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Abstract 
Graphs are the basis of many real life applications. In our 

research we compare and analyse strongly connected components 

algorithm by using general techniques for efficient 

implementation. This experimental procedure exemplify in two 

contexts. 1. Comparison of strongly connected components 

algorithms. 2. Analysis of particular algorithm. 

Such a practice will enable java programmers, especially for 

those who work on such algorithms to use them efficiently. In 

this paper we described algorithms implementation, test and 

benchmark to experiment the performance of algorithms. During 

experimenting we found some interesting results as Cheriyan-

Mehlhorn-Gabow algorithm outperform then Tarjan's algorithm 

 

Keywords: Graph, Directed Graph, SCC (Strongly Connected 

Components), Java, Benchmark. 

1. Introduction 

Graphs are fundamental to many problems in computer 

science as well in chemistry, biology and physics. Pairwise 

relation between objects e.g. Computer networks 

(Switches, routers and other devices are vertices and edges 

are wire / wireless connection between them), electrical 

circuits (vertices are diodes, transistors, capacitors, 

switched etc. and edges are wire connection between 

them), World Wide Web (webpages are vertices and 

hyperlink are edges) and Molecules (vertices are atoms and 

edges are bond between them) all benefits from the 

pairwise model. Problem that arises on graph is the 

performance because of complex graph algorithms and size 

[5, 6].  

 

Modern processors are complex computing engines; the 

running time of a computer is determined by three factors.  

1. Number of instruction executed 

2. Efficient use of processor pipeline 

3. Efficient use of cache memory 

Utilizing cache, processor and exceeding the number of 

instruction cause high penalty [3]. Considering these factors 

we decided to implement our own graph structure instead 

using existing libraries like JUNG and JGraphT. Our own 

structure will help us to made several choices instead of re-

engineering and making understanding of the libraries. We 

make a start on generic graph library by choosing dynamic 

data structure (a link list as an adjancy list) instead of using 

static data structure (adjancy matrix). In this paper we 

consider the above mentioned general techniques to 

implement efficient graph algorithms, evaluate and 

exemplify them on two strongly connected components of 

directed graph. 

2. Notation & basic definition of directed 

graph 

A directed graph G is a finite set of vertices V and set of 

directed edges E that forms the pair (V, E) and E ⊆ V × V 

is a set of directed graph. If (v, u) ∈ E, then u is called 

immediate successor of v, and v is called immediate 

predecessor of u. 

Undirected graphs may be observed as a special kind of 

directed graphs, where directions of edges are unimportant 

(v, u) ∈ E ↔ (u, v) ∈ E [2, 6]. A directed graph G = (V, E) is 

called strongly connected if there is a path between v to u 

and u to v. Graphs are used in many applications as listed 

below[6]. 

2.1 Social Applications 

Graphs are popular to manage build relation and maintain 

their information. Vertices are different people and edges 

are the relations among those people. This can be used in 

management hierarchical, family tree, social media's such 

as Facebook or LinkedIn [5, 9].  

2.1.1 Road Maps   

Here vertices represent crossings and edges represent 

streets, vertices could be cities and edges could be the 

weighted link to represent the distance between two cities. 

In this case, each edge may also have an associated 

distance [5, 9].  
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2.1.2 Airline Route Maps   

Graph can be used for airline route maps. Here vertices 

represent airports and edges are the direct or indirect link 

from one airport to another. An edge may have a weight to 

represent the cost of the flight [5, 9].  

2.1.3 Computer Network Applications & WWW 

Graphs play a critical modeling role in networks, where 

vertices are devices e.g. switch routers, etc. where edges 

are links to connect vertices.  Edges may have distance and 

capacities associated with it [5, 9]. 

3. Literature Review 

To start working on this library extensively literature 

reviewed on graphs to understand the theoretical and 

practical approaches to design and develop a flexible graph 

library suitable for graph algorithms to implement, test and 

analyze graph performance using the library benchmark. 

Many graph libraries are available in java as well in other 

languages. Most of the java libraries are using sequential 

approaches and slower over large graphs. According to 

Kurt, Stefan, and Peter mention optimization technique in 

their paper [3], we also adopted their technique and 

compare our strongly connected components algorithms of 

two authors and will compare the results. In our later 

research we will comparatively analyze with other libraries 

algorithm to make them fast. 

3.1 Jung 

The java universal network / graph framework is an open 

source library provides extensive modelling, analysis and 

visualization tool for the graph or network. JUNG 

architecture have flexible support to represent the entities 

and their relations, such as directed and undirected graph, 

hyper graphs, and graphs with parallel edges. It also 

includes a number of graph theory, data mining, social 

network, optimization and random graph generator [12].  

3.2 JGraphT 

JGraphT is an open source Java graph library using 

structured approach to implement graph algorithms. Most 

of the library classes are generic for the ease of users. In 

this library several graph algorithms implemented using 

structured approach [11]. 

 
During our work we made several choices one of them is 

either we have to use the existing libraries and implement 

different strongly connected component algorithms to 

analyse the performance after possible optimization or start 

from the scratch.   

4. Graph Representation 

According to Mark.C.Chu-Carroll, to represent graphs in 

computer programs and some compromise between 

different representations, there are two techniques to 

represent graphs. 

4.1 Adjancy Matrix / Matrix Base Representation 

A Graph G with N number of vertices, an adjancy matrix is 

N×N matrix of 0/1 values, where a pair [a,b] is 1 only if 

there is an edge between a and b, otherwise 0. 

If Graph is undirected then the matrix is symmetric [a,b] = 

[b,a]. In case of directed graph then [a,b]=1 means that 

there is an edge from a to b[10].  

 

(1) 
   

4.2 Adjancylist / List based representations 

An alternative representation for a graph G (V, E) is 

adjancy list. For each vertex we keep a list of all other 

vertices adjacent to the current vertex. We say that vertex 

A is adjacent to vertex B if (A, B) ∈ E.  In our experiments 

we are using adjancy list with minor improvements to 

avoid from iterations. In our implementation we maintain a 

list of all nodes adjacent to the current node. Adjancy list 

time complexity is O (n+m) [10]. 

 

Adjancy matrix is suitable when edges don't have data 

associated with them. In case of sparse graph adjancy 

matrix is poor in performance and waste huge amount of 

memory. Comparatively adjancy list is efficient in case of 

sparse graph, it stores only the edges present in the graph 

and can store data associated to edges. Although there is 

no clear suggestion which graph representation is better, 

we consider the above situation we selected adjancy list 

representation for our experiments [10]. 

5. Strongly Connected Components 

A directed graph G = (V, E) is strongly connected if there 

is a path from vertex a to b and b to a or if a sub graph is 

connected in a way that there is a path from each node to 

all other nodes is a strongly connected sub graph. If the 

whole graph has the same property, then the graph is 

strongly connected [6].   

 

Strongly connected components can be computed using 

different approaches introduced by Tarjan's, Gabow and 

Kosaraju's. Two of them like Tarjan's and Gabow 

algorithm require only one DFS, but Kosaraju's algorithm 
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required two DFS. We did not included Kosaraju's 

algorithm in our current experiments. 

5.1 Depth First Search Algorithm 

Depth first search is a technique to explore a graph using 

stack as the data structure. It starts from the root of the 

graph, explore its first child, explore the child of next 

vertex until reach to the goal vertex or reach to final vertex 

having no further child. Then, back tracking is used to 

return the last vertex which is not yet completely explored. 

Modifying the post-visit and pre-visit, DFS is used to solve 

many important problems and it takes O (|V|+|E|) steps. 

5.2 Tarjan's Algorithm 

Tarjan's strongly connected components algorithm accept 

directed graph as an input and in a collection containing all 

possible components. The algorithm explores all nodes of 

the graph by using depth first search, it begins from an 

arbitrary start node and silently ingnore the nodes already 

visited. The nodes placed in a stack in order they explored 

and maintaining index number (node.index) as well each 

node maintain a lowlink which is always lower than the 

current node index. The current node is the root node of 

strongly connected components if node.lowlink = 

node.index. A sub graph is returned if it's determined that 

it's a strongly connected component [1, 2, 3].  

5.3 Cheriyan-Mehlhorn-Gabow Algorithms 

Gabow strongly connected component is also same like 

Tarjan's algorithm. It accepts a directed graph as an input 

and result containing collection of all possible strongly 

connected components. It also uses depth first search to 

explore all the nodes of the directed graph. Gabow 

algorithm maintains two stacks, one of them contains a list 

of nodes not yet computed as as strongly connected 

components and other contains a set of nodes not belong to 

different strongly connected components. A counter is 

used to count number of visited nodes, which is used to 

compute preorder of the nodes [2, 3, 4]. 

6. Implementation 

In our implementation we used only dynamic graph data 

structure which used linked lists for the adjancy list. The 

graph generator class make sure that each vertex is stored 

in consecutive location in adjancy list, in fact dynamic 

implementation consume more space then static graph data 

structure. Graph structure package contains interfaces, 

abstract classes to provide interface to different type of 

graphs such a Directed Graph. All classes mentioned in our 

implementation are Generic and user can use them by their 

own way. Graph package contains many interfaces for 

different graphs and also interfaces for the different 

algorithms describing the required methods for algorithm 

to implement. The undirected graph is not currently used 

but in future might be included.  

 

The directed graph interface defines many methods to 

implement where each node represents a unique data 

member of generic type and two nodes can't be added to 

the graph if they representing the same node. The second 

attempt will simply ignored and also multiple edges 

between two nodes are not allowed. An abstract class node 

that also serves as an interface for the vertex of directed 

graph, maintains a list of its successors and predecessors.  

7. Experiments 

In our experiments we used random graph and complete 

graph. We performed three sets of experiments. We used 

random graph with minimal edges varying n=2 as a sparse 

graph and another with maximum edges n = 100 as a dense 

graph. In our third set of experiments we used complete 

graph where edges are n (n-1)/2.  Random graphs are not 

an easy case to analyse because of random nodes, edges 

and memory allocated them.     

 

In our implementation we used dynamic graph data 

structure using linked list for the adjancy list. Modern 

processors are complex computing engines. We report 

running time on one Intel® Core™ i5-2410M CPU 

@2.30GHz with 4 GB of memory. We also obtained the 

similar results on AMD.  

 

We used eclipse version Helios Service Release 2 as IDE 

for java developers and for our experiment we increased 

the heap size by providing the argument -Xms128m -

Xmx1550m -XX: +UseParallelGC.  For recursive calls 

stack size is also important. In some scenarios on a large 

number vertices and edges stack over flow error occurs.  

7.1 Experiments on Tarjan's Algorithm  

Generating six random graph for each graph (Dense, 

Sparse and Complete) with minimum edges E=2 for sparse 

graph, maximum edges E=100 for dense graph and two 

complete graph with n (n-1)/2 edges.  

We computed their running time and memory as Figure 1 

& Figure 3 shows the difference between dense, sparse and 

complete graph on N number of nodes. Tarjans's algorithm 

compute strongly connected components efficiently when 

number of edges is lower. So edges have a direct impact on 

its running time and memory. 

7.1.1 Time Required by Tarjan's Algorithm 
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Results generated by our benchmark are represented using 

line chart for clear understandings in Figure 1 & 2 

indicating, as the number of nodes and edges grows 

Tarjan's strongly connected component algorithm take 

more time to run. Figure 2 clarify the results of Figure 1 as 

it displays a minor difference on dense and sparse graph.  

 

 

Figure 1 Tarjan's running time (in seconds) difference on Dense, Sparse 

& Complete Graph in dynamic graph representation 

 

Figure 2 Tarjan's algorithm running time (in seconds) difference on 

Dense & sparse graph using dynamic representation 

7.1.2 Memory Required by Tarjan's Algorithm  

A clear impact on memory required can be analysed by 

Figure 3 which displays that as number of nodes and 

number of edges increase, Tarjan's algorithm required 

more memory to complete the task.  

 

 

Figure 3 Tarjan's memory difference on Dense, Sparce & complete in 

dynamic graph representation 

7.2 Experiments on Gabow's Algorithm  

We had the same set of experiments for Gabow's algorithm, 

for each graph (Dense, Sparse and complete) we generated 

six random graph with minimum edges E=2 for sparse 

graph, maximum edges E=100 for dense graph and two 

complete graph with n (n-1)/2 edges.  

 

Therefore we computed their running time and memory as 

Figure 4 & 5 shows the difference between dense, sparse 

and complete graph on N number of nodes. Gabow's 

algorithm compute strongly connected components 

efficiently when number of edges is lower. So edges have a 

direct impact on its running time and memory. In figure 4 

& 5 its bit tricky to analyse the difference between dense 

and sparse graph as it seems that it take almost zero time 

and memory to compute strongly connected components. 

To clarify the results we draw figure 6 which state the clear 

difference when number of nodes and number of edges 

increased. 

7.2.1 Time Required by Gabow's Algorithm 

Results generated by our benchmark are represented using 

line chart for clear understandings in Figure 4 & 5 

indicating, as the number of nodes and edges grows 

Gabow's scc algorithm take more time to run. Figure 5 

clarify the results of Figure 4 as it displays a minor 

difference on dense and sparse graph.  
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Figure 4 Gabow's running Time (in seconds) difference on Dense, Sparse 

& Complete in dynamic graph representation 

 

Figure 5 Gabow's algorithm running time (in seconds) difference on 

Dense & sparse graph using dynamic representation 

7.2.2 Memory Required by Gabow's Algorithm 

A clear impact on memory can be analysed by Figure 6 

which displays that as number of nodes and number of 

edges increase, Gabow's algorithm required more memory 

to complete the task. 

 

 

Figure 6 Gabow's algorithm memory difference on Dense, Sparse & 

Complete in dynamic graph representation 

7.3 Comparison of Gabow & Tarjan's Algorithm  

Utilizing the same data set, combining data to compare 

Tarjan's and Gabow's algorithm running time in seconds. 

In figure 7, time is computed on dense graph where E=100, 

for both Tarjan's and Gabow's algorithm. One can easily 

analyse the results that Gabow's taking less time to 

compute strongly connected components of directed graph. 

 

In Figure 8 running time is computed using sparse graph 

with minimum edges E=2. In results one can analyse that 

Gabow's and Tarjan's have the same performance when 

number of edges are small, Whereas Figure 9 is based on 

complete graph, where Gabow's algorithm outperform 

Tarjan's algorithm with a big margin. Gabow's 

performance remains outstanding as number of nodes and 

edges increase whereas Tarjan's algorithm remain slow as 

number of edges increased.  

 

 

Figure 7 Gabow's vs Tarjan's running time (in seconds) comparison on 

Dense in dynamic graph representation 

 

Figure 8 Gabow's vs Tarjan's running time (in seconds) comparison on 

sparse in dynamic graph  

 

Figure 9 Gabow's vs Tarjan's running time comparison on complete in 

dynamic graph 
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According to results obtained from benchmark memory 

consumption is almost equal on both Tarjan's and Gabow's 

algorithms but have different statistics on time. 

8. Conclusions 

In our research, we analyzed & compared Tarjan's and 

Gabow's strongly connected component algorithms to find 

their suitability for various applications. We generated 

dense, sparse and complete graphs randomly to compute 

memory difference of the both algorithms. According to 

our implementation and experiments, we found that Gabow 

algorithm tend to become shorter, simpler and more 

elegant. Tarjan's performance is similar to Gabow's 

algorithm when number of edges in a graph is minimum 

level.  

 

9. Future Work 

During this research, our experiments were under some 

limitations; in worst case scenario we generated six graphs 

with N=3000 to compute memory and time. In future we 

can experiment a large graph while increasing the stack 

size and java VM heap size.  

In our current research we were limited to only Tarjan's 

and Gabow's algorithm, in our future work we can include 

the algorithms of S.Rao Kosaraju & Sharir and Brute 

algorithms using different approach to compute strongly 

connected components. 

 

 

Appendix A: Tuned Cheriyan-Mehlhorn-Gabow SCC 

Algorithm Implementation 
 

public class GhaiboSCC<E> implements SCC<E> { 

 

private Collection<Collection<Node<E>>> sccList; 

 

private List<Integer> B; 

private List<Node<E>> S; 

  

private int c; 

Node<E> n; 

  

protected int counterG; 

 

public Collection<Collection<Node<E>>> scc(DirectedGraph<E> 

graph) { 

S = new ArrayList<Node<E>>(); 

 B = new ArrayList<Integer>(); 

 

sccList = new ArrayList<Collection<Node<E>>>(); 

Iterator<Node<E>> nodes = graph.iterator(); 

 

int N = 0; 

   

while (nodes.hasNext()) { 

  n = nodes.next(); 

  n.num = 0; 

  N++; 

  } 

 

  c = N; 

 

Iterator<Node<E>> nodeIt = graph.iterator(); 

Node<E> node; 

while (nodeIt.hasNext()) { 

  node = nodeIt.next(); 

  if (node.num == 0) 

   DFS(node); 

  } 

 

 return sccList; 

} 

 

private void DFS(Node<E> v) { 

 Node<E> w; 

 S.add(v); 

 v.num = (S.size() - 1); 

 B.add(v.num); 

Iterator<Node<E>> node = v.succsOf(); 

 

while (node.hasNext()) { 

    

 w = node.next(); 

 if (w.num == 0) 

  DFS(w);  

 else { 

 while (w.num < B.get((B.size() - 1))) 

      

 B.remove(B.size() - 1); 

 } 

 } 

   

List<Node<E>> L = new ArrayList<Node<E>>(); 

  

if (v.num == (B.get(B.size()-1 ))) { 

    

 B.remove(B.size() - 1);  

 c++; 

    

while (v.num <= (S.size()-1)) { 

    L.add(S.get(S.size()-1)); 

 S.remove(S.size() - 1); 

} 

sccList.add(L); 

 } 

 } 

}  

Appendix B: Tarjan's SCC Algorithm Implementation 

public class TorjanSCC<E> implements SCC<E> { 

private int index = 0; 

private ArrayList<Node<E>> stack;  

private Collection<Collection<Node<E>>> SCC = new 

ArrayList<Collection<Node<E>>>(); 

     

public Collection<Collection<Node<E>>> scc(DirectedGraph<E> 

graph){ 

 stack = new ArrayList<Node<E>>(); 

  SCC.clear(); 

  index = 0; 
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if(graph != null){ 

      Iterator<Node<E>> nodes = graph.iterator(); 

    while (nodes.hasNext()) { 

Node<E> node = nodes.next(); 

            if(node.num == -1) 

            { 

               visit(node, graph); 

             } 

            } 

            } 

return SCC; 

} 

private void visit(Node<E> v,DirectedGraph<E> graph){ 

     

 v.num = index; 

 v.lowlink = index; 

 index++; 

         

 stack.add(0, v); 

       

Iterator<Node<E>> nodes = v.succsOf(); 

 

Node<E> w; 

 

while (nodes.hasNext()) { 

 w = nodes.next(); 

 

         if(w.num == -1){ 

              visit(w, graph); 

               v.lowlink = Math.min(v.lowlink, w.lowlink); 

                 

          }else if(stack.contains(w)){ 

              v.lowlink = Math.min(v.lowlink, w.num); 

          } 

       } 

       if(v.lowlink == v.num){ 

           Node n; 

             

 ArrayList<Node<E>> component = new ArrayList<Node<E>>(); 

             

       do{ 

 n = stack.remove(0); 

component.add(n); 

         }while(n != v);   

SCC.add(component);  

       } 

     

  } 

} 
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