

Frequent Patterns mining in time-sensitive Data Stream

Mohamed Salah GOUIDER1, Manel ZARROUK2

1University of Tunis. Higher Institute of Management of Tunis

2000 Le Bardo, Tunis, Tunisia

2University of Gabès. Higher Institute of Management of Gabès

6000 Gabès, Gabès, Tunisia

Abstract
Mining frequent itemsets through static Databases has been

extensively studied and used and is always considered a highly

challenging task. For this reason it is interesting to extend it to

data streams field. In the streaming case, the frequent patterns’

mining has much more information to track and much greater

complexity to manage.

Infrequent items can become frequent later on and hence cannot

be ignored. The output structure needs to be dynamically

incremented to reflect the evolution of itemset frequencies over

time.

In this paper, we study this problem and specifically the

methodology of mining time-sensitive data streams. We tried to

improve an existing algorithm by increasing the temporal

accuracy and discarding the out-of-date data by adding a new

concept called the “Shaking Point”. We presented as well some

experiments illustrating the time and space required.

Keywords: frequent pattern, , stream data mining, time-sensitive

data stream.

1. Introduction

The Data is a small word leading to an enormous

computing-field and vital-ubiquitous component of

technology’s life. Since this notion is so important, we

have to exploit it in a very accurate way by analyzing the

huge amount or “mines” of collected data through time or

differently said Data Mining. Recently, new generation of

data has appeared and it’s called data streams.

A Data Stream is an infinite and continuous sequences of

data received at a high-speed rate and which disable the

capability of storing them in memory for a later processing

and this because of their historical dimension of real time.

This concept has been defined in many references [11, 6,

23 and 17].

Since traditional DBMS can’t fulfill the data stream

requirement, they have been revised to give birth to the

new Data Stream Management System. (fig.1)

Fig1. A DSMS model

A number of methods have been used within these

management systems and have proved being powerful in

solving many problems in extracting knowledge from

streaming information as: Data stream clustering [1, 2, 15],

Data stream classification [1, 10, 18], frequent patterns

mining [4, 14, 19], Change detection in data streams [3, 9,

20], Stream cube analysis of multi-dimensional streams [7]

and Dimensionality reduction and forecasting [25,27].

Yet, between these tasks, the most challenging one in the

research field is the frequent patterns mining which focuses

on discovering frequently occurring patterns from different

type of datasets (unstructured, semi-structured and

structured).

In this paper, we study this problem and specifically the

methodology of mining time-sensitive data streams which

is previously studied by J. Han et al. in their paper

published on November 2003 titled “Mining Frequent

Item-sets over Arbitrary Time Intervals in Data Streams”

[12]. We tried to improve the temporal accuracy and to

discard the out-of-date data by adding a new concept called

the “Shaking Point”.

The remaining of the paper is structured as follows: section

2 introduces more deeply the concept of the frequent

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 117

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

patterns mining and its related works. The modifications

applied to an existing algorithm are detailed in section 3. In

section 4 some experiments are presented. Finally, section

5 highlights some points which can be discussed and used

as future research tracks and concludes the paper.

2. Frequent Patterns Mining in Data Stream

Mining or discovering frequent pattern itemsets consist on

the first step of association rule mining process. This stage

is accomplished by extracting all frequent itemsets that

meet a support threshold given by the user. The second

step is around creating rule associations that fulfill a

confidence criterion based on the frequent itemsets found

earlier. Since this stage can be applied in a simple way, a

big part of the researches were done around the first one

“how to discover efficiently all frequent itemsets in a data

stream”.

Some of the algorithms proposed under this method are:

Lossy counting algorithm BTS [22], DSM-FI algorithm

[21], EstDEC[26], FP-Streaming [12], Instant [24], Est-win

[28], Moment [8], etc.

Within this paper, we focused on the time-sensitive aspect

of the frequent patterns mining, as long as in many cases

changes of patterns and their trends are more interesting

than patterns themselves when the goal is to find changes

or evolution of frequent patterns through time [12].

The algorithm FP-Streaming introduced in [12] satisfies

this specificity. In their algorithm, frequent patterns are

actively maintained under a tilted-time window framework

in order to answer time-sensitive queries. The frequent

patterns are compressed and stored using a tree structure

similar to FP-tree [16] and updated incrementally with

incoming transactions. The FP-tree provides a base

structure to facilitate mining in a static batch environment.

In the concerned algorithm, a transaction-tree is used for

storing transactions for the current time window. On the

same time, a similar tree structure, called pattern-tree, is

used to store frequent patterns in the past windows. Our

time-sensitive stream mining model, FP-stream, includes

two major components: (1) pattern-tree, (2) tilted-time

window [16].

For these reasons we chose this algorithm as a foundation

of our work and tried to improve it in purpose to increase

its itemsets temporal accuracy and discard the obsolete data

from the FP-Stream output structure to fasten the response

of the queries. The improvements are explained in the next

section.

3. Modifications applied in the FP-Streaming

model

3.1. Discarding the Tail Pruning and increasing

accuracy

As introduced in [12], the tail pruning lightens the size of

the FP Stream structure and decreases the space

requirement of the algorithm. But as a result of this type of

pruning, we no longer have an exact temporal frequency of

a specified item over, rather an approximate frequency

 [13].

So due to this drawback of the Tail Pruning and its impact

to the temporal frequencies of itemsets, we decided in this

work to discard it so we will have a good precision in the

temporal frequency of each item and its exact behavior

graph over time.

This type of pruning is applied on the FP Stream, which is

the output structure of our algorithm. This output tree

structure is stored on the main memory to be consulted to

answer the user queries. By discarding the Tail Pruning,

the FP Stream structure will need much more space. We

allowed this change in the algorithm despite the increasing

space requirement, because it doesn’t affect the algorithm

performance (since it is not about the input structure which

is the transaction tree) so we won’t face any over fitting

case. And since the memory is almost getting costless by

years [5], the memory required for storing the FP

Streaming will not pose a problem and will serve the goal

of increasing the temporal accuracy of the user queries

answers.

3.2. Stream generation and input stream management

In this algorithm, the input stream is generated from a data

stream generator. This generator creates a stream of

random items with random length separated by an (x) mark

in a fast and constant rate. This stream replaces the datasets

used to experiment algorithms.

The algorithm reads the input stream and fills in the batch

within a period θ fixed by the user. So the window length

will be dependant of θ .At the end of this time period, the

algorithm ignores the stream and proceeds with analyzing

the batch. Other while, between each two batches, the time

elapsed is calculated and stored in a table to be used in

need to know the time of stream lost without processing.

3.3. Leaf fading and elimination of the obsolete data

3.3.1. The use of the Time-stamping in the original

algorithm

To facilitate the insertion of zeros into tilted-time window

tables, each table in the FP-stream has an associated time-

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 118

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

stamp. When the table is created the time-stamp is set to

the current time unit. When an insertion is made, the time

stamp is reset to the current time unit. The use of time-

stamps will become clear is the next paragraph.

3.3.2. Leaf fading concept

In the FP–Stream structure (the output structure), for every

arriving batch, all the nodes are updated (incremental part

of the algorithm). New nodes are added, frequencies of

others updated.

If the itemset of a node occurs on the current batch, his

current frequency is added on the tilted-time window of

this node. If not, the tilted-time window will be updated by

a zero.

After several batches arrive, some nodes that are updated

consequently by zeros will be found. These nodes represent

obsolete itemsets, since those itemsets were not frequent or

sub-frequent since a while.

To reduce obsolete data, we will proceed as well:

 Associate to each node a variable called “fading-

factor”.

 Determine a user-set parameter called “fading-

support”.

 Modify the use of the time-stamping by eliminate

the update of the time-stamp of a node whose

tilted-time window is updated by a zero.

 After N batches arrival (N is a user-defined

parameter) we execute a shaking point.

 Shaking point: calculate the fading factor for each

node which represents the difference between its

time-stamp and the current-time stamp (subtract

the time-stamp for each node from the current

time-stamp). If the fading-factor of a node is

larger or equal to the fading-support, so drop the

node and its entire supper-tree.

 In the shaking point we proceed from the root of

the tree to the leaves (in depth), if a node of an

item-set is dropped then none of its supersets

need to be examined. So the procedure of the

shaking-point can prune its search and visit of the

supersets of . This property is obvious to avoid

useless operations (if a parent node is pruned all

the branch below will be pruned , since the

frequency of itemsets in the leaves will not be

updated if the frequency of the parent itemset

were not).

The choice of the fading-support is very important because

it affects the spatial frequency precision of the answers,

since according to this support the algorithm will drop

faded leaves of outdated itemsets (obsolete data) in one

hand, but can affect the spatial precision of the algorithm in

the other hand.

3.3.3. Illustrative example

The first part of the algorithm returns us a stream of the

frequent patterns with the same structure of the input

stream.

With this stream we will update the FP Stream.

The structure of this stream is as following:

(batch1)x((batch2)x(batch3)x … (batchi)

The structure of a batch is as following:

(itemset1)x(itemset2)x(itemset3) … (itemseti)

In this example we will take a part of the stream which

consists of the results of 3 batches:

 Frequent patterns of batch 1: ACDxEVxACJxBFA

 Frequent patterns of batch 2: EVDxAxBFC

 Frequent patterns of batch 3: EVDxBFAxAH

i) With the frequent patterns of the first batch (ACD,

EV, ACJ, BFA) we create our FP Stream structure

as illustrated below (fig. 2).

Fig 2. The FP Stream after the 1st batch update

 All nodes are new-added

 All time-stamps = T (current-system-time)

ii) We increment our FP Stream with the frequent

patterns of the batch 2 which are EVD, A and

BFC (fig. 3).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 119

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig 3. The FP Stream after the 2nd update

 Item-sets which tilted-time window are updated

with frequency ≠ 0: E,EV,A,B,BF

 New itemsets : EVD’,BFC’

 Item-sets which tilted-time window are updated

with frequency = 0: AC,ACD,ACJ,BFA’

 Nodes with time-stamp updated to T :

A,E,V,D’,B,F,C’

 Nodes faded with time-stamp not updated =T-1 :

C,D,J,A’

iii) We increment the FP Stream as well by the

frequent patterns of the third batch which are

EVDC, BFA and AH. (fig. 4).

 Fig 4. The FP Stream after the 3rd batch update

 Item-sets which tilted-time window are updated

with frequency ≠ 0: E, EV, EVD’, B, BF, BFA’,

A.

 New itemsets: AH, EVD’C’’.

 Item-sets which tilted-time windows are updated

with frequency = 0: AC, ACD, ACJ, BFC’.

 Nodes with time-stamp updated to T: A, E, V, D’,

B, F, A’, H.

 Nodes faded with time-stamp not updated: C, C’,

D, J.

iv) In this stage, after N batches (N=3), we execute

the “Shaking point” on our updated FP Stream

with a fading-support=2. For a fading-factor ≥ 2

we drop the node (Fig5)

 Fig 5. The Shaking Point

Proceed in depth-left:

  Drop (C) and all its

subsets [(D) and (J)]

““Shaking point””

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 120

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

As a result, the FP-Stream will drop 3 obsolete-nodes and

will be as shown below (fig. 6).

Fig 6. The FP Stream after the Shaking Point

3.4. Algorithm

The algorithm is presented in three parts. The first part

(Algorithm1) ensures the management of the input stream

under batches to provide to the next algorithm a stable

batches environment to proceed. The second algorithm

(Algorithm2) warrants the incremental update of the FP

Stream structure with incoming batches. As for the third

algorithm (Algorithm3), it maintains this structure by

pruning it (shaking point) so the obsolete data which

occupy an extra space without utility will be dropped.

Input: FP Stream structure, min-support , max-support-

error ,incoming batch of transactions , lattice Offc,

sliding window with a fixed period , offline-time-

counter, fading-factor in each node , fading-support

Output: FP Stream structure updated

PS: the lines in bold present the amelioration

The lines between ## are discarded

Algorithm1: managing the incoming data stream

Method:

- Fill the batch during the window period which is

- After :

 Stop receiving transactions

 Launch the offline-time-counter to count

the time of unprocessed transaction

stream

 Start proceeding the batch (Algorithm 2)

- If (the batch is reset to empty) :

 Stop offline-time-counter and stock its

value in the lattice Offc

 Proceed with algorithm 2 in a loop

Algorithm 2: (FP-streaming) (Incremental update of the

FP-stream structure with incoming stream data)

Method:

- Initialize the FP-tree to empty.

- Sort each incoming transaction , according to f-list,

and then insert it into the FP-tree without pruning any

items.

- When all the transactions in are accumulated,

update the FP-stream as follows:

 Mine itemsets out of the FP-tree using FP-

growth algorithm in [16] modified as below.

For each mined itemset , check if is in the

FP-stream structure.

If is in the structure, do the following:

 Add to the tilted-time window

table for

 # # Conduct tail pruning ##

 ## If the table is empty, then FP-

growth stops mining supersets of

(Type II Pruning). Note that the

removal of from the FP-stream

structure is deferred until the

scanning of the structure (next step).

 ## If the table is not empty, then

FP-growth continues mining

supersets of ##

 Update the time-stamp of the node

corresponding to the itemset to the

current-system-time

If is not in the structure do the

following:

 If , insert into the

structure (its tilted-time window

will have only one entry and

its time-stamp will be up-to-date)

 Else FP-Growth stops mining the

supersets of (Type 1 pruning)

 Scan the FP-stream structure (depth-first

search). For each itemset encountered,

check if was updated when was mined. If

not, then insert 0 into 's tilted-time window

table without updating the time-stamp (did

not occur in).

Prune 's table by tail pruning. Once the

search reaches a leaf, if the leaf has an

empty tilted-time window table, then drop the

leaf. If there are any siblings of the leaf,

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 121

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

continue the search with them. If there were

no siblings, then return to the parent and

continue the search with its siblings. Note

that if all of the children of the parent were

dropped, then the parent becomes a leaf

node and might be dropped.##

Algorithm 3: Shaking point (dropping the out-of-date

data)

Method:

- After N batches we proceed with the shaking-point

as following:

 Scan the FP-stream structure (depth-first

search). For each itemset and with

“CST” to refer to “current-system-time”

do the following :

 Calculate the Fading-Factor

 If () drop

the ’s node and all its supersets

 Else proceed and check the

supersets

4. Performance study and experiments

In this section, we report our performance study. We

describe first our experimental set-up and then our results.

4.1. Experimental setups

Our algorithm was written in Java and compiled using

Eclipse java indigo. All our experiments were performed

on a PC equipped with a 3.22 GHz Intel Core i5 and a 4 Go

main memory. The operating system was Windows 7

premium familial edition. All experiments were run

without any other user on the machine.

The stream data was generated by a synthetic data

generator coded in the algorithm. This generator creates a

stream of random items with random length separated by

an (x) mark in a fast and constant rate.

4.2. Experimental results

We performed 4 sets of experiments. was fixed

respectively at 0.2 , 0.4 , 0.6 , 0.8 (per cent). In all sets of

experiments the data stream was fed into the program from

the synthetic-stream-generator. The size of sliding window

and consecutively the batch is fixed to the number of

transactions arriving for 5 seconds.

At each batch the following statistics were collected: the

total number of milliseconds required per batch “runtime”

(which does not include the time of reading transaction

from the input stream) and the size of the FP-Stream

structure at the end of each batch in bytes (does not include

the temporary FP-tree structure used for mining the batch).

In all graphs presented, the axis represents the batch

number and min-support refers to .

Figures 7 and 8 present the time and size requirements

results respectively.

 Fig 7. Algorithm’s time requirement

In fact, it’s obvious that the minimum support and the

required time to process have a proportional relation, when

the minimum support increases the run-time decreases. But

we notice as well that in the graph there is a spike (peak)

where the run-time of the program increases in a

remarkable way. This spike is due to the Shaking-point that

occurs after each 10 batches in our example, and this since

this shaking-point is checking the entire FP-Stream

structure, it’s straightforward that it will use a more extra

time to proceed.

So what we can conduct without fail from this graph that

the modified algorithm has the same behavior toward the

variation of the minimum support as the original FP

Streaming algorithm [14].

The most important requirement which is that the

algorithm does not fall behind the stream (the FP-stream

structure must be updated before the next batch of

transactions is processed) is always handled in our case

because the batch won’t receive new transactions unless

the FP-tree is set to empty after updating the FP Stream.

This specification will lead to a loss of some of the

streaming data which is inevitable in the data stream

mining field. Moreover considerable improvements can be

met by reducing the runtime of our algorithm which leads

to the reduction of the loss of streaming.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 122

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Fig 8. Algorithm’s space requirement

Even in the space requirement graph we notice that the

higher the minimum support is, the less size the FP Stream

occupies. This aspect is normal since when increasing the

min-supp we apply a bigger constraint on the items to meet

the minimum support required so the much less frequent

itemsets will be found.

We can mark a narrow through (drop) in the space usage at

the 10
th

and 20
th

batch in some recursive way. This

behavior breaks down the forward growing up of the graph.

Again, this strike is explained by the occurring of the

Shaking point every 10 batches for this example. The

Shaking point, by dropping some obsolete nodes, is

reducing the size of the FP Stream structure and is slowing

down its fast growth through time.

5. Conclusions

In this paper, we introduced the huge field of mining data

streams, its environment and its first submergence. We

took a brief look to its methods and algorithms as well to

focus finally on an approach to mine time-sensitive

frequent patterns on different time granularities. This

model is based on an effective pattern-tree structure called

FP-Stream, which consists of an in-memory frequent/sub-

frequent pattern tree with tilted-time window embedded.

Efficient algorithms are devised for constructing,

maintaining, and updating an FP-stream structure over data

streams. Moreover, we focused on the updating of the

incremental part of the algorithm and tried to contribute in

a way that increases the temporal frequency of the results

and eliminates the outdated data. Efficiency was evaluated

by several experimentations of the proposed method which

demonstrate that time sensitive frequent data can be

maintained through a stream environment depend less on

available main memory.

Some aspects still can be discussed in this algorithm and

can lead to another future works:

 Spatial accuracy approximation: By

applying the Shaking points, the global

frequency of an itemset can be slightly

affected which leads to an approximate

spatial frequency. But in the other side we

keep the temporal frequency accurate by

discarding the Tail Pruning.

 Query answering: we focused this work on

the study and the amelioration of the

incremental part of the algorithm (FP Stream

structure). However, there’s an important

side of the subject which worth a future

study, this part is the query answering from

the FP Stream tree.

 Loss reduction: the loss of the transaction

while proceeding with the algorithm is saved

in the OffC Lattice. This loss must be

discounted or by finding a more intelligent

behavior of the sliding window or by

reducing the run time of the algorithm.

References

[1] Aggarwal C, Han J, Wang J, Yu P. On-Demand Classification

of Data Streams. ACM KDD Conference.2004

[2] Aggarwal C, Han J, Wang J, Yu P. (2003). A Framework for

Clustering Evolving Data Streams. VLDB Conference.

[3] Aggarwal C. (2003). A Framework for Diagnosing Changes in

Evolving Data Streams. ACM SIGMOD Conference.

[4] Agrawal R, Imielinski T, Swami A. (1993) Mining

Association Rules between Sets of items in Large Databases.

ACM SIGMOD Conference.

[5] B.Panzer-Steindel. Technology and cost trends CERN T0 and

CAF computing facility.CERN. V1.3 12. December 2007

[6] Bifet A . adaptive system mining : pattern learning and

mining from evolving data stream. Pages 4-6.IOS Press,2010.

[7] Chen Y, Dong G, Han J, Wah B.W, Wang J. (2002) Multi-

dimensional regression analysis of time-series data streams.

VLDB Conference.

[8] Chi Y, Wang H, Yu P, Muntz R. Moment: maintaining closed

frequent item sets over a stream sliding window(2004).

[9] Dasu T, Krishnan S, Venkatasubramaniam S, Yi K. (2005).

An Information-Theoretic Approach to Detecting Changes in

Multidimensional data Streams. Duke University Technical

Report CS-2005-06.

[10] Domingos P and Hulten G. (2000) Mining High-speed Data

Streams. In Proceedings of the ACM KDD Conference.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 123

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[11] Gaber M , Gama J. State of the art in data stream mining.

Tutorial notes. The 11th European conference on principles and

practice of knowledge discovery in databases, September 2007.

[12] Giannella C, Han J, Robertson E, Liu C. Mining Frequent

Item-sets Over Arbitrary Time Intervals in Data Streams(2003)

[13] Giannella C, Han J, Pei J, Yan X, and Yu P. Mining

Frequent Patterns in Data Streams at Multiple Time Granularities.

In Data Mining: Next Generation Challenges and Future

Directions. 2003

[14] Giannella C, Han J, Pei J, Yan X, and Yu P.(2002) Mining

Frequent Patterns in Data Streams at Multiple Time Granularities.

Proceedings of the NSF Workshop on Next Generation Data

Mining.

[15] Guha S , Mishra N, Motwani R, O'Callaghan L. Clustering

Data Streams. IEEE FOCS Conference. . 2000

[16] Han J, Pei J and Yin Y. Mining frequent patterns without

candidate generation. (2000)

[17] Herbrail G. Data streams management and mining. Mining

massive data sets for security. Pages 89-102. IOS Press. 2008.

[18] Hulten G, Spencer L, Domingos P(2001). Mining Time

Changing Data Streams. ACM KDD Conference.

[19] Jin R, Agrawal G(2005) An algorithm for in-core frequent

itemset mining on streaming data. ICDM Conference.

[20] Kifer D, David S.B, Gehrke J(2004). Detecting Change in

Data Streams. VLDB Conference, 2004.

[21] Li H, Lee S, and Shan M. An Efficient Algorithm for Mining

Frequent Itemsets over the Entire History of Data Streams. In

Proc. of First International Workshop on Knowledge Discovery in

Data Streams, 2004

[22] Manku G, Motwani S and R.Approximate frequency counts

over data streams,2002.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 2, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 124

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

