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Abstract 
Mining frequent itemsets through static Databases has been 

extensively studied and used and is always considered a highly 

challenging task. For this reason it is interesting to extend it to 

data streams field. In the streaming case, the frequent patterns’ 

mining has much more information to track and much greater 

complexity to manage. 

Infrequent items can become frequent later on and hence cannot 

be ignored. The output structure needs to be dynamically 

incremented to reflect the evolution of itemset frequencies over 

time. 

In this paper, we study this problem and specifically the 

methodology of mining time-sensitive data streams. We tried to 

improve an existing algorithm by increasing the temporal 

accuracy and discarding the out-of-date data by adding a new 

concept called the “Shaking Point”. We presented as well some 

experiments illustrating the time and space required. 

Keywords: frequent pattern, , stream data mining, time-sensitive 

data stream. 

1. Introduction 

The Data is a small word leading to an enormous 

computing-field and vital-ubiquitous component of 

technology’s life. Since this notion is so important, we 

have to exploit it in a very accurate way by analyzing the 

huge amount or “mines” of collected data through time or 

differently said Data Mining. Recently, new generation of 

data has appeared and it’s called data streams. 

 

A Data Stream is an infinite and continuous sequences of 

data received at a high-speed rate and which disable the 

capability  of storing them in memory for a later processing 

and this because of their historical dimension of real time. 

This concept has been defined in many references [11, 6, 

23 and 17]. 

Since traditional DBMS can’t fulfill the data stream 

requirement, they have been revised to give birth to the 

new Data Stream Management System. (fig.1) 

 

 
 

Fig1. A DSMS model 
 

A number of methods have been used within these 

management systems and have proved being powerful in 

solving many problems in extracting knowledge from 

streaming information as: Data stream clustering [1, 2, 15], 

Data stream classification [1, 10, 18], frequent patterns 

mining [4, 14, 19], Change detection in data streams [3, 9, 

20], Stream cube analysis of multi-dimensional streams [7] 

and Dimensionality reduction and forecasting [25,27]. 

 

Yet, between these tasks, the most challenging one in the 

research field is the frequent patterns mining which focuses 

on discovering frequently occurring patterns from different 

type of datasets (unstructured, semi-structured and 

structured). 

 

In this paper, we study this problem and specifically the 

methodology of mining time-sensitive data streams which 

is previously studied by J. Han et al. in their paper 

published on November 2003 titled “Mining Frequent 

Item-sets over Arbitrary Time Intervals in Data Streams” 

[12]. We tried to improve the temporal accuracy and to 

discard the out-of-date data by adding a new concept called 

the “Shaking Point”. 

 

The remaining of the paper is structured as follows: section 

2 introduces more deeply the concept of the frequent 
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patterns mining and its related works. The modifications 

applied to an existing algorithm are detailed in section 3. In 

section 4 some experiments are presented. Finally, section 

5 highlights some points which can be discussed and used 

as future research tracks and concludes the paper. 

2. Frequent Patterns Mining in Data Stream 

Mining or discovering frequent pattern itemsets consist on 

the first step of association rule mining process. This stage 

is accomplished by extracting all frequent itemsets that 

meet a support threshold given by the user. The second 

step is around creating rule associations that fulfill a 

confidence criterion based on the frequent itemsets found 

earlier. Since this stage can be applied in a simple way, a 

big part of the researches were done around the first one 

“how to discover efficiently all frequent itemsets in a data 

stream”. 

 

Some of the algorithms proposed under this method are: 

Lossy counting algorithm BTS [22], DSM-FI algorithm 

[21], EstDEC[26], FP-Streaming [12], Instant [24], Est-win 

[28], Moment [8], etc. 

  

Within this paper, we focused on the time-sensitive aspect 

of the frequent patterns mining, as long as in many cases 

changes of patterns and their trends are more interesting 

than patterns themselves when the goal is to find changes 

or evolution of frequent patterns through time [12].  

 

The algorithm FP-Streaming introduced in [12] satisfies 

this specificity. In their algorithm, frequent patterns are 

actively maintained under a tilted-time window framework 

in order to answer time-sensitive queries. The frequent 

patterns are compressed and stored using a tree structure 

similar to FP-tree [16] and updated incrementally with 

incoming transactions. The FP-tree provides a base 

structure to facilitate mining in a static batch environment. 

In the concerned algorithm, a transaction-tree is used for 

storing transactions for the current time window. On the 

same time, a similar tree structure, called pattern-tree, is 

used to store frequent patterns in the past windows. Our 

time-sensitive stream mining model, FP-stream, includes 

two major components: (1) pattern-tree, (2) tilted-time 

window [16].  

 

For these reasons we chose this algorithm as a foundation 

of our work and tried to improve it in purpose to increase 

its itemsets temporal accuracy and discard the obsolete data 

from the FP-Stream output structure to fasten the response 

of the queries. The improvements are explained in the next 

section. 

 

3. Modifications applied in the FP-Streaming 

model 

3.1. Discarding the Tail Pruning and increasing 

accuracy  

As introduced in [12], the tail pruning lightens the size of 

the FP Stream structure and decreases the space 

requirement of the algorithm. But as a result of this type of 

pruning, we no longer have an exact temporal frequency of 

a specified item  over, rather an approximate frequency 

 [13]. 

 

So due to this drawback of the Tail Pruning and its impact 

to the temporal frequencies of itemsets, we decided in this 

work to discard it so we will have a good precision in the 

temporal frequency of each item and its exact behavior 

graph over time. 

 

This type of pruning is applied on the FP Stream, which is 

the output structure of our algorithm. This output tree 

structure is stored on the main memory to be consulted to 

answer the user queries. By discarding the Tail Pruning, 

the FP Stream structure will need much more space. We 

allowed this change in the algorithm despite the increasing 

space requirement, because it doesn’t affect the algorithm 

performance (since it is not about the input structure which 

is the transaction tree) so we won’t face any over fitting 

case. And since the memory is almost getting costless by 

years [5], the memory required for storing the FP 

Streaming will not pose a problem and will serve the goal 

of increasing the temporal accuracy of the user queries 

answers. 

3.2. Stream generation and input stream management 

In this algorithm, the input stream is generated from a data 

stream generator. This generator creates a stream of 

random items with random length separated by an (x) mark 

in a fast and constant rate. This stream replaces the datasets 

used to experiment algorithms. 

 

The algorithm reads the input stream and fills in the batch 

within a period θ fixed by the user. So the window length 

will be dependant of θ .At the end of this time period, the 

algorithm ignores the stream and proceeds with analyzing 

the batch. Other while, between each two batches, the time 

elapsed is calculated and stored in a table to be used in 

need to know the time of stream lost without processing. 

3.3. Leaf fading and elimination of the obsolete data  

3.3.1. The use of the Time-stamping in the original 

algorithm 

To facilitate the insertion of zeros into tilted-time window 

tables, each table in the FP-stream has an associated time-
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stamp. When the table is created the time-stamp is set to 

the current time unit. When an insertion is made, the time 

stamp is reset to the current time unit. The use of time-

stamps will become clear is the next paragraph. 

3.3.2. Leaf fading concept 

In the FP–Stream structure (the output structure), for every 

arriving batch, all the nodes are updated (incremental part 

of the algorithm). New nodes are added, frequencies of 

others updated.    

 

If the itemset of a node occurs on the current batch, his 

current frequency is added on the tilted-time window of 

this node. If not, the tilted-time window will be updated by 

a zero. 

     

After several batches arrive, some nodes that are updated 

consequently by zeros will be found. These nodes represent 

obsolete itemsets, since those itemsets were not frequent or 

sub-frequent since a while. 

To reduce obsolete data, we will proceed as well: 

 

 Associate to each node a variable called “fading-

factor”. 

 Determine a user-set parameter called “fading-

support”. 

 Modify the use of the time-stamping by eliminate 

the update of the time-stamp of a node whose 

tilted-time window is updated by a zero. 

 After N batches arrival ( N is a user-defined 

parameter )  we execute a shaking point. 

 Shaking point: calculate the fading factor for each 

node which represents the difference between its 

time-stamp and the current-time stamp (subtract 

the time-stamp for each node from the current 

time-stamp). If the fading-factor of a node is 

larger or equal to the fading-support, so drop the 

node and its entire supper-tree. 

 In the shaking point we proceed from the root of 

the tree to the leaves (in depth), if a node of an 

item-set  is dropped then none of its supersets 

need to be examined. So the procedure of the 

shaking-point can prune its search and visit of the 

supersets of . This property is obvious to avoid 

useless operations (if a parent node is pruned all 

the branch below will be pruned , since the 

frequency of itemsets in the leaves will not be 

updated if the frequency of the parent itemset 

were not ). 

 

The choice of the fading-support is very important because 

it affects the spatial frequency precision of the answers, 

since according to this support the algorithm will drop 

faded leaves of outdated itemsets (obsolete data) in one 

hand, but can affect the spatial precision of the algorithm in 

the other hand. 

 

3.3.3. Illustrative example 

The first part of the algorithm returns us a stream of the 

frequent patterns with the same structure of the input 

stream. 

With this stream we will update the FP Stream. 

 

The structure of this stream is as following: 

(batch1)x((batch2)x(batch3)x … (batchi)  

The structure of a batch is as following:  

(itemset1)x(itemset2)x(itemset3) … (itemseti)   

 

In this example we will take a part of the stream which 

consists of the results of 3 batches: 

 Frequent patterns of batch 1:  ACDxEVxACJxBFA      

 Frequent patterns of batch 2:   EVDxAxBFC    

 Frequent patterns of batch 3:  EVDxBFAxAH                    

i) With the frequent patterns of the first batch (ACD, 

EV, ACJ, BFA) we create our FP Stream structure 

as illustrated below (fig. 2). 

 
Fig 2. The FP Stream after the 1st batch update 

 

 All nodes are new-added  

 All time-stamps = T (current-system-time) 

 

ii) We increment our FP Stream with the frequent 

patterns of the batch 2 which are EVD, A and 

BFC (fig. 3). 
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Fig 3. The FP Stream after the 2nd update 

 

 Item-sets which tilted-time window are updated 

with  frequency ≠ 0:    E,EV,A,B,BF 

 New itemsets :    EVD’,BFC’ 

 Item-sets which tilted-time window are updated 

with frequency = 0:    AC,ACD,ACJ,BFA’ 

 Nodes with time-stamp updated to T :    

A,E,V,D’,B,F,C’ 

 Nodes faded with time-stamp not updated =T-1 :     

C,D,J,A’ 

 

iii) We increment the FP Stream as well by the 

frequent patterns of the third batch which are 

EVDC, BFA and AH. (fig. 4). 

 

               Fig 4. The FP Stream after the 3rd batch update 

 

 Item-sets which tilted-time window are updated 

with frequency ≠ 0:  E, EV, EVD’, B, BF, BFA’, 

A. 

 New itemsets: AH, EVD’C’’. 

 Item-sets which tilted-time windows are updated 

with  frequency = 0: AC, ACD, ACJ, BFC’. 

 Nodes with time-stamp updated to T: A, E, V, D’, 

B, F, A’, H. 

 Nodes faded with time-stamp not updated: C, C’, 

D, J.  

 

 

 

 

 

 

iv) In this stage, after N batches (N=3), we execute 

the “Shaking point” on our updated FP Stream 

with a fading-support=2. For a fading-factor ≥ 2 

we drop the node (Fig5) 

 

 
                                          Fig 5. The Shaking Point 

Proceed in depth-left: 

 

  Drop (C) and all its 

subsets [(D) and (J)]  

 

 

 

 

 

 

 

 

 

 

““Shaking point”” 
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As a result, the FP-Stream will drop 3 obsolete-nodes and 

will be as shown below (fig. 6). 

 
 

Fig 6. The FP Stream after the Shaking Point 

3.4. Algorithm 

The algorithm is presented in three parts. The first part 

(Algorithm1) ensures the management of the input stream 

under batches to provide to the next algorithm a stable 

batches environment to proceed. The second algorithm 

(Algorithm2) warrants the incremental update of the FP 

Stream structure with incoming batches. As for the third 

algorithm (Algorithm3), it maintains this structure by 

pruning it (shaking point) so the obsolete data which 

occupy an extra space without utility will be dropped. 

 

Input: FP Stream structure, min-support , max-support-

error ,incoming batch  of transactions , lattice Offc, 

sliding window with a fixed period , offline-time-

counter, fading-factor in each node , fading-support  

Output: FP Stream structure updated 

 

 

PS: the lines in bold present the amelioration 

The lines between ## are discarded 
 

Algorithm1: managing the incoming data stream  

Method:   

- Fill the batch during the window period which is 

 

- After  : 

 Stop receiving transactions  

 Launch the offline-time-counter to count 

the time of unprocessed transaction 

stream 

 Start proceeding the batch ( Algorithm 2 ) 

- If ( the batch  is reset to empty) : 

 Stop offline-time-counter and stock its 

value in the lattice Offc 

 Proceed with algorithm 2 in a loop 
 

Algorithm 2: (FP-streaming) (Incremental update of the 

FP-stream structure with incoming stream data) 

Method:  

- Initialize the FP-tree to empty. 

- Sort each incoming transaction , according to f-list, 

and then insert it into the FP-tree without pruning any 

items. 

- When all the transactions in  are accumulated, 

update the FP-stream as follows: 

 Mine itemsets out of the FP-tree using FP-

growth algorithm in [16] modified as below. 

For each mined itemset , check if  is in the 

FP-stream structure.  

If  is in the structure, do the following: 

 Add  to the tilted-time window 

table for  

 # # Conduct tail pruning ## 

 ## If the table is empty, then FP-

growth stops mining supersets of  

(Type II Pruning). Note that the 

removal of  from the FP-stream 

structure is deferred until the 

scanning of the structure (next step). 

## 

 ## If the table is not empty, then 

FP-growth continues mining 

supersets of  ## 

 Update the time-stamp of the node 

corresponding to the itemset  to the 

current-system-time 

If  is not in the structure do the 

following: 

 If  , insert  into the 

structure (its tilted-time window 

will have only one entry  and 

its time-stamp will be up-to-date) 

 Else FP-Growth stops mining the 

supersets of  (Type 1 pruning)  

 

 Scan the FP-stream structure (depth-first 

search). For each itemset   encountered, 

check if  was updated when  was mined. If 

not, then insert 0 into 's tilted-time window 

table without updating the time-stamp (did 

not occur in). 

## Prune 's table by tail pruning. Once the 

search reaches a leaf, if the leaf has an 

empty tilted-time window table, then drop the 

leaf. If there are any siblings of the leaf, 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 121

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

continue the search with them. If there were 

no siblings, then return to the parent and 

continue the search with its siblings. Note 

that if all of the children of the parent were 

dropped, then the parent becomes a leaf 

node and might be dropped.## 

Algorithm 3: Shaking point (dropping the out-of-date 

data) 

Method: 

- After N batches we proceed with the shaking-point 

as following: 

  Scan the FP-stream structure (depth-first 

search). For each itemset   and with 

“CST” to refer to “current-system-time” 

do the following : 

 Calculate the Fading-Factor 

 

 If (  ) drop 

the ’s node and all its supersets  

 Else proceed and check the 

supersets  
 

4. Performance study and experiments  

In this section, we report our performance study. We 

describe first our experimental set-up and then our results. 

4.1. Experimental setups 

Our algorithm was written in Java and compiled using 

Eclipse java indigo. All our experiments were performed 

on a PC equipped with a 3.22 GHz Intel Core i5 and a 4 Go 

main memory. The operating system was Windows 7 

premium familial edition. All experiments were run 

without any other user on the machine. 

 

The stream data was generated by a synthetic data 

generator coded in the algorithm.  This generator creates a 

stream of random items with random length separated by 

an (x) mark in a fast and constant rate. 

4.2. Experimental results 

We performed 4 sets of experiments.  was fixed 

respectively at 0.2 , 0.4 , 0.6 , 0.8 (per cent). In all sets of 

experiments the data stream was fed into the program from 

the synthetic-stream-generator. The size of sliding window 

and consecutively the batch is fixed to the number of 

transactions arriving for 5 seconds. 

 

At each batch the following statistics were collected: the 

total number of milliseconds required per batch “runtime” 

(which does not include the time of reading transaction 

from the input stream) and the size of the FP-Stream 

structure at the end of each batch in bytes (does not include 

the temporary FP-tree structure used for mining the batch). 

In all graphs presented, the  axis represents the batch 

number and min-support refers to . 

 

Figures 7 and 8 present the time and size requirements 

results respectively.  

 

 
 

                                   Fig 7. Algorithm’s time requirement 

 

 

In fact, it’s obvious that the minimum support and the 

required time to process have a proportional relation, when 

the minimum support increases the run-time decreases. But 

we notice as well that in the graph there is a spike (peak) 

where the run-time of the program increases in a 

remarkable way. This spike is due to the Shaking-point that 

occurs after each 10 batches in our example, and this since 

this shaking-point is checking the entire FP-Stream 

structure, it’s straightforward that it will use a more extra 

time to proceed. 

 

So what we can conduct without fail from this graph that 

the modified algorithm has the same behavior toward the 

variation of the minimum support as the original FP 

Streaming algorithm [14]. 

The most important requirement which is that the 

algorithm does not fall behind the stream (the FP-stream 

structure must be updated before the next batch of 

transactions is processed) is always handled in our case 

because the batch won’t receive new transactions unless 

the FP-tree is set to empty after updating the FP Stream.  

 

This specification will lead to a loss of some of the 

streaming data which is inevitable in the data stream 

mining field. Moreover considerable improvements can be 

met by reducing the runtime of our algorithm which leads 

to the reduction of the loss of streaming. 
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                            Fig 8. Algorithm’s space requirement  

 

 

Even in the space requirement graph we notice that the 

higher the minimum support is, the less size the FP Stream 

occupies. This aspect is normal since when increasing the 

min-supp we apply a bigger constraint on the items to meet 

the minimum support required so the much less frequent 

itemsets will be found. 

 

We can mark a narrow through (drop) in the space usage at 

the 10
th 

and 20
th 

batch in some recursive way. This 

behavior breaks down the forward growing up of the graph. 

Again, this strike is explained by the occurring of the 

Shaking point every 10 batches for this example. The 

Shaking point, by dropping some obsolete nodes, is 

reducing the size of the FP Stream structure and is slowing 

down its fast growth through time. 

5. Conclusions 

In this paper, we introduced the huge field of mining data 

streams, its environment and its first submergence. We 

took a brief look to its methods and algorithms as well to 

focus finally on an approach to mine time-sensitive 

frequent patterns on different time granularities. This 

model is based on an effective pattern-tree structure called 

FP-Stream, which consists of an in-memory frequent/sub-

frequent pattern tree with tilted-time window embedded. 

Efficient algorithms are devised for constructing, 

maintaining, and updating an FP-stream structure over data 

streams. Moreover, we focused on the updating of the 

incremental part of the algorithm and tried to contribute in 

a way that increases the temporal frequency of the results 

and eliminates the outdated data. Efficiency was evaluated 

by several experimentations of the proposed method which 

demonstrate that time sensitive frequent data can be 

maintained through a stream environment depend less on 

available main memory. 

 

Some aspects still can be discussed in this algorithm and 

can lead to another future works: 

 Spatial accuracy approximation: By 

applying the Shaking points, the global 

frequency of an itemset can be slightly 

affected which leads to an approximate 

spatial frequency. But in the other side we 

keep the temporal frequency accurate by 

discarding the Tail Pruning. 

 Query answering: we focused this work on 

the study and the amelioration of the 

incremental part of the algorithm (FP Stream 

structure). However, there’s an important 

side of the subject which worth a future 

study, this part is the query answering from 

the FP Stream tree. 

 

 Loss reduction: the loss of the transaction 

while proceeding with the algorithm is saved 

in the OffC Lattice. This loss must be 

discounted or by finding a more intelligent 

behavior of the sliding window or by 

reducing the run time of the algorithm. 
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