

Analysis of Strongly Connected Components (SCC) Using

Dynamic Graph Representation

Saleh Alshomrani 1, Gulraiz Iqbal 1

 1 Department of Information Systems

Faculty of Computing and Information Technology

King Abdulaziz University, Jeddah, Saudi Arabia

Abstract
Graphs are the basis of many real life applications. In our

research we compare and analyse strongly connected components

algorithm by using general techniques for efficient

implementation. This experimental procedure exemplify in two

contexts. 1. Comparison of strongly connected components

algorithms. 2. Analysis of particular algorithm.

Such a practice will enable java programmers, especially for

those who work on such algorithms to use them efficiently. In

this paper we described algorithms implementation, test and

benchmark to experiment the performance of algorithms. During

experimenting we found some interesting results as Cheriyan-

Mehlhorn-Gabow algorithm outperform then Tarjan's algorithm

Keywords: Graph, Directed Graph, SCC (Strongly Connected

Components), Java, Benchmark.

1. Introduction

Graphs are fundamental to many problems in computer

science as well in chemistry, biology and physics. Pairwise

relation between objects e.g. Computer networks

(Switches, routers and other devices are vertices and edges

are wire / wireless connection between them), electrical

circuits (vertices are diodes, transistors, capacitors,

switched etc. and edges are wire connection between

them), World Wide Web (webpages are vertices and

hyperlink are edges) and Molecules (vertices are atoms and

edges are bond between them) all benefits from the

pairwise model. Problem that arises on graph is the

performance because of complex graph algorithms and size

[5, 6].

Modern processors are complex computing engines; the

running time of a computer is determined by three factors.

1. Number of instruction executed

2. Efficient use of processor pipeline

3. Efficient use of cache memory

Utilizing cache, processor and exceeding the number of

instruction cause high penalty [3]. Considering these factors

we decided to implement our own graph structure instead

using existing libraries like JUNG and JGraphT. Our own

structure will help us to made several choices instead of re-

engineering and making understanding of the libraries. We

make a start on generic graph library by choosing dynamic

data structure (a link list as an adjancy list) instead of using

static data structure (adjancy matrix). In this paper we

consider the above mentioned general techniques to

implement efficient graph algorithms, evaluate and

exemplify them on two strongly connected components of

directed graph.

2. Notation & basic definition of directed

graph

A directed graph G is a finite set of vertices V and set of

directed edges E that forms the pair (V, E) and E ⊆ V × V

is a set of directed graph. If (v, u) ∈ E, then u is called

immediate successor of v, and v is called immediate

predecessor of u.

Undirected graphs may be observed as a special kind of

directed graphs, where directions of edges are unimportant

(v, u) ∈ E ↔ (u, v) ∈ E [2, 6]. A directed graph G = (V, E) is

called strongly connected if there is a path between v to u

and u to v. Graphs are used in many applications as listed

below[6].

2.1 Social Applications

Graphs are popular to manage build relation and maintain

their information. Vertices are different people and edges

are the relations among those people. This can be used in

management hierarchical, family tree, social media's such

as Facebook or LinkedIn [5, 9].

2.1.1 Road Maps

Here vertices represent crossings and edges represent

streets, vertices could be cities and edges could be the

weighted link to represent the distance between two cities.

In this case, each edge may also have an associated

distance [5, 9].

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 94

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

2.1.2 Airline Route Maps

Graph can be used for airline route maps. Here vertices

represent airports and edges are the direct or indirect link

from one airport to another. An edge may have a weight to

represent the cost of the flight [5, 9].

2.1.3 Computer Network Applications & WWW

Graphs play a critical modeling role in networks, where

vertices are devices e.g. switch routers, etc. where edges

are links to connect vertices. Edges may have distance and

capacities associated with it [5, 9].

3. Literature Review

To start working on this library extensively literature

reviewed on graphs to understand the theoretical and

practical approaches to design and develop a flexible graph

library suitable for graph algorithms to implement, test and

analyze graph performance using the library benchmark.

Many graph libraries are available in java as well in other

languages. Most of the java libraries are using sequential

approaches and slower over large graphs. According to

Kurt, Stefan, and Peter mention optimization technique in

their paper [3], we also adopted their technique and

compare our strongly connected components algorithms of

two authors and will compare the results. In our later

research we will comparatively analyze with other libraries

algorithm to make them fast.

3.1 Jung

The java universal network / graph framework is an open

source library provides extensive modelling, analysis and

visualization tool for the graph or network. JUNG

architecture have flexible support to represent the entities

and their relations, such as directed and undirected graph,

hyper graphs, and graphs with parallel edges. It also

includes a number of graph theory, data mining, social

network, optimization and random graph generator [12].

3.2 JGraphT

JGraphT is an open source Java graph library using

structured approach to implement graph algorithms. Most

of the library classes are generic for the ease of users. In

this library several graph algorithms implemented using

structured approach [11].

During our work we made several choices one of them is

either we have to use the existing libraries and implement

different strongly connected component algorithms to

analyse the performance after possible optimization or start

from the scratch.

4. Graph Representation

According to Mark.C.Chu-Carroll, to represent graphs in

computer programs and some compromise between

different representations, there are two techniques to

represent graphs.

4.1 Adjancy Matrix / Matrix Base Representation

A Graph G with N number of vertices, an adjancy matrix is

N×N matrix of 0/1 values, where a pair [a,b] is 1 only if

there is an edge between a and b, otherwise 0.

If Graph is undirected then the matrix is symmetric [a,b] =

[b,a]. In case of directed graph then [a,b]=1 means that

there is an edge from a to b[10].

(1)

4.2 Adjancylist / List based representations

An alternative representation for a graph G (V, E) is

adjancy list. For each vertex we keep a list of all other

vertices adjacent to the current vertex. We say that vertex

A is adjacent to vertex B if (A, B) ∈ E. In our experiments

we are using adjancy list with minor improvements to

avoid from iterations. In our implementation we maintain a

list of all nodes adjacent to the current node. Adjancy list

time complexity is O (n+m) [10].

Adjancy matrix is suitable when edges don't have data

associated with them. In case of sparse graph adjancy

matrix is poor in performance and waste huge amount of

memory. Comparatively adjancy list is efficient in case of

sparse graph, it stores only the edges present in the graph

and can store data associated to edges. Although there is

no clear suggestion which graph representation is better,

we consider the above situation we selected adjancy list

representation for our experiments [10].

5. Strongly Connected Components

A directed graph G = (V, E) is strongly connected if there

is a path from vertex a to b and b to a or if a sub graph is

connected in a way that there is a path from each node to

all other nodes is a strongly connected sub graph. If the

whole graph has the same property, then the graph is

strongly connected [6].

Strongly connected components can be computed using

different approaches introduced by Tarjan's, Gabow and

Kosaraju's. Two of them like Tarjan's and Gabow

algorithm require only one DFS, but Kosaraju's algorithm

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 95

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

required two DFS. We did not included Kosaraju's

algorithm in our current experiments.

5.1 Depth First Search Algorithm

Depth first search is a technique to explore a graph using

stack as the data structure. It starts from the root of the

graph, explore its first child, explore the child of next

vertex until reach to the goal vertex or reach to final vertex

having no further child. Then, back tracking is used to

return the last vertex which is not yet completely explored.

Modifying the post-visit and pre-visit, DFS is used to solve

many important problems and it takes O (|V|+|E|) steps.

5.2 Tarjan's Algorithm

Tarjan's strongly connected components algorithm accept

directed graph as an input and in a collection containing all

possible components. The algorithm explores all nodes of

the graph by using depth first search, it begins from an

arbitrary start node and silently ingnore the nodes already

visited. The nodes placed in a stack in order they explored

and maintaining index number (node.index) as well each

node maintain a lowlink which is always lower than the

current node index. The current node is the root node of

strongly connected components if node.lowlink =

node.index. A sub graph is returned if it's determined that

it's a strongly connected component [1, 2, 3].

5.3 Cheriyan-Mehlhorn-Gabow Algorithms

Gabow strongly connected component is also same like

Tarjan's algorithm. It accepts a directed graph as an input

and result containing collection of all possible strongly

connected components. It also uses depth first search to

explore all the nodes of the directed graph. Gabow

algorithm maintains two stacks, one of them contains a list

of nodes not yet computed as as strongly connected

components and other contains a set of nodes not belong to

different strongly connected components. A counter is

used to count number of visited nodes, which is used to

compute preorder of the nodes [2, 3, 4].

6. Implementation

In our implementation we used only dynamic graph data

structure which used linked lists for the adjancy list. The

graph generator class make sure that each vertex is stored

in consecutive location in adjancy list, in fact dynamic

implementation consume more space then static graph data

structure. Graph structure package contains interfaces,

abstract classes to provide interface to different type of

graphs such a Directed Graph. All classes mentioned in our

implementation are Generic and user can use them by their

own way. Graph package contains many interfaces for

different graphs and also interfaces for the different

algorithms describing the required methods for algorithm

to implement. The undirected graph is not currently used

but in future might be included.

The directed graph interface defines many methods to

implement where each node represents a unique data

member of generic type and two nodes can't be added to

the graph if they representing the same node. The second

attempt will simply ignored and also multiple edges

between two nodes are not allowed. An abstract class node

that also serves as an interface for the vertex of directed

graph, maintains a list of its successors and predecessors.

7. Experiments

In our experiments we used random graph and complete

graph. We performed three sets of experiments. We used

random graph with minimal edges varying n=2 as a sparse

graph and another with maximum edges n = 100 as a dense

graph. In our third set of experiments we used complete

graph where edges are n (n-1)/2. Random graphs are not

an easy case to analyse because of random nodes, edges

and memory allocated them.

In our implementation we used dynamic graph data

structure using linked list for the adjancy list. Modern

processors are complex computing engines. We report

running time on one Intel® Core™ i5-2410M CPU

@2.30GHz with 4 GB of memory. We also obtained the

similar results on AMD.

We used eclipse version Helios Service Release 2 as IDE

for java developers and for our experiment we increased

the heap size by providing the argument -Xms128m -

Xmx1550m -XX: +UseParallelGC. For recursive calls

stack size is also important. In some scenarios on a large

number vertices and edges stack over flow error occurs.

7.1 Experiments on Tarjan's Algorithm

Generating six random graph for each graph (Dense,

Sparse and Complete) with minimum edges E=2 for sparse

graph, maximum edges E=100 for dense graph and two

complete graph with n (n-1)/2 edges.

We computed their running time and memory as Figure 1

& Figure 3 shows the difference between dense, sparse and

complete graph on N number of nodes. Tarjans's algorithm

compute strongly connected components efficiently when

number of edges is lower. So edges have a direct impact on

its running time and memory.

7.1.1 Time Required by Tarjan's Algorithm

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 96

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Results generated by our benchmark are represented using

line chart for clear understandings in Figure 1 & 2

indicating, as the number of nodes and edges grows

Tarjan's strongly connected component algorithm take

more time to run. Figure 2 clarify the results of Figure 1 as

it displays a minor difference on dense and sparse graph.

Figure 1 Tarjan's running time (in seconds) difference on Dense, Sparse

& Complete Graph in dynamic graph representation

Figure 2 Tarjan's algorithm running time (in seconds) difference on

Dense & sparse graph using dynamic representation

7.1.2 Memory Required by Tarjan's Algorithm

A clear impact on memory required can be analysed by

Figure 3 which displays that as number of nodes and

number of edges increase, Tarjan's algorithm required

more memory to complete the task.

Figure 3 Tarjan's memory difference on Dense, Sparce & complete in

dynamic graph representation

7.2 Experiments on Gabow's Algorithm

We had the same set of experiments for Gabow's algorithm,

for each graph (Dense, Sparse and complete) we generated

six random graph with minimum edges E=2 for sparse

graph, maximum edges E=100 for dense graph and two

complete graph with n (n-1)/2 edges.

Therefore we computed their running time and memory as

Figure 4 & 5 shows the difference between dense, sparse

and complete graph on N number of nodes. Gabow's

algorithm compute strongly connected components

efficiently when number of edges is lower. So edges have a

direct impact on its running time and memory. In figure 4

& 5 its bit tricky to analyse the difference between dense

and sparse graph as it seems that it take almost zero time

and memory to compute strongly connected components.

To clarify the results we draw figure 6 which state the clear

difference when number of nodes and number of edges

increased.

7.2.1 Time Required by Gabow's Algorithm

Results generated by our benchmark are represented using

line chart for clear understandings in Figure 4 & 5

indicating, as the number of nodes and edges grows

Gabow's scc algorithm take more time to run. Figure 5

clarify the results of Figure 4 as it displays a minor

difference on dense and sparse graph.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 97

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Figure 4 Gabow's running Time (in seconds) difference on Dense, Sparse

& Complete in dynamic graph representation

Figure 5 Gabow's algorithm running time (in seconds) difference on

Dense & sparse graph using dynamic representation

7.2.2 Memory Required by Gabow's Algorithm

A clear impact on memory can be analysed by Figure 6

which displays that as number of nodes and number of

edges increase, Gabow's algorithm required more memory

to complete the task.

Figure 6 Gabow's algorithm memory difference on Dense, Sparse &

Complete in dynamic graph representation

7.3 Comparison of Gabow & Tarjan's Algorithm

Utilizing the same data set, combining data to compare

Tarjan's and Gabow's algorithm running time in seconds.

In figure 7, time is computed on dense graph where E=100,

for both Tarjan's and Gabow's algorithm. One can easily

analyse the results that Gabow's taking less time to

compute strongly connected components of directed graph.

In Figure 8 running time is computed using sparse graph

with minimum edges E=2. In results one can analyse that

Gabow's and Tarjan's have the same performance when

number of edges are small, Whereas Figure 9 is based on

complete graph, where Gabow's algorithm outperform

Tarjan's algorithm with a big margin. Gabow's

performance remains outstanding as number of nodes and

edges increase whereas Tarjan's algorithm remain slow as

number of edges increased.

Figure 7 Gabow's vs Tarjan's running time (in seconds) comparison on

Dense in dynamic graph representation

Figure 8 Gabow's vs Tarjan's running time (in seconds) comparison on

sparse in dynamic graph

Figure 9 Gabow's vs Tarjan's running time comparison on complete in

dynamic graph

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 98

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

According to results obtained from benchmark memory

consumption is almost equal on both Tarjan's and Gabow's

algorithms but have different statistics on time.

8. Conclusions

In our research, we analyzed & compared Tarjan's and

Gabow's strongly connected component algorithms to find

their suitability for various applications. We generated

dense, sparse and complete graphs randomly to compute

memory difference of the both algorithms. According to

our implementation and experiments, we found that Gabow

algorithm tend to become shorter, simpler and more

elegant. Tarjan's performance is similar to Gabow's

algorithm when number of edges in a graph is minimum

level.

9. Future Work

During this research, our experiments were under some

limitations; in worst case scenario we generated six graphs

with N=3000 to compute memory and time. In future we

can experiment a large graph while increasing the stack

size and java VM heap size.

In our current research we were limited to only Tarjan's

and Gabow's algorithm, in our future work we can include

the algorithms of S.Rao Kosaraju & Sharir and Brute

algorithms using different approach to compute strongly

connected components.

Appendix A: Tuned Cheriyan-Mehlhorn-Gabow SCC

Algorithm Implementation

public class GhaiboSCC<E> implements SCC<E> {

private Collection<Collection<Node<E>>> sccList;

private List<Integer> B;

private List<Node<E>> S;

private int c;

Node<E> n;

protected int counterG;

public Collection<Collection<Node<E>>> scc(DirectedGraph<E>

graph) {

S = new ArrayList<Node<E>>();

 B = new ArrayList<Integer>();

sccList = new ArrayList<Collection<Node<E>>>();

Iterator<Node<E>> nodes = graph.iterator();

int N = 0;

while (nodes.hasNext()) {

 n = nodes.next();

 n.num = 0;

 N++;

 }

 c = N;

Iterator<Node<E>> nodeIt = graph.iterator();

Node<E> node;

while (nodeIt.hasNext()) {

 node = nodeIt.next();

 if (node.num == 0)

 DFS(node);

 }

 return sccList;

}

private void DFS(Node<E> v) {

 Node<E> w;

 S.add(v);

 v.num = (S.size() - 1);

 B.add(v.num);

Iterator<Node<E>> node = v.succsOf();

while (node.hasNext()) {

 w = node.next();

 if (w.num == 0)

 DFS(w);

 else {

 while (w.num < B.get((B.size() - 1)))

 B.remove(B.size() - 1);

 }

 }

List<Node<E>> L = new ArrayList<Node<E>>();

if (v.num == (B.get(B.size()-1))) {

 B.remove(B.size() - 1);

 c++;

while (v.num <= (S.size()-1)) {

 L.add(S.get(S.size()-1));

 S.remove(S.size() - 1);

}

sccList.add(L);

 }

 }

}

Appendix B: Tarjan's SCC Algorithm Implementation

public class TorjanSCC<E> implements SCC<E> {

private int index = 0;

private ArrayList<Node<E>> stack;

private Collection<Collection<Node<E>>> SCC = new

ArrayList<Collection<Node<E>>>();

public Collection<Collection<Node<E>>> scc(DirectedGraph<E>

graph){

 stack = new ArrayList<Node<E>>();

 SCC.clear();

 index = 0;

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 99

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

if(graph != null){

 Iterator<Node<E>> nodes = graph.iterator();

 while (nodes.hasNext()) {

Node<E> node = nodes.next();

 if(node.num == -1)

 {

 visit(node, graph);

 }

 }

 }

return SCC;

}

private void visit(Node<E> v,DirectedGraph<E> graph){

 v.num = index;

 v.lowlink = index;

 index++;

 stack.add(0, v);

Iterator<Node<E>> nodes = v.succsOf();

Node<E> w;

while (nodes.hasNext()) {

 w = nodes.next();

 if(w.num == -1){

 visit(w, graph);

 v.lowlink = Math.min(v.lowlink, w.lowlink);

 }else if(stack.contains(w)){

 v.lowlink = Math.min(v.lowlink, w.num);

 }

 }

 if(v.lowlink == v.num){

 Node n;

 ArrayList<Node<E>> component = new ArrayList<Node<E>>();

 do{

 n = stack.remove(0);

component.add(n);

 }while(n != v);

SCC.add(component);

 }

 }

}

References
[1] J.E.Hopcroft and R.E. Tarjan. Dividing a graph into

triconnected compoents. SIAM Journal on Computing.

2(3): 135-158, 1973

[2] Jiri Barnat, Petr Bauch, Lubos Brim, and Milan Ceska,

Computing Strongly connected components in parallel on

CUDA, IEEE 2011 International Parallel & Distributed

Processing Symposium

[3] Kurt Mehlhorn, Stefan Naher and Peter Sanders,

Engineering DFS based Graph Algorithms, Partially

supported by DFG grant SA 933/3-1, 2007

[4] H.N. Gabow. Path-based depth first search strong and

biconnected components, Information Processing Letters,

74(3-4):107-114, 2000

[5] Marije de Heus, Towards a Library of Parallel Graph

Algorithm in Java, 14th Twente Student conference on IT

January 21st 2011

[6] Robert Sedgewick, Kevin Wayne, The Text Book Algorith

4th Edition http://algs4.cs.princeton.edu/home/ retrieved on

04-2012

[7] Stefan Steinhaus, The text book, Comparisons of

mathematical programs for data Analysis (Edition 5.04)

July 2008

[8] Jiri Barnat, Jakub Chaloupka, Jaco van de Pol, Distributed

algorithms for SCC decomposition, Journal of Logic and

Computation, volume 21(1), 2011, 23-44

[9] David Easley and Jon Kleinberg, Reasoning about a highly

connected world, Textbook, Cambridge University Press,

2010

[10] Mark C. Chu-carroll, The website Science blog

http://scienceblogs.com/goodmath/2007/10/computing_str

ongly_connected_c.php retrieved on 03-2012

[11] Jgraph website, http://www.jgraph.com/ retrieved on 03-

2012

[12] JUNG (Java Universal Network / Graph Framework)

website, http://jung.sourceforge.net/ retrieved on 03-2012

Dr. Saleh Alshomrani is a faculty of Information Systems
Department at King Abdulaziz University. He is also serving now
as the Vice-Dean of Faculty of Computing and Information
Technology, and the Head of Computer Science Department –
North Jeddah Branch at King Abdulaziz University. He earned his
Bachelor degree in Computer Science (BSc) from King Abdulaziz
University, Saudi Arabia 1997. He received his Master degree in
Computer Science from Ohio University, USA 2001. He Also
earned his Ph.D. in Computer Science from Kent State University
2008, Ohio, USA, in the field of Internet and Web-based
Distributed Systems, and he is actively working in this area.

Gulraiz Iqbal is a faculty of Information Systems Department at
King Abdulaziz Univeristy. He earned his Master of Software
Technology from Linnaeus University Sweden (2009). His
research interest is software quality, visualization and graph
applications.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 100

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

http://algs4.cs.princeton.edu/home/
http://scienceblogs.com/goodmath/2007/10/computing_strongly_connected_c.php
http://scienceblogs.com/goodmath/2007/10/computing_strongly_connected_c.php
http://www.jgraph.com/
http://jung.sourceforge.net/

