,35 46.42 57.14 83.33 68.75 82.50 89.28 88.23 80.35 93.75 
2 96.15 48.21 60.71 79.16 70.83 77.50 89.73 89.70 82.14 89.58 
3 99.67 42.85 66.07 77.08 72.91 80.00 91.07 91.17 83.92 87.50 
4 99.03 44.64 67.85 81.25 77.08 78.75 88.39 92.64 78.57 85.41 
5 98.39 46.42 55.35 79.16 66.66 72.50 86.16 86.76 76.78 83.33 
6 99.03 42.85 51.78 81.25 64.58 71.25 85.71 73.52 75.00 81.25 

2 

1 99,35 62.50 71.42 87.50 83.33 85.00 95.98 89.70 89.28 95.83 
2 99.35 64.28 75.00 89.58 85.41 87.50 96.42 92.64 87.50 85.41 
3 80.12 64.28 78.57 91.66 87.50 86.25 95.08 94.11 85.71 87.50 
4 83.01 44.64 75.00 79.16 81.25 82.50 94.64 85.29 82.14 83.33 
5 80.44 55.35 67.85 77.08 79.16 81.25 90.62 80.88 83.92 81.25 
6 81.08 58.92 66.07 77.08 75.00 77.50 89.73 76.47 69.64 81.25 
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Table 3: Recognition Rates for averaged outputs of 12 log-Gabor filters, 3 
Spectrogram patches and descriptors with wavelet-transform applied to 

one-against-one SVM’s based classifier with Gaussian RBF kernel 
 

 12 log-
Gabor 
filters 

descriptors 
with wavelet-

transform Classes 

Ds 99,35 94.28 
Ep 62.50 94.28 
Cb    78.57 97.43 
Db 87.50 88.88 
Pr 83.33 83.33 
Cv 87.50       93.33 
Gs 98.21        97.61 
Hs 94.11 92.59 
Mc 89.28 90.47 
Cy 95.83 88.88 

 
Indeed, let us begin by the second method, which the idea 
consists of 12 log-Gabor filters concatenation, and then an 
averaged operation is applied, followed by the mutual 
information criteria. The obtained classification results are 
better than the classification results attained by a single log-
Gabor filter method and range from 62.50% to 99.35%. We 
were able to achieve an averaged accuracy rate of the order 
89.62% in ten classes with one-against-one approach.  
The experiments results are satisfactory, so this fact 
encourage us to investigate better in the visual domain. 
 
 

 
4.3 Comparison of Visual Descriptors 

 
We compare the overall recognition accuracy using 12 log-
Gabor-filters concatenation method, and visual descriptors 
with wavelet-transform in Table 3. As shown in this table, 
12 log-Gabor filters features possess the best recognition 
rate which belongs in the Door slams class.  
The comparison between visual descriptors with wavelet-
transform and 12 log-Gabor filters features method shows 
that the last method is very high, in five classes but is 
slightly low in other five classes. 
The 12 log-Gabor filters features perform better overall, 
with the exception of two classes (Explosions (Ep), Class 
breaking (Cb)) having the lowest recognition rate at 62.50%. 
With 12 log-Gabor filters feature, we were able to achieve 
an averaged accuracy rate of 89.62% in discriminating ten 
classes. There are four classes that have a classification rate 
higher than 90%. Concerning visual descriptors with 
wavelet-transform, we attained an averaged accuracy rate of 
91.82% in the same discriminating ten classes. 
We see that 12 log-Gabor filters feature and visual 
descriptors with wavelet-transform obtain a good 
performance in the visual domain.  
We can conclude that using descriptors belongs to visual 
domain provides us with extra information for 
discriminating between difficult classes. 
 
 

5. Conclusion 
 

 
In this paper, we propose three new methods for 

environmental sound classification, based on visual domain. 
We show how these methods are efficient to classify the 
environmental sounds. All methods use log-Gabor filters, 
but with 2 different manners. The first method uses a single 
log-Gabor filter. The second method uses an averaged 12 
log-Gabor filters concatenation. The important point of these 
methods is to present an improved feature set including 
visual features. 
We prove that the second method obtain the best averaged 
classification result of the order 89.62%. The obtained 
results are very satisfactory in the visual domain. 
These results need more exploration. The proposed 
approaches can be improved while digging deeply into the 
visual domain. Future research directions will include 
another methods extracted from image processing. 
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