

FPGA Design and Implementation of Multi-Filtering Techniques

Using Flag-Bit and Flicker Clock

M. H. Al-Doori1, R. Badlishah Ahmad1, Abid Yahya1 and Mohd. Rizal Arshad2

 1 School of Computer and Communication Engineering, Universiti Malaysia Perlis, Kuala Perlis,
02000, Malaysia

2 School of Electric and Electronic Engineering, Universiti Sains Malaysia, Penang,
14300, Malaysia

Abstract
Real time system is a condition where the processor is required to
perform its tasks within a certain time constraints of some
processes or simultaneously with the system it is assisting.
Typically, it suffers from two main problems; delay in data
processing and complexity of the decision-making process. The
delay is caused by reasons such as computational power,
processor unit architecture, and synchronization signals in the
system. To improve the performance of these systems in term of
processing power, a new architecture and clocking technique is
realized in this paper. This new architecture design called
Embedded Parallel Systolic Filters (EPSF) that process data
gathered from sensors and landmarks are proposed in our study
using a high-density reconfigurable device (FPGA chip). The
results expose that EPSF architecture and bit-flag with a flicker
clock achieve appreciably better in multiple input sensors signal
under both incessant and interrupted conditions. Unlike the usual
processing units in current tracking and navigation systems used
in robots, this system permits autonomous control of the robot
through a multiple technique of filtering and processing.
Furthermore, it offers fast performance and a minimal size for the
entire system that minimizing the delay about 50%.
Keywords: Embedded system design, FPGA system design,
parallel processing, underwater detection.

1. Introduction

Modern real time systems and applications depend on a
sufficiently high processing throughput and massive data
bandwidths needed in computations [1]. The need for real-
time, high performance computational algorithms and
architectures is one of the driving forces of modern signal
processing technology and is behind the expansion of the
semiconductor industry. The semiconductor industry is
developing new products at an enormous pace driven by
the Moore’s law [2]. The symbiotic integration of once
dissimilar memory and logic processes is very promising
for processor array and memory integration on a single
chip, which is the key to reliable massively parallel
systems [3, 4].

With tremendous advances in the VLSI technologies, new
horizons have opened. Developments in the integrated
circuit technology has led to a rising interest in parallel or
highly concurrent algorithms and architectures [5, 6]. As a
result of large available transistor counts on a single chip,
different projects have emerged with the vision of
integrating processor and memory on a single chip [7].
Current high-density devices (FPGA) provide the
possibility for mixing memory and logic processes on the
same chip. Many SoC projects and studies have been done
in the past few years to show benefits of system-scale
integration [8]. Most of the studies have been dealing with
vector processors or small-scale MIMD processor systems.
The two well-known projects are IRAM (Intelligent RAM)
[9] and CRAM (Computational RAM) [10]. These projects
may mark the real start of different parallel SoC systems,
indeed also systolic arrays.

This paper focuses on multi-filtering techniques by
systolic arrays, where algorithm execution can be
simultaneously triggered on all data elements of data set
with different clock cycles. The advantage of such
arrangement is that the replication of execution resources
is employed. Each datum or part of a data set can be
associated with a separate processing element. Processing
elements form a parallel processing ensemble that is
triggered by multi-clock, where each processing element
operates on a different data element.

2. Systolic Arrays and Filters

Research in the area of systolic arrays began at the end of
the 1970s [11]. The original motivation behind the systolic
array concept was its potential for very-large-scale
integration (VLSI) implementation. Only a few systolic
algorithms have been implemented in VLSI chips. The
main obstacle is their limited flexibility, as general-

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 39

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

purpose (high volume) designs are the main driving force
for commercial use. The second problem is the available
technology at the time of introduction. Nevertheless,
several multiprocessor projects have been directly inspired
by the systolic array concept such as Warp Processor
developed at Carnegie-Mellon, the Saxpy Matrix-1, or the
Hughes Research Labs Systolic/Cellular System. Some
other projects are covered in [12, 13].

Systolic algorithms are concurrent versions of sequential
algorithms suitable to run on array processors that execute
operations in the so-called systolic manner. Systolic arrays
are generally classified as high-performance, special-
purpose VLSI computer systems suitable for specific
application requirements that must balance intensive
computations with demanding I/O bandwidths. Systolic
arrays are tremendously concurrent architectures,
organized as networks of identical and relatively simple
processing elements that synchronously execute operations.
Modular processors interconnected with homogeneous
(regular) and local interconnections provide the basic
building blocks for a variety of algorithms. Systolic
algorithms address the performance requirements of
special-purpose systems by achieving significant speedup
through parallel processing and the prevention of I/O and
memory bandwidth bottlenecks. Data are pumped
rhythmically from the memory through the systolic array
before the result is returned to the memory. The global
clock and explicit timing delays synchronize the system.

The systolic array is a computing system that possesses
several features amenable to system-on-a-chip (SoC)
designs [14]:

1. Network: It is a computing network employing a
number of processing elements with local
interconnections.

2. Homogeneity: Interconnections between
processing elements are homogeneous (regular).
The number of interconnections between
processing elements is independent of the
problem size. This is the first important feature
that we exploit for the SoC design.

3. Locality: The interconnections are local. Only
neighboring processing elements can
communicate directly. This is the second
important feature required to achieve high-speed
VLSI SoC realizations.

4. Boundary: Only boundary processing elements
in the network communicate with the outside
world. This eliminates the classic memory and
I/O bandwidth bottleneck.

5. Modularity: The network consists of one or, at

most, a few types of processing elements. If
there is more than one type of processor, the
systolic array can usually be decomposed into
distinct parts with only one processor type. This
feature enables quick and high-performance
SoC designs.

6. Rhythm: Data are computed and passed through
the network rhythmically and continually.

7. Synchrony: A global clock synchronizes the
execution of instructions and data interchange
between processing elements.

8. Expendability: The computing network may be
extended arbitrarily.

9. Pipelineability: Pipelining on the array level,
that is, between processing elements, is present.

From the features presented, we can summarize that a
large number of processing elements working in parallel
on different parts of the computational problem is
functional. Data enter the systolic array only at the
boundary. Once placed into the systolic array, data are
reused many times before they become output. Several
data flows move at constant velocities through the array
and interact with each other where processing elements
execute the same function repeatedly. Only the initial
data and results are transferred between the host
computer/global memory and the systolic array.

Certain constraints should be kept in mind and
incorporated into the design methodology for VLSI-SoC
implementation. The most important are short
communication paths, limited I/O interaction, and
synchronization. These constraints are inherent features of
systolic arrays. Features like homogeneity, modularity,
and locality are especially favorable from the VLSI-SoC
point of view and make systolic arrays ideal candidates
for SoC implementation [12, 13, 14]. Each systolic
algorithm viewed from the processing element
perspective includes the following three distinct
processing phases:

1. Data input: A new data item is input into the
processing element from either the processing
elementneighbors or the global memory of the
bordering processing elements of the systolic
array.

2. Algorithm processing: The algorithm is
processedas specified by the processing element
definition of the systolic algorithm.

3. Data output: The result of the algorithm data
processing phase is output to the neighbors of

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 40

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the designated processing element or to the
global memory for bordering the processing
elements of the systolic array.

Systolic arrays are finding their way into many practical
applications. In recent years, several applications of
systolic arrays have been presented, ranging from radar
signal processing to low-level image processing problems
[12]. Typical applications include image sequence analysis,
DNA sequence analysis, visual surface control, image
processing, cryptography, and computer tomography.
General-purpose programmable systolic arrays are also
found in the market. Recently, Systolic launched
PulseDSP architecture, which uses a large number of
highly efficient processors arranged in a systolic array.
The first PulseDSP-based product is a wide bandwidth
sigma-delta A/D converter from Analog Devices (AD7725)
[15].

Full custom designs of systolic algorithms are also
available. For example, low-level image processing
algorithms for motion estimation are already implemented
in hardware as systolic array structures [16].

Over the past forty years, adaptive filters have been widely
used in many applications such as target tracking,
navigation systems, adaptive control and many other
dynamic systems.

2.1 Kalman Filter

In recent years, Kalman filters have been widely used in
many applications such as target tracking, navigation
systems, adaptive control, and many other dynamic
systems. The Kalman filter algorithm is based on
minimizing the mean square error recursively. Therefore,
it can work well in estimating the unknown states of a
noisy dynamic process [17].

Many attempts have been made to employ various systolic
architectures for the VLSI implementation of Kalman
filters [18, 19]. These methods, along with dozens of
others presented in the literature, are merely for permanent
structures and are only suitable for VLSI implementation.
Rapid prototyping of a Kalman filter-based system
requires the implementation to be parameterized. Systolic-
based architectures should be modified to meet the
hardware requirements of the FPGA technology [20].

2.2 Extended Kalman Filter

What happens if the process to be estimated and (or) the
measurement relationship to the process is non-linear?
Some of the most interesting and successful applications

of Kalman filtering have been in such situations. A
Kalman filter that linearizes the current mean and
covariance is referred to as an extended Kalman filter or
EKF. The state transition and observation models need not
be linear functions of the state but may instead be
(differentiable) functions [17].

3. Proposed Design

The conception of systolic or chained processing can be
described as the implementation technique that partitions
the execution of a given operation into the number of
subsequent steps as far as possible from the same duration.
Furthermore, each section assigned to a particular step can
exploit standalone technical resources. Executions of
single packet data requires less clock cycles, and overhead
can be effectively hidden by a parallel operation.
Synchronous systolic is composed of stages, each of which
is dedicated to a different stage of processing. Individual
stages are separated by embedding additional registers. As
addressed in our design using appropriate circuitry
structures, systolic or chained processing might impose
different types of conflicts (data and control).

To solve this problem, a flag bit is assigned for each stage
indicating its status. A flag bit of 0 means the stage has
finished the process and is ready to accept other data;
otherwise, data coming from the previous stage will enter
in a delay unit of 100 ns each cycle and will make the
previous stages work on another smaller clock cycle at 50
ns until the flag bit becomes 0. This embedded architecture
uses the most familiar filters for data processing in
navigation and tracking systems for robots.

We propose the development of a homogeneous, modular,
expandable systolic array combined with a large global
memory. There are three main reasons for the suitability of
the SoC integrated systolic array using this memory
system:

1. Off-chip memory buses are slow. A systolic
array inherently depends on a continuous
supply of data from the memory. Inability to
realize this at a fast enough data rate can cause
significant performance degradation.

2. Off-chip inter-processor element
communication slows data exchange. This
ultimately slows down the entire systolic array.

3. Package pin-count limitation. A rectangular
systolic array can be connected to the memory
system on all four borders. Using a narrower
memory interface can again cause a slowdown.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 41

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Integration of the systolic array and memory on the same
piece of real state alleviates these problems. Homogeneity
of the systolic array is a very important factor in the
design of such a system as it provides the following
benefits:

1. Only one processing element design is reused in
the entire systolic array.

2. Performance balances linearly with the number
of processing elements in the systolic array.

3. The systolic array design cycle can be shortened
by reusing the same processing elements
forming the processing ensemble.

The suitable features of systolic arrays for SoC can be
summarized as follows:

1. Control of a systolic array is not limited to any
particular implementation.

2. The number of functional units within the
scalar part of the architecture can be arbitrary.

3. The topology of the physical interconnections
between processing elements is not limited to a
specific network.

4. Due to synchronous data injecting through the
systolic array, a separate global data memory
bank is assigned to each row/column of
processing elements to ensure conflict-free
access. Furthermore, there is no need for
additional crossbar buses between the memory
and the processing element array as, by
definition, only the nearest neighbor data
transfers are allowed in systolic processing.

A new technique of embedded parallel systolic filters
(EPSF) is proposed in this paper and is depicted in Fig.
1. The EPSF combines the multiple Parallel Element
(PE) layers of the original systolic array into a single PE
layer with a set of feedback registers in a pipeline
structure.

Data are originally passed to stage B for pre-processing,
and the flag-bit is then observed to decide whether to
enter stages A or the delay unit until the flag-bit changes
its status. An additional unit of control signal digital
circuit is required to produce the control signals for data
input selection, cell memory clearance, and operation
mode control.

Fig. 1 EPSF design architecture

4. FPGA Implementation

The throughput of the systolic array can be limited due
to various reasons: low systolic array efficiency, data
synchronization between parts of the systolic array with
different types of processing elements (e.g., RLS), data
dependencies within the processing element, and long
latency of operations within the processing element.
Systolic array efficiency and systolic cycle length
depend on the complexity of the systolic algorithm and
implementation of the processing element. Both may
bind the systolic array throughput. To solve these
problems, several systolic algorithm transformation
techniques have been devised that operate on the
algorithm level.

The main problem addressed in this section is the
possibility of increasing the throughput of systolic arrays
beyond the limit set by a systolic cycle without applying
systolic algorithm transformation/mapping techniques.
This can be achieved by combining embedded
multithreading and systolic array computing called
EPSF. Unlike classic algorithm-level transformations,
multithreading can increase the throughput of the
systolic array without changing the original systolic
algorithm. If a certain algorithm is highly effective, the
incorporation of multithreading on the pipelined systolic
processing elements can improve the throughput of the
same algorithm by a constant factor. Generally, multiple
independent algorithm threads (i.e., instances of the
same algorithm) are interleaved within a given systolic
cycle on the same systolic array. Data from multiple
threads are pumped through the multithreaded systolic
array in packets resulting in a dramatic improvement of
the net throughput. All threads share the same resources.
Several sources of the data sets available within systolic
arrays that can be treated as unrelated threads can be

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 42

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

defined as follows:
1. Data vectors from different algorithm partitions.

2. Loop unrolled systolic processing element
algorithm.

3. Multiple instances of the same algorithm.

4. Simultaneous execution of different types of
algorithms.

5. Suitable combinations of the previous four.

Data streams from systolic algorithms execute operations
without noticing the presence of others. All data streams
share processing element resources including inter-
processing element communication data paths. It should be
noted that we assume the same processing element I/O
bandwidth, that is, the same bisection bandwidth as in the
original single threaded systolic array. The performance
increase is due to the elimination of true data hazards
within each algorithm, better functional unit utilization,
and larger amounts of usable instruction level parallelism
uncovered within longer basic blocks constituting
instruction loops. Functional unit pipelines within
processing elements are kept busy by interleaving
independent threads running simultaneously through the
multithreaded systolic computation. A side effect of
multithreading is that as the efficiency of each processing
element improves, a group of algorithms can complete the
execution in a shorter time than it would in the serial case.

We examined the multithreading systolic computation
logically, where all threads are concurrently executed on
the systolic array with the granularity of one processing
element clock cycle. Implementing a multithreaded design
uses a data packet transfer approach. For each iteration of
the systolic program, N data elements from all N threads
are input, processed, and output.

Data elements of the input data vectors of N threads are
time multiplexed into a multithreaded systolic array at a
rate of one element per processing element clock cycle.
Data elements of the result vectors are output at the same
rate. This process constitutes a multithreaded systolic
cycle. It repeats for all subsequent elements and all
threads. As threads are independent data sets, no data
dependencies are present within the processing element
pipelines. The implementation of the EPSF is performed
with the memory components created inside the FPGA
chip. Memory is used for frame and parameter buffers,
while other circuits on the FPGA are used for pixel and
parameter calculations.

The system design consists of two main modules
representing the filters. Each filter contains two systolic
stages for filter calculations. The 32-bit input data

represent data coming from the array of sound sensors
(receivers) becoming more sensitive and directive,
enabling the system to discriminate between sounds
coming from different directions. The strategy used to
build our architecture in FPGA is a system design using
components or a piece of conventional code (LIBRARY
declarations ENTITY ARCHITECTURE). However, by
declaring such code as a COMPONENT, it can then be
used within another circuit, thus allowing the construction
of hierarchical designs [21]. A COMPONENT is also
another way to partition a code, which allows code sharing
and code reuse. For example, commonly used circuits such
as flip-flops, multiplexers, adders, basic gates, and others,
can be placed in a LIBRARY; therefore, any project can
use them without explicitly rewriting the codes.

Many FPGA design tools provide built-in modules for
arithmetic operations. These modules are usually
optimized for the target architecture. To carry out the
scalar division in the boundary cell for the matrix
inversion, Z=x/y, where 0 <= | x | < | y | <= 1, and x, y, and
z are 16-bit numbers. x has to be zero-padded to 32-bit
long and then passed to a 32-bit divider. This arrangement
occupies 1,120 logic elements (LE) and is executed at the
maximum clock rate of 27 MHz in an Altera Cyclone II
device. The 16-bit finite word length induces a negligible
precision error of only 0.0012%.

FPGA devices provide only limited memory, which limits
the size of the LUT for this purpose. The value of 1/y falls
into a decreasing quadratic curve, while y tends to one.
Thus, the value difference between two consecutive
numbers of 1/y decreases dramatically. To reduce the size
of the LUT, the inverse value curve can be segmented into
several sections with different mapping ratios. This can be
achieved by storing one inverse value, the median of the
group, in the LUT to represent the results of 1/y for a
group of consecutive values of x.

By applying LUT to the EPSF structure, a generic
hardware design is established for matrix inversion in
different sizes. The result of matrix operations, including
addition, subtraction, multiplication, and inversion, is
calculated. For an n×n matrix, there are a total of 2n PEs in
the EPSF with 1 boundary cell, 2n – 1 internal cells, and
2(n – 1) layers of registers. The processing time requires
2(n2 – 1) clock cycles. This implementation can run with a
maximum clock frequency of 50 MHz for n<64.

Flicker clock management can have a strong impact on the
reduction of processing delay in FPGAs. In most modems,
FPGAs have dedicated clock managers for solving high-
speed clock distribution problems in high-density designs.
This design uses an indicator for systolic stages of the
filters called flag-bit, which works when a delay occurs in

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 43

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

any filter stage. Flag-bit gives design high control on data
transmission and early alerts to prevent data conflict. This
new technique is very efficient and reliable for parallel
processing systems and gives the best results to satisfy
parallelism.

Several clock managers have been introduced to FPGA
chips. They can perform clock buffering, drive the
distribution networks, and simultaneously eliminate clock
skew. They can also produce phase shifts and duty cycle
adjustment. In addition, clock managers can be used to
synchronize several components in a system. Although
they perform their intended function well, current FPGA
clock managers are incapable of performing dynamic
clock management because their dividers cannot perform
dynamic division or multiplication.

The Xilinx and Altera clock managers can only be
programmed during the initial configuration. The Lucent
Programmable Clock Manager can be programmed during
its operation, but this can lead to dangerous clock outputs.
Changing the settings of existing clock dividers during
their operation can lead to metastability and latching errors
due to glitches, distortions, asymmetry, transient
frequencies, and additional clock edges of the output clock
signal. Even shutting off the system during the change to
the new frequency does not help in this case, as the
inconsistent duty cycle clocks may be non-transient.

If a flicker clock is added to the existing FPGA clock
managers, they can be used for clock management. As a
result, clean frequency changes can take effect within a
clock cycle. The flicker clock circuit of Fig. 2 is capable of
performing efficient clock signals without undesired
effects at the output.

Fig. 2 Flicker clock circuit

Division of the input clock is performed by creating a loop
of T-flip-flops driven by the input clock. To create the

necessary clock, more than one clock signal must enter
into the multiplexer that feeds the systolic stages through
necessary clock signals dependent on the status of the flag-
bit. The delay between the output of the Kalman filter and
the extended Kalman filter is approximately 20 ns due to
the use of the flag-bit and flicker clock techniques, as
shown in Fig. 3.

Fig. 3 KF and EKF output with\out flag-bit and flicker clock effects

Clock signal of the systolic stage A flicks directly to the
smaller clock signal after the flag-bit indicates logic 1,
which means the stage has a delay in processing data and
returning to the original clock signal after the flag-bit
changes its status, as shown in Fig. 3.

Benchmark is carried out to compare the EPSF
performance with other systems. For an n×n matrix, the
EPSF requires 2n PEs while in [18], {n× (3n + 1) / 2} PEs
are used. EPSF allows the clock speed to run at 50 MHz
compared with the maximum clock frequency of 2 MHz in
the VHDL design presented in [20] and 10 MHz in the
Geometric Arithmetic Parallel Processor (GAPP) in [18].
When it comes to resource consumption, the EPSF
approach is still superior compared with those presented in
the literature. When working with an 8×8 matrix, it takes
4,314 LE to implement the EPSF in the Altera Cyclone II
device, while 8,610 LE is required to implement the
hardware design as reported in [22].

The results demonstrating the speedups achievable on an
EPSF computation run the demonstrated design on
selected processing element models. Speedups are based
on the execution time ratios of EPSF versus traditional
computing. We show that a collection of data executing
simultaneously on the systolic array is faster than the serial
execution of the same data on a single array. Each task
will be executed separately in a shorter time due to the
flag-bit and flicker clock techniques. The processing time

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 44

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

will be longer to produce an output without using these
techniques, and EPSF computation creates the following
effects:

1. Processing element utilization is increased, as

there are many independent operations
available, which can be executed concurrently.

2. The net throughput increases as a direct
consequence of multithreading. As long as
there are enough systolic functional units and
inter-processing element communication
channels, the speedup curve can experience a
proportional increase.

3. The need for register storage increases
proportionally to the number of threads.

Multithreading is very effective in increasing the
throughput and utilization of systolic arrays. A linear
increase in the throughput is observed as long as the
processing element functional units are pipelined, and the
algorithms do not experience very low computation-to-
communication ratios.
Multithreaded systolic computation also increases the
number of available operations within a given systolic
cycle, and as threads are independent of each other, more
instruction-level parallelism can be easily extracted from
the code. Furthermore, pipelined functional units can be
kept busy, producing results with a theoretical maximum
throughput rate.

5. Performance Comparison

As reference for the synthesis times and the speedups
reported in the current section, Table 1 describes the PC
used for design and testing.

Table 1: PC setup used for design and testing

Model HP Compaq dc7800 Convertible

CPU Intel®Core™2 Quad Q6600 @ 2.4GHz

RAM 8GB

Operating System Windows XP Professional SP3

Testing and verification of the design were carried out by
implementing the proposed technique for filters on a target
reconfigurable platform based on FPGA device. This was
accomplished by describing the techniques in VHDL and
then synthesizing them for the FPGA chip. One motivation
of this work is the evaluation of the filters’ architecture in
a realistic hardware environment. Therefore, we selected
our chip and methodology with the goal of synthesizing
the EMPSoC system and running it on designed custom

board as shown in Fig. 4. We chose an Altera Cyclone II
FPGA chip as the basis of our platform. This high-density
device is intended for full SoC implementation and
contains a balance of memory and logic resources.

Fig. 4 Designed custom board

The application is targeted for FPGA devices for many
reasons. One of the goals of this paper is to design EPSF
as part of EMPSoC for underwater applications such as
autonomous underwater vehicle (AUV) navigation and
tracking using a structural design more robust than
behavioral. FPGAs can be considered for high-
performance DSP systems. On the other hand,
nowadays, FPGA devices offer very attractive hardware
facilities; great I/O pin-count, embedded memory blocks,
large logic area, high clock speed, and advanced
software computer-aided design (CAD) tools are
available for assistance in every design stage.

The VHDL language is chosen for its hardware design
mainly because of its familiarity but also because of its
wide support range. Parameterizable VHDL blocks are
implemented, allowing application parameters to be
changed. The modularity of the design makes possible
the reuse of its parts for other applications. The Altera
QUARTUS II 8.0 design software tool is used for design
verification. QUARTUS II 8.0 is a CAD design tool that
can assist each step in the design-flow and provide an
extensive analysis of timing and resource utilization
(embedded memory blocks, logic elements, and
dedicated multipliers).

Altera's Cyclone II family is chosen as the hardware
target because of its accessibility and low cost. Its
important characteristics such as embedded multipliers
and memory blocks are also influential factors. Synthesis
was conducted using an Altera Cyclone II FPGA model
number EP2C35F672C6, with the following main
specifications:

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 45

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

1. 33,216 LEs
2. 105 M4K RAM blocks
3. 483,840 total RAM bits
4. 35 embedded multipliers
5. 4 PLLs
6. 475 user I/O pins
7. FineLine BGA 672-pin package

The various performance results for each filter
architecture are shown in Fig. 5. The total synthesis
time, which is the time required by Quartus II 8.0 to
compile the VHDL, perform the synthesis stage, and
generate a programming file added to the time required
to load the logic module flash with configuration data.
The maximum number of cells, Nmax, which fit in the
chip for each filter architecture. The maximum clock
frequency at which the computing cells can run. This
value is reported by the Quartus II 8.0 after synthesis as
an estimate of the maximum clock frequency that should
remain valid through acceptable device tolerances and
operating conditions. Furthermore, the number of clock
cycles, Ncycles, required to complete one iteration as
determined by the number of states in the cell
controller’s FSM and by the type of operation performed
in each state.

Fig. 5 Performance Results of Filters Architecture

6. Application Area

One of the main technological challenges associated with
the operation of AUVs is navigation [23, 24]. End users
need data to be gathered along specific trajectories
defined in some local or global reference frame. These
trajectories are converted into a path the vehicle has to
follow, and this in turn requires the continuous
knowledge of its position. On the other hand, there is
always the risk of losing an AUV while performing
autonomous operations. The external tracking of the
vehicle allows for a high degree of confidence, as it
becomes possible to monitor its behavior far from the
operations area. Sound plays a critical role in most
navigation and tracking systems for underwater devices.
As electromagnetic waves propagate poorly in seawater,
sound waves are generally used to measure the ranges to
the beacons installed in known positions.

The navigation task is difficult due to a number of
complex problems. Some issues that complicate
navigation are the limits on computational power,
difficulties in detecting and recognizing objects,
difficulties in avoiding collisions with objects, and
difficulties involved in using information provided by
the environment [25]. For example, the computational
power needed to do real-time image processing,
computer vision, and learning is high. Although CPUs
have become faster, they are still not fast enough to
provide the power to perform tasks in the field. The chip
technologies (FPGA) used today for processor design
will soon reach their limits. According to some, it will
take years before new processing technologies can
become available. The fundamental way to extract more
computation cycles from a given manufacturing
technology is to introduce parallelism into the design.

With this in view, designers are seeking to introduce
more processing elements into their designs. The
speedup in the application is proportional to the effective
utilization of the processing elements. Effective
utilization depends on the computation and
communication behavior of the architecture. This power
is increased by using both FPGA and the new technique
represented by the flag-bit and flicker clock in our
design.

7. Conclusion

The assuming integration of the systolic array and a
global memory is presented in this paper through an SoC
implementation investigation. Two novel approaches
have been presented. First is the EPSF architecture,
which is the solution for minimizing the delay occurring
in the processing units of the system. In using this
architecture, the decision maker module has a variety of
information on which to build its decision. We have
introduced a system-level technique that takes advantage
of the clock managers present in most modem FPGAs.
Flicker clock with flag-bit, which is used to reduce the
processing delay and enables dynamic operation by
eliminating glitches and transient and non-transient
divider output errors that are very harmful when
introduced into clock signals. The flicker can be included
either as part of the FPGA clock managers or as a user
circuit.

The results show that synthesis time for filters with our
techniques is 5.2 min for KF and 10.3 min for EKF,
whereas 4.8min for KF and 9.9 min for EKF without our
techniques. Also, Nmax that fit in the chip for KF and
EKF without our techniques is 1157 LE and 1635 LE

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 46

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

respectively, whereas with our techniques is 1262 LE for
KF and 1738 LE for EKF. The maximum clock
frequency at which the computing cell can run with our
techniques is 47.8 MHz for KF and 46.7 MHz for EKF,
whereas it is less than 10 MHz without our techniques.
Finally, each filter has the same Ncycles with or without
applying our techniques, but the difference that KF has 4
clk flicker from 7, and EKF has 7 clk flicker from 11. As
can be seen, the results expose that this technique can be
used efficiently in most FPGA families.

References
[1] Flynn, M., & Luk, W.” Computer System Design:

System-on-Chip”, 2011.
[2] Doug Burger and James R. Goodman. “Billion-Transistor

Architectures: There and Back Again”. IEEE Computer
Society, Vol. 37, Issue 3, pp. 22–28, March 2004.

[3] Hennessy, J. L., & Patterson, D. “Scalable Multi-core
Architecture London: Morgan Kaufmann. p. 213,
2010.

[4] H. Peter Hofstee. “Power Efficient Processor Architecture
and the Cell Processor”. In HPCA ’05: Proceedings of the
11th International Symposium on High-Performance
Computer Architecture, IEEE Computer Society, pp. 258–
262, Washington, DC, USA, 2005.

[5] L. Chen and Z. Hu, “Optimizing fast Fourier transform on a
multi-core architecture”, IEEE International Parallel and
Distributed Processing Symposium, Vol.15 no.6, pp.491-
504, 2007.

[6] Tarek Abdelrahman, Ahmed Abdelkhalek, Utku Aydonat,
Davor Capalija, David Han, Ivan Matosevic, Kirk Stewart,
Faraydon Karim, and Alain Mellan. The MLCA: A Solution
Paradigm for Parallel Programmable SOCs. In IEEE North-
East Workshop on Circuits and Systems (NEWCAS), pp.
253-253, June, 2006.

[7] Hubner, M., & Becker, J. “Multiprocessor System-on-
Chip: Hardware Design and Tool Integration New
York: Springer p. 201-245, 2010.

[8] Farayadon Karim, Alain Mellan, Anh Nguyen, Utku
Aydonat, and Tarek S. Abdelrahman. “A Multi-Level
Computing Architecture for Embedded Multimedia
Applications”. IEEE Micro, Vol. 24, no. 3, pp. 55–56, 2004.

[9] D. Patterson, et al., “A case for intelligent RAM”, IEEE
Micro, vol. 17, no. 2, pp. 34-44, March/April 1997.

[10] Ma, Z., Marchal, P., Scarpazza, D., Yang, P., Wong,
C., Gomez, J., et al. “Systematic Methodology for
Real-Time Cost Effective Mapping of Dynamic
Concurrent Task-Based Systems on Heterogeneous
Platforms”, New York: Springer. p. 216-267, 2010.

[11] H. T. Kung, C. E. Leiserson “Systolic Arrays (for VLSI),”
Technical Report CS 79-103, Carnegie Mellon University,
1978.

[12] High Performance VLSI Signal Processing: Innovative
Architectures and Algorithms, vol. I, II, Edited by: K. J. R.
Liu, K. Yao, IEEE Press, 1998.

[13] Special issue on: Systolic Arrays, Computer, vol. 20, no. 7,
July 1987.

[14] N. Petkov, Systolic Parallel Processing, North-Holland,
1993.

[15] www.systolix.co.uk, Page accessed March 2001.
[16] Y. Katayama, T. Kitsuki, Y. Ooi, “A block processing unit

in a single-chip processing elementG-2 video encoder LSI”,
Proc. of SIPS’97, pp. 459-468, Leicester, 1997.

[17] S. Haykin, Adaptive Filter Theory, 4th Edition, Prentice
Hall, USA, 2002.

[18] S-G. Chen, J-C. Lee and C-C. Li, “Systolic Implementation
of Kalman Filter”, Circuits and Systems, APCCAS '94,
IEEE Asia- Pacific Conference, pp 97-102, 1994.

[19] C.J.B. Fayomi, M. Sawan and S. Bennis, “Parallel VLSI
Implementation of A New Simplified Architecture of
Kalman Filter”, Electrical and Computer Engineering, 1995.
Canadian Conference, Vol 1, pp 117 – 119, 1995.

[20] Z. Salsic and C.R. Lee, “Scalar-based direct algorithm
mapping FPLD implementation of a Kalman filter”,
Aerospace and Elec-tronic Systems, IEEE Transactions on,
Volume: 36 Issue: 3,pp 879-888, 2000.

[21] Volnei A. Pedroni, Circuit Design with VHDL, 1st ED,
Massachusetts Institute of Technology, 2004.

[22] D. Lawrie and P., Fleming, “Fine-grain parallel processing
implementations of Kalman filter algorithms”, Control '91.,
In-tenational Conference , Vol 2, pp 867 – 870, 1991.

[23] Wadoo, S., & Kachroo, P. “Autonomous Underwater
Vehicles: Modeling, Control Design and Simulation”,
Califonia: CRC p.112-134, 2010.

[24] H. Singh, J. Catipovic, R. Eastwood, L. Freitag, H.
Henriksen, F. Hover, D. Yoerger, J. Bellingham and B.
Moran, “An Integrated Approach to Multiple AUV
Communication, Navigation and Docking,” Proceedings of
the MTS/IEEE Oceans’96 Conference, Ft. Lauderdale, FL,
USA, 1996.

[25] A. Singhal, Issues in Autonomous Mobile Robot Navigation
(1997).

Muataz H. Salih received the B.Sc. and M.Sc.
degrees from the Department of Computer
Engineering from University of Technology,
Baghdad, Iraq, in 1998 and 2002, respectively.
From September 1998 to March 2003, he was a
research engineer in Military Industrialization
Corporation of Iraq. From October 2003 to June
2008, he was a lecturer and manager of

engineering faculty’s LABS in the faculty of Engineering of Al-
Kalamoon private university, Derattiah, Syria. Currently, he is a
Ph.D student at Universiti Malaysia Perlis (UniMap), Kuala Perlis,
Malaysia. His research interests on designing digital systems
using FPGA technology, embedded systems, computer system
architecture, microprocessor architecture, computer interfacing,
active jamming system for laser missiles, and real time systems.

R.B. Ahmad obtained B. Eng. in Electrical &
Electronic Engineering from Glasgow University in
1994. He obtained his M.Sc. and PhD in 1995 and
2000 respectively from University of Strathclyde,
UK. His research interests are on computer and
telecommunication network modeling using
discrete event simulators, optical networking &
coding and embedded system based on

GNU/Linux for vision. He has five (5) years teaching experience in
University Sains Malaysia. Since 2004 until now he is working with
university Malaysia Perlis (UniMAP). Currently as the Dean at the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 47

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

School of Computer and Communication Engineering and Head of
Embedded Computing Research Cluster.

Abid Yahya earned his B.Sc. degree from
University of Engineering and Technology,
Peshawar, Pakistan in Electrical and Electronic
Engineering majoring in telecommunication. Dr.
Abid Yahya began his career on a path that is
rare among other Researcher executives and
earned his M.Sc. and Ph.D. degree in Wireless
& Mobile systems, in 2007 and 2010

respectively, from the university Sains Malaysia, Malaysia.
Currently he is working at School of Computer and Communication
Engineering, university Malaysia Perlis (UniMAP). His professional
career outside of academia includes writing for the International
Magazines, News Papers as well as a considerable career in
freelance journalism. He has applied this combination of practical
and academic experience to a variety of consultancies for major
corporations.

Mohd Rizal Arshad graduated from the
University of Liverpool, in 1994 with a B.Eng. In
Medical Electronics and Instrumentation. He
then pursues his MSc. in Electronic Control
Engineering at the University of Salford,
graduating in Dec. 1995. Following from this, in
early 1999, he continues with a PhD degree in
Electrical Engineering, with specialization in

robotic vision system,. Since then, he has been working at the
Universiti Sains Malaysia (USM), Malaysia as a full-time
academics, i.e. lecturer and researcher. He has supervised a
number of postgraduates students at the MSc. and PhD. levels.
He has also published actively in local and international
publications. Dr. Mohd Rizal Arshad is currently an Associate
Professor and the deputy dean of the School of Electrical and
Electronic Engineering, USM. And with his team of researcher, is
also the pioneer of underwater system technology research efforts
in Malaysia.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 48

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

