
 

 

FPGA Design and Implementation of  Multi-Filtering Techniques 

Using Flag-Bit and Flicker Clock 

M. H. Al-Doori1, R. Badlishah Ahmad1, Abid Yahya1 and Mohd. Rizal Arshad2 
 

 1 School of Computer and Communication Engineering, Universiti Malaysia Perlis, Kuala Perlis, 
02000, Malaysia 

 
 

2 School of Electric and Electronic Engineering, Universiti Sains Malaysia, Penang, 
14300, Malaysia 

 
 
 

Abstract 
Real time system is a condition where the processor is required to 
perform its tasks within a certain time constraints of some 
processes or simultaneously with the system it is assisting. 
Typically, it suffers from two main problems; delay in data 
processing and complexity of the decision-making process. The 
delay is caused by reasons such as computational power, 
processor unit architecture, and synchronization signals in the 
system. To improve the performance of these systems in term of 
processing power, a new architecture and clocking technique is 
realized in this paper. This new architecture design called 
Embedded Parallel Systolic Filters (EPSF) that process data 
gathered from sensors and landmarks are proposed in our study 
using a high-density reconfigurable device (FPGA chip). The 
results expose that EPSF architecture and bit-flag with a flicker 
clock achieve appreciably better in multiple input sensors signal 
under both incessant and interrupted conditions. Unlike the usual 
processing units in current tracking and navigation systems used 
in robots, this system permits autonomous control of the robot 
through a multiple technique of filtering and processing. 
Furthermore, it offers fast performance and a minimal size for the 
entire system that minimizing the delay about 50%. 
Keywords: Embedded system design, FPGA system design, 
parallel processing, underwater detection. 

1. Introduction 

Modern real time systems and applications depend on a 
sufficiently high processing throughput and massive data 
bandwidths needed in computations [1]. The need for real-
time, high performance computational algorithms and 
architectures is one of the driving forces of modern signal 
processing technology and is behind the expansion of the 
semiconductor industry. The semiconductor industry is 
developing new products at an enormous pace driven by 
the Moore’s law [2]. The symbiotic integration of once 
dissimilar memory and logic processes is very promising 
for processor array and memory integration on a single 
chip, which is the key to reliable massively parallel 
systems [3, 4]. 

 
With tremendous advances in the VLSI technologies, new 
horizons have opened. Developments in the integrated 
circuit technology has led to a rising interest in parallel or 
highly concurrent algorithms and architectures [5, 6]. As a 
result of large available transistor counts on a single chip, 
different projects have emerged with the vision of 
integrating processor and memory on a single chip [7]. 
Current high-density devices (FPGA) provide the 
possibility for mixing memory and logic processes on the 
same chip. Many SoC projects and studies have been done 
in the past few years to show benefits of system-scale 
integration [8]. Most of the studies have been dealing with 
vector processors or small-scale MIMD processor systems. 
The two well-known projects are IRAM (Intelligent RAM) 
[9] and CRAM (Computational RAM) [10]. These projects 
may mark the real start of different parallel SoC systems, 
indeed also systolic arrays. 
 
This paper focuses on multi-filtering techniques by 
systolic arrays, where algorithm execution can be 
simultaneously triggered on all data elements of data set 
with different clock cycles. The advantage of such 
arrangement is that the replication of execution resources 
is employed. Each datum or part of a data set can be 
associated with a separate processing element. Processing 
elements form a parallel processing ensemble that is 
triggered by multi-clock, where each processing element 
operates on a different data element. 

2. Systolic Arrays and Filters 

Research in the area of systolic arrays began at the end of 
the 1970s [11]. The original motivation behind the systolic 
array concept was its potential for very-large-scale 
integration (VLSI) implementation. Only a few systolic 
algorithms have been implemented in VLSI chips. The 
main obstacle is their limited flexibility, as general-
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purpose (high volume) designs are the main driving force 
for commercial use. The second problem is the available 
technology at the time of introduction. Nevertheless, 
several multiprocessor projects have been directly inspired 
by the systolic array concept such as Warp Processor 
developed at Carnegie-Mellon, the Saxpy Matrix-1, or the 
Hughes Research Labs Systolic/Cellular System. Some 
other projects are covered in [12, 13]. 
 
Systolic algorithms are concurrent versions of sequential 
algorithms suitable to run on array processors that execute 
operations in the so-called systolic manner. Systolic arrays 
are generally classified as high-performance, special-
purpose VLSI computer systems suitable for specific 
application requirements that must balance intensive 
computations with demanding I/O bandwidths. Systolic 
arrays are tremendously concurrent architectures, 
organized as networks of identical and relatively simple 
processing elements that synchronously execute operations. 
Modular processors interconnected with homogeneous 
(regular) and local interconnections provide the basic 
building blocks for a variety of algorithms. Systolic 
algorithms address the performance requirements of 
special-purpose systems by achieving significant speedup 
through parallel processing and the prevention of I/O and 
memory bandwidth bottlenecks. Data are pumped 
rhythmically from the memory through the systolic array 
before the result is returned to the memory. The global 
clock and explicit timing delays synchronize the system. 
 
The systolic array is a computing system that possesses 
several features amenable to system-on-a-chip (SoC) 
designs [14]: 
 

1. Network: It is a computing network employing a 
number of processing elements with local 
interconnections. 

2. Homogeneity: Interconnections between 
processing elements are homogeneous (regular). 
The number of interconnections between 
processing elements is independent of the 
problem size. This is the first important feature 
that we exploit for the SoC design. 

3. Locality: The interconnections are local. Only 
neighboring processing elements can 
communicate directly. This is the second 
important feature required to achieve high-speed 
VLSI SoC realizations. 

4. Boundary: Only boundary processing elements 
in the network communicate with the outside 
world. This eliminates the classic memory and 
I/O bandwidth bottleneck. 

5. Modularity: The network consists of one or, at 

most, a few types of processing elements. If 
there is more than one type of processor, the 
systolic array can usually be decomposed into 
distinct parts with only one processor type. This 
feature enables quick and high-performance 
SoC designs. 

6. Rhythm: Data are computed and passed through 
the network rhythmically and continually. 

7. Synchrony: A global clock synchronizes the 
execution of instructions and data interchange 
between processing elements. 

8. Expendability: The computing network may be 
extended arbitrarily. 

9. Pipelineability: Pipelining on the array level, 
that is, between processing elements, is present. 

 
From the features presented, we can summarize that a 
large number of processing elements working in parallel 
on different parts of the computational problem is 
functional. Data enter the systolic array only at the 
boundary. Once placed into the systolic array, data are 
reused many times before they become output. Several 
data flows move at constant velocities through the array 
and interact with each other where processing elements 
execute the same function repeatedly. Only the initial 
data and results are transferred between the host 
computer/global memory and the systolic array. 
 
Certain constraints should be kept in mind and 
incorporated into the design methodology for VLSI-SoC 
implementation. The most important are short 
communication paths, limited I/O interaction, and 
synchronization. These constraints are inherent features of 
systolic arrays. Features like homogeneity, modularity, 
and locality are especially favorable from the VLSI-SoC 
point of view and make systolic arrays ideal candidates 
for SoC implementation [12, 13, 14]. Each systolic 
algorithm viewed from the processing element 
perspective includes the following three distinct 
processing phases: 
 

1. Data input: A new data item is input into the 
processing element from either the processing 
elementneighbors or the global memory of the 
bordering processing elements of the systolic 
array. 

2. Algorithm processing: The algorithm is 
processedas specified by the processing element 
definition of the systolic algorithm. 

3. Data output: The result of the algorithm data 
processing phase is output to the neighbors of 
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the designated processing element or to the 
global memory for bordering the processing 
elements of the systolic array. 

 
Systolic arrays are finding their way into many practical 
applications. In recent years, several applications of 
systolic arrays have been presented, ranging from radar 
signal processing to low-level image processing problems 
[12]. Typical applications include image sequence analysis, 
DNA sequence analysis, visual surface control, image 
processing, cryptography, and computer tomography. 
General-purpose programmable systolic arrays are also 
found in the market. Recently, Systolic launched 
PulseDSP architecture, which uses a large number of 
highly efficient processors arranged in a systolic array. 
The first PulseDSP-based product is a wide bandwidth 
sigma-delta A/D converter from Analog Devices (AD7725) 
[15]. 

 
Full custom designs of systolic algorithms are also 
available. For example, low-level image processing 
algorithms for motion estimation are already implemented 
in hardware as systolic array structures [16].  

 
Over the past forty years, adaptive filters have been widely 
used in many applications such as target tracking, 
navigation systems, adaptive control and many other 
dynamic systems.  
 

2.1 Kalman Filter 

In recent years, Kalman filters have been widely used in 
many applications such as target tracking, navigation 
systems, adaptive control, and many other dynamic 
systems. The Kalman filter algorithm is based on 
minimizing the mean square error recursively. Therefore, 
it can work well in estimating the unknown states of a 
noisy dynamic process [17]. 
 
Many attempts have been made to employ various systolic 
architectures for the VLSI implementation of Kalman 
filters [18, 19]. These methods, along with dozens of 
others presented in the literature, are merely for permanent 
structures and are only suitable for VLSI implementation. 
Rapid prototyping of a Kalman filter-based system 
requires the implementation to be parameterized. Systolic-
based architectures should be modified to meet the 
hardware requirements of the FPGA technology [20]. 

2.2  Extended Kalman Filter 

What happens if the process to be estimated and (or) the 
measurement relationship to the process is non-linear? 
Some of the most interesting and successful applications 

of Kalman filtering have been in such situations. A 
Kalman filter that linearizes the current mean and 
covariance is referred to as an extended Kalman filter or 
EKF. The state transition and observation models need not 
be linear functions of the state but may instead be 
(differentiable) functions [17]. 

3. Proposed Design 

The conception of systolic or chained processing can be 
described as the implementation technique that partitions 
the execution of a given operation into the number of 
subsequent steps as far as possible from the same duration. 
Furthermore, each section assigned to a particular step can 
exploit standalone technical resources. Executions of 
single packet data requires less clock cycles, and overhead 
can be effectively hidden by a parallel operation. 
Synchronous systolic is composed of stages, each of which 
is dedicated to a different stage of processing. Individual 
stages are separated by embedding additional registers. As 
addressed in our design using appropriate circuitry 
structures, systolic or chained processing might impose 
different types of conflicts (data and control).  

 
To solve this problem, a flag bit is assigned for each stage 
indicating its status. A flag bit of 0 means the stage has 
finished the process and is ready to accept other data; 
otherwise, data coming from the previous stage will enter 
in a delay unit of 100 ns each cycle and will make the 
previous stages work on another smaller clock cycle at 50 
ns until the flag bit becomes 0. This embedded architecture 
uses the most familiar filters for data processing in 
navigation and tracking systems for robots. 

 
We propose the development of a homogeneous, modular, 
expandable systolic array combined with a large global 
memory. There are three main reasons for the suitability of 
the SoC integrated systolic array using this memory 
system: 
 

1. Off-chip memory buses are slow. A systolic 
array inherently depends on a continuous 
supply of data from the memory. Inability to 
realize this at a fast enough data rate can cause 
significant performance degradation. 

2. Off-chip inter-processor element 
communication slows data exchange. This 
ultimately slows down the entire systolic array. 

3. Package pin-count limitation. A rectangular 
systolic array can be connected to the memory 
system on all four borders. Using a narrower 
memory interface can again cause a slowdown. 
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Integration of the systolic array and memory on the same 
piece of real state alleviates these problems. Homogeneity 
of the systolic array is a very important factor in the 
design of such a system as it provides the following 
benefits: 
 

1. Only one processing element design is reused in 
the entire systolic array. 

2. Performance balances linearly with the number 
of processing elements in the systolic array. 

3. The systolic array design cycle can be shortened 
by reusing the same processing elements 
forming the processing ensemble. 

 
The suitable features of systolic arrays for SoC can be 
summarized as follows: 
 

1. Control of a systolic array is not limited to any 
particular implementation. 

2. The number of functional units within the 
scalar part of the architecture can be arbitrary. 

3. The topology of the physical interconnections 
between processing elements is not limited to a 
specific network.  

4. Due to synchronous data injecting through the 
systolic array, a separate global data memory 
bank is assigned to each row/column of 
processing elements to ensure conflict-free 
access. Furthermore, there is no need for 
additional crossbar buses between the memory 
and the processing element array as, by 
definition, only the nearest neighbor data 
transfers are allowed in systolic processing. 

 

A new technique of embedded parallel systolic filters 
(EPSF) is proposed in this paper and is depicted in Fig. 
1. The EPSF combines the multiple Parallel Element 
(PE) layers of the original systolic array into a single PE 
layer with a set of feedback registers in a pipeline 
structure. 
 
Data are originally passed to stage B for pre-processing, 
and the flag-bit is then observed to decide whether to 
enter stages A or the delay unit until the flag-bit changes 
its status. An additional unit of control signal digital 
circuit is required to produce the control signals for data 
input selection, cell memory clearance, and operation 
mode control. 
 

 
 

 

Fig. 1 EPSF design architecture 

4. FPGA Implementation 

The throughput of the systolic array can be limited due 
to various reasons: low systolic array efficiency, data 
synchronization between parts of the systolic array with 
different types of processing elements (e.g., RLS), data 
dependencies within the processing element, and long 
latency of operations within the processing element. 
Systolic array efficiency and systolic cycle length 
depend on the complexity of the systolic algorithm and 
implementation of the processing element. Both may 
bind the systolic array throughput. To solve these 
problems, several systolic algorithm transformation 
techniques have been devised that operate on the 
algorithm level. 
 

The main problem addressed in this section is the 
possibility of increasing the throughput of systolic arrays 
beyond the limit set by a systolic cycle without applying 
systolic algorithm transformation/mapping techniques. 
This can be achieved by combining embedded 
multithreading and systolic array computing called 
EPSF. Unlike classic algorithm-level transformations, 
multithreading can increase the throughput of the 
systolic array without changing the original systolic 
algorithm. If a certain algorithm is highly effective, the 
incorporation of multithreading on the pipelined systolic 
processing elements can improve the throughput of the 
same algorithm by a constant factor. Generally, multiple 
independent algorithm threads (i.e., instances of the 
same algorithm) are interleaved within a given systolic 
cycle on the same systolic array. Data from multiple 
threads are pumped through the multithreaded systolic 
array in packets resulting in a dramatic improvement of 
the net throughput. All threads share the same resources. 
Several sources of the data sets available within systolic 
arrays that can be treated as unrelated threads can be 
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defined as follows: 
1. Data vectors from different algorithm partitions. 

2. Loop unrolled systolic processing element 
algorithm. 

3. Multiple instances of the same algorithm. 

4. Simultaneous execution of different types of 
algorithms. 

5. Suitable combinations of the previous four. 

 
Data streams from systolic algorithms execute operations 
without noticing the presence of others. All data streams 
share processing element resources including inter-
processing element communication data paths. It should be 
noted that we assume the same processing element I/O 
bandwidth, that is, the same bisection bandwidth as in the 
original single threaded systolic array. The performance 
increase is due to the elimination of true data hazards 
within each algorithm, better functional unit utilization, 
and larger amounts of usable instruction level parallelism 
uncovered within longer basic blocks constituting 
instruction loops. Functional unit pipelines within 
processing elements are kept busy by interleaving 
independent threads running simultaneously through the 
multithreaded systolic computation. A side effect of 
multithreading is that as the efficiency of each processing 
element improves, a group of algorithms can complete the 
execution in a shorter time than it would in the serial case. 

 
We examined the multithreading systolic computation 
logically, where all threads are concurrently executed on 
the systolic array with the granularity of one processing 
element clock cycle. Implementing a multithreaded design 
uses a data packet transfer approach. For each iteration of 
the systolic program, N data elements from all N threads 
are input, processed, and output.  

 
Data elements of the input data vectors of N threads are 
time multiplexed into a multithreaded systolic array at a 
rate of one element per processing element clock cycle. 
Data elements of the result vectors are output at the same 
rate. This process constitutes a multithreaded systolic 
cycle. It repeats for all subsequent elements and all 
threads. As threads are independent data sets, no data 
dependencies are present within the processing element 
pipelines. The implementation of the EPSF is performed 
with the memory components created inside the FPGA 
chip. Memory is used for frame and parameter buffers, 
while other circuits on the FPGA are used for pixel and 
parameter calculations.  

 
The system design consists of two main modules 
representing the filters. Each filter contains two systolic 
stages for filter calculations. The 32-bit input data 

represent data coming from the array of sound sensors 
(receivers) becoming more sensitive and directive, 
enabling the system to discriminate between sounds 
coming from different directions. The strategy used to 
build our architecture in FPGA is a system design using 
components or a piece of conventional code (LIBRARY 
declarations   ENTITY ARCHITECTURE). However, by 
declaring such code as a COMPONENT, it can then be 
used within another circuit, thus allowing the construction 
of hierarchical designs [21].  A COMPONENT is also 
another way to partition a code, which allows code sharing 
and code reuse. For example, commonly used circuits such 
as flip-flops, multiplexers, adders, basic gates, and others, 
can be placed in a LIBRARY; therefore, any project can 
use them without explicitly rewriting the codes.  

 
Many FPGA design tools provide built-in modules for 
arithmetic operations. These modules are usually 
optimized for the target architecture. To carry out the 
scalar division in the boundary cell for the matrix 
inversion, Z=x/y, where 0 <= | x | < | y | <= 1, and x, y, and 
z are 16-bit numbers. x has to be zero-padded to 32-bit 
long and then passed to a 32-bit divider. This arrangement 
occupies 1,120 logic elements (LE) and is executed at the 
maximum clock rate of 27 MHz in an Altera Cyclone II 
device. The 16-bit finite word length induces a negligible 
precision error of only 0.0012%. 
 
FPGA devices provide only limited memory, which limits 
the size of the LUT for this purpose. The value of 1/y falls 
into a decreasing quadratic curve, while y tends to one. 
Thus, the value difference between two consecutive 
numbers of 1/y decreases dramatically. To reduce the size 
of the LUT, the inverse value curve can be segmented into 
several sections with different mapping ratios. This can be 
achieved by storing one inverse value, the median of the 
group, in the LUT to represent the results of 1/y for a 
group of consecutive values of x.  

 
By applying LUT to the EPSF structure, a generic 
hardware design is established for matrix inversion in 
different sizes. The result of matrix operations, including 
addition, subtraction, multiplication, and inversion, is 
calculated. For an n×n matrix, there are a total of 2n PEs in 
the EPSF with 1 boundary cell, 2n – 1 internal cells, and 
2(n – 1) layers of registers. The processing time requires 
2(n2 – 1) clock cycles. This implementation can run with a 
maximum clock frequency of 50 MHz for n<64. 

 
Flicker clock management can have a strong impact on the 
reduction of processing delay in FPGAs. In most modems, 
FPGAs have dedicated clock managers for solving high-
speed clock distribution problems in high-density designs. 
This design uses an indicator for systolic stages of the 
filters called flag-bit, which works when a delay occurs in 
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any filter stage. Flag-bit gives design high control on data 
transmission and early alerts to prevent data conflict. This 
new technique is very efficient and reliable for parallel 
processing systems and gives the best results to satisfy 
parallelism. 

 
Several clock managers have been introduced to FPGA 
chips. They can perform clock buffering, drive the 
distribution networks, and simultaneously eliminate clock 
skew. They can also produce phase shifts and duty cycle 
adjustment. In addition, clock managers can be used to 
synchronize several components in a system. Although 
they perform their intended function well, current FPGA 
clock managers are incapable of performing dynamic 
clock management because their dividers cannot perform 
dynamic division or multiplication. 

 
The Xilinx and Altera clock managers can only be 
programmed during the initial configuration. The Lucent 
Programmable Clock Manager can be programmed during 
its operation, but this can lead to dangerous clock outputs. 
Changing the settings of existing clock dividers during 
their operation can lead to metastability and latching errors 
due to glitches, distortions, asymmetry, transient 
frequencies, and additional clock edges of the output clock 
signal. Even shutting off the system during the change to 
the new frequency does not help in this case, as the 
inconsistent duty cycle clocks may be non-transient. 

 
If a flicker clock is added to the existing FPGA clock 
managers, they can be used for clock management. As a 
result, clean frequency changes can take effect within a 
clock cycle. The flicker clock circuit of Fig. 2 is capable of 
performing efficient clock signals without undesired 
effects at the output.  

 

 

Fig. 2 Flicker clock circuit 

Division of the input clock is performed by creating a loop 
of T-flip-flops driven by the input clock. To create the 

necessary clock, more than one clock signal must enter 
into the multiplexer that feeds the systolic stages through 
necessary clock signals dependent on the status of the flag-
bit. The delay between the output of the Kalman filter and 
the extended Kalman filter is approximately 20 ns due to 
the use of the flag-bit and flicker clock techniques, as 
shown in Fig. 3. 

  

Fig. 3 KF and EKF output with\out flag-bit and flicker clock effects 

 
Clock signal of the systolic stage A flicks directly to the 
smaller clock signal after the flag-bit indicates logic 1, 
which means the stage has a delay in processing data and 
returning to the original clock signal after the flag-bit 
changes its status, as shown in Fig. 3. 

 
Benchmark is carried out to compare the EPSF 
performance with other systems. For an n×n matrix, the 
EPSF requires 2n PEs while in [18], {n× (3n + 1) / 2} PEs 
are used. EPSF allows the clock speed to run at 50 MHz 
compared with the maximum clock frequency of 2 MHz in 
the VHDL design presented in [20] and 10 MHz in the 
Geometric Arithmetic Parallel Processor (GAPP) in [18]. 
When it comes to resource consumption, the EPSF 
approach is still superior compared with those presented in 
the literature. When working with an 8×8 matrix, it takes 
4,314 LE to implement the EPSF in the Altera Cyclone II 
device, while 8,610 LE is required to implement the 
hardware design as reported in [22]. 

 
The results demonstrating the speedups achievable on an 
EPSF computation run the demonstrated design on 
selected processing element models. Speedups are based 
on the execution time ratios of EPSF versus traditional 
computing. We show that a collection of data executing 
simultaneously on the systolic array is faster than the serial 
execution of the same data on a single array. Each task 
will be executed separately in a shorter time due to the 
flag-bit and flicker clock techniques. The processing time 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 44

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

will be longer to produce an output without using these 
techniques, and EPSF computation creates the following 
effects: 

 
1. Processing element utilization is increased, as 

there are many independent operations 
available, which can be executed concurrently.  

2. The net throughput increases as a direct 
consequence of multithreading. As long as 
there are enough systolic functional units and 
inter-processing element communication 
channels, the speedup curve can experience a 
proportional increase. 

3. The need for register storage increases 
proportionally to the number of threads. 

 
Multithreading is very effective in increasing the 
throughput and utilization of systolic arrays. A linear 
increase in the throughput is observed as long as the 
processing element functional units are pipelined, and the 
algorithms do not experience very low computation-to-
communication ratios. 
Multithreaded systolic computation also increases the 
number of available operations within a given systolic 
cycle, and as threads are independent of each other, more 
instruction-level parallelism can be easily extracted from 
the code. Furthermore, pipelined functional units can be 
kept busy, producing results with a theoretical maximum 
throughput rate. 

5. Performance Comparison 

As reference for the synthesis times and the speedups 
reported in the current section, Table 1 describes the PC 
used for design and testing. 
 

Table 1: PC setup used for design and testing 

Model HP Compaq dc7800 Convertible 

CPU Intel®Core™2 Quad Q6600 @ 2.4GHz 

RAM 8GB 

Operating System Windows XP Professional SP3 
 
Testing and verification of the design were carried out by 
implementing the proposed technique for filters on a target 
reconfigurable platform based on FPGA device. This was 
accomplished by describing the techniques in VHDL and 
then synthesizing them for the FPGA chip. One motivation 
of this work is the evaluation of the filters’ architecture in 
a realistic hardware environment. Therefore, we selected 
our chip and methodology with the goal of synthesizing 
the EMPSoC system and running it on designed custom 

board as shown in Fig. 4. We chose an Altera Cyclone II 
FPGA chip as the basis of our platform. This high-density 
device is intended for full SoC implementation and 
contains a balance of memory and logic resources. 

 

 

Fig. 4 Designed custom board 

The application is targeted for FPGA devices for many 
reasons. One of the goals of this paper is to design EPSF 
as part of EMPSoC for underwater applications such as 
autonomous underwater vehicle (AUV) navigation and 
tracking using a structural design more robust than 
behavioral. FPGAs can be considered for high-
performance DSP systems. On the other hand, 
nowadays, FPGA devices offer very attractive hardware 
facilities; great I/O pin-count, embedded memory blocks, 
large logic area, high clock speed, and advanced 
software computer-aided design (CAD) tools are 
available for assistance in every design stage. 
 

The VHDL language is chosen for its hardware design 
mainly because of its familiarity but also because of its 
wide support range. Parameterizable VHDL blocks are 
implemented, allowing application parameters to be 
changed. The modularity of the design makes possible 
the reuse of its parts for other applications. The Altera 
QUARTUS II 8.0 design software tool is used for design 
verification. QUARTUS II 8.0 is a CAD design tool that 
can assist each step in the design-flow and provide an 
extensive analysis of timing and resource utilization 
(embedded memory blocks, logic elements, and 
dedicated multipliers). 

Altera's Cyclone II family is chosen as the hardware 
target because of its accessibility and low cost. Its 
important characteristics such as embedded multipliers 
and memory blocks are also influential factors. Synthesis 
was conducted using an Altera Cyclone II FPGA model 
number EP2C35F672C6, with the following main 
specifications: 
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1. 33,216 LEs 
2. 105 M4K RAM blocks 
3. 483,840 total RAM bits 
4. 35 embedded multipliers 
5. 4 PLLs 
6. 475 user I/O pins 
7. FineLine BGA 672-pin package 

 
The various performance results for each filter 
architecture are shown in Fig. 5.  The total synthesis 
time, which is the time required by Quartus II 8.0 to 
compile the VHDL, perform the synthesis stage, and 
generate a programming file added to the time required 
to load the logic module flash with configuration data. 
The maximum number of cells, Nmax, which fit in the 
chip for each filter architecture. The maximum clock 
frequency at which the computing cells can run. This 
value is reported by the Quartus II 8.0 after synthesis as 
an estimate of the maximum clock frequency that should 
remain valid through acceptable device tolerances and 
operating conditions. Furthermore, the number of clock 
cycles, Ncycles, required to complete one iteration as 
determined by the number of states in the cell 
controller’s FSM and by the type of operation performed 
in each state. 
 

 

Fig. 5 Performance Results of Filters Architecture 

6. Application Area 

One of the main technological challenges associated with 
the operation of AUVs is navigation [23, 24]. End users 
need data to be gathered along specific trajectories 
defined in some local or global reference frame. These 
trajectories are converted into a path the vehicle has to 
follow, and this in turn requires the continuous 
knowledge of its position. On the other hand, there is 
always the risk of losing an AUV while performing 
autonomous operations. The external tracking of the 
vehicle allows for a high degree of confidence, as it 
becomes possible to monitor its behavior far from the 
operations area. Sound plays a critical role in most 
navigation and tracking systems for underwater devices. 
As electromagnetic waves propagate poorly in seawater, 
sound waves are generally used to measure the ranges to 
the beacons installed in known positions. 

 
The navigation task is difficult due to a number of 
complex problems. Some issues that complicate 
navigation are the limits on computational power, 
difficulties in detecting and recognizing objects, 
difficulties in avoiding collisions with objects, and 
difficulties involved in using information provided by 
the environment [25]. For example, the computational 
power needed to do real-time image processing, 
computer vision, and learning is high. Although CPUs 
have become faster, they are still not fast enough to 
provide the power to perform tasks in the field. The chip 
technologies (FPGA) used today for processor design 
will soon reach their limits. According to some, it will 
take years before new processing technologies can 
become available. The fundamental way to extract more 
computation cycles from a given manufacturing 
technology is to introduce parallelism into the design.  

 
With this in view, designers are seeking to introduce 
more processing elements into their designs. The 
speedup in the application is proportional to the effective 
utilization of the processing elements. Effective 
utilization depends on the computation and 
communication behavior of the architecture. This power 
is increased by using both FPGA and the new technique 
represented by the flag-bit and flicker clock in our 
design.  

7. Conclusion 

The assuming integration of the systolic array and a 
global memory is presented in this paper through an SoC 
implementation investigation. Two novel approaches 
have been presented. First is the EPSF architecture, 
which is the solution for minimizing the delay occurring 
in the processing units of the system. In using this 
architecture, the decision maker module has a variety of 
information on which to build its decision. We have 
introduced a system-level technique that takes advantage 
of the clock managers present in most modem FPGAs. 
Flicker clock with flag-bit, which is used to reduce the 
processing delay and enables dynamic operation by 
eliminating glitches and transient and non-transient 
divider output errors that are very harmful when 
introduced into clock signals. The flicker can be included 
either as part of the FPGA clock managers or as a user 
circuit. 

 
The results show that synthesis time for filters with our 
techniques is 5.2 min for KF and 10.3 min for EKF, 
whereas 4.8min for KF and 9.9 min for EKF without our 
techniques. Also, Nmax that fit in the chip for KF and 
EKF without our techniques is 1157 LE and 1635 LE 
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respectively, whereas with our techniques is 1262 LE for 
KF and 1738 LE for EKF. The maximum clock 
frequency at which the computing cell can run with our 
techniques is 47.8 MHz for KF and 46.7 MHz for EKF, 
whereas it is less than 10 MHz without our techniques. 
Finally, each filter has the same Ncycles with or without 
applying our techniques, but the difference that KF has 4 
clk flicker from 7, and EKF has 7 clk flicker from 11. As 
can be seen, the results expose that this technique can be 
used efficiently in most FPGA families.  
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