
 

An Optimized Query Tree Algorithm in RFID Inventory 

Tracking –A case Study Evidence 

Tanvi Agrawal1, P.K.Biswas2 and A.D.Raoot3 

  
1 ITM, NITIE, Vihar Lake, Powai  

Mumbai, Maharashtra 400087, India 

 
2 ITM, NITIE, Vihar Lake, Powai 

Mumbai, Maharashtra 400087 , India 

3  ITM, NITIE, Vihar Lake, Powai 

Mumbai, Maharashtra 400087 , India 

 

Abstract 
One of the challenged technical issue faced in inventory tracking 

applications with Radio frequency identification(RFID) 

implementation environment, is the collisions due to responses 

from multiple tags on the shared channel between reader and the 

tags, which consumes further the energy as well as the delay in 

tag identification process. To avoid collisions by some anti-

collision algorithm means, may create large amount of data, 

adding complexity at the circuit level and also consumes energy 

for on-going transmissions. Therefore an optimized anti-collision 

algorithm can be designed to avoid the collisions with minimal 

amount of data transmissions for lowering the communication 

overhead as it is critical for wireless battery operated devices. In 

this paper author has proposed an optimized query tree anti-

collision algorithm. It uses minimal number of bits to resolve the 

collision issue by making groups and solving collisions group by 

group by utilizing the same query sent by reader in the very first 

round. 

Keywords: Query Tree Algorithm, Inventory Tracking, Radio 

Frequency Identification (RFID). 

1. Introduction 

Radio Frequency Identification (RFID) system is a 

form of wireless technique used to identify physical objects 

[4]. RFID technology improves the potential benefits of 

supply chain management through reduction of inventory 

losses, increase of the efficiency, speed of processes and 

improvement of information accuracy [1] as compared to 

old BARCODE technology. Now-a-days RFID is widely 

being used in supply chain for inventory tracking 

applications, which employs large and densely packed tag 

populations. 

                   The key issue faced in large scale RFID 

systems’ applications such as inventory tracking, is the  

 

 

 

Collisions taking place between readers and the tags 

creating huge amount of data which exaggerates the 

problem in interpretation of useful data for full tag 

identification process of tags [3].These much number of 

transmissions further affect the two parameters critically in 

i.e. time and energy consumed in the process of 

identification [5]. So an efficient anti-collision algorithm is 

the need of hour that avoids unnecessary transmissions 

without losing useful information.  

            RFID systems can be classified into two types as 

active and passive systems and both are having its own 

requirement for algorithm to be energy efficient and 

optimized. In case of passive tag systems as tag extracts 

the energy from the reader to communicate back, so 

battery of the readers may deplete at much faster rate, as 

being continuously used for providing energy while in case 

of active tag systems tags itself are having the sensors and 

battery so tuple of data is consumed in providing the tag 

related information to the reader leading to energy 

consumption and also complexity at algorithm level, so a 

tag anti-collision algorithm could be developed to be 

optimized leading to energy efficient solution. Further 

enormous consumption of energy may add up to the 

maintenance cost, because of  batteries of wireless devices 

viz. reader in case of passive system and tags in case of 

active systems, in multiple readers and tags 

implementation environment present in any retail store or 

warehouse, in inventory tracking application. One of the 

ways to achieve energy efficiency at algorithm level is, by 

minimizing the number of bits transacted between readers 

and the tags, product identification process fulfillment, 

which may lead to energy efficient and optimized solution.  

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 85

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

mailto:agrtanvi@gmail.com
mailto:Pradip2468@rediffmail.com
mailto:adraoot@gmail.com


 

Here in this paper author has proposed a new Query Tree 

Anti-Collision algorithm which utilizes fewer numbers of 

bits than the previously existing query tree algorithm 

making it more efficient and optimized. A case study of a 

retail store has been considered here, showing the practical 

working of the algorithm, which comprises six sections, 

having some number of tagged items (items 1 to 10) 

needed to be identified, to get the idea of its presence.  

2.  Background Work 

In Retail store applications where a number of tagged 

items are present at the same time to be tracked, collisions 

may occur due to simultaneous answers of tags in this 

process. If multiple tags and readers are present then 

responses by them at the same time on the shared channel 

creates collision problem. 

         Collisions can further be classified into two (a) Tag 

collisions (b) Reader collisions. Between the two, tag 

collisions can’t be avoided completely, due to limited 

computational capability, while the later one may utilize 

the carrier sensing for collision avoidance. Tag anti-

collision algorithms can be classified as follows: 

 

(1)  ALOHA based algorithms(Probabilistic 

Algorithms ) 

(2) Tree  based algorithms(Deterministic Algorithms) 

 

In ALOHA based algorithm, tag transmits its ID in a 

slot, also known as a time interval, assigned in the Query 

command by the reader in the Query through a parameter 

Q[6] ,and then tags choses the slot by generating any 

number randomly  between 0-2
Q
-1, finally the tags having 

0 as slot count, is going to answer first its ID to reader. The 

slot is chosen randomly in every cycle. ALOHA based 

algorithms are simple and faster but works efficiently when 

the tags population size is small [6] and also faces a 

problem known as “tag starvation”, due to which a 

particular tag may not be identified, within a time bound 

making this algorithm probabilistic in nature. Further 

division of ALOHA on the basis of choice of Frame (group 

of slots) is given below. 

 

(i) Frame slotted ALOHA (Tags transmits in the 

chosen slot selected randomly in every cycle 

or Frame ) 

(ii) Dynamic Frame slotted ALOHA (Frame length or     

number of slots are dynamically changed in every 

cycle based on the tags responses (collisions, no 

answer and single tag answer))   

Tree based algorithms are deterministic in nature which 

guarantees the identification of each and every tag within 

time bound. Tree based algorithms can be classified in 

following two broad categories. 

 

(i) Binary Tree Algorithm 

(ii) Query Tree Algorithm 

In binary tree algorithm, firstly all the tags set their counter 

value as zero in the starting then the reader sends the query 

command and tags randomly decrements the counter value 

finally the tags having counter value as zero answers its ID 

to reader. Now if collision occurs due to multi tags answer 

then reader split the tags into two sets, and whenever the 

collision occurs, it resolves the tag collisions completely in 

single set one by one, ensuring that all tags get identified at 

the end of the identification cycle. Query tree algorithm is 

memoryless in nature irrespective of binary tree algorithm, 

means that it is not required for the tags to remember the 

counter value to answer for as the case with binary tree, in 

this case reader sends the prefix first (some user defined 

number of bits) and only those tags, which have their 

portion of ID matched with answers first to reader as 8 bit 

response. Whenever the collision occurs in a cycle, one bit 

longer prefix is sent by reader as the query in 

corresponding cycle and tags answers the next 8 bits in 

response to get identified. During the process completion 

of identification in tree based algorithm, a big deal of 

energy and time is consumed in terms of transmitted bits as 

compared to ALOHA based Algorithms.   

                  In some applications like Inventory tracking   

one requirement is that multiple products present in large 

numbers, is to be tracked within certain predefined time 

period, as any single unidentified item over a period of 

time, may lead to loss. This goal can be achieved 

efficiently through deterministic tree based algorithms with 

an additive limitation of massive time and energy 

consumptions. Hence in this paper an optimized query tree 

algorithm has been proposed, availing all the benefits of 

tree based algorithms, and attempts to minimize the 

limitations associated with previous existing query tree 

algorithm. Existing query tree can further be improved, if 

the same query sent by the reader can be reutilized, by 

acquiring the information from tags responses, which can 

save the time as well as reduce the number of bit 

transactions to give  an optimized solution. 

 

3. Case Study Evidence 

A retail store case study having 1-10 items of different 

categories kept in 6 different sections has been chosen for 

analysis. As each item in different section is having a RFID 

tag affixed to it. Table 1 shows the retail store outlet. 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 86

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

Table 1 Retail store overview  

 

 

 

 

In Table-2 a sample set of 10 tag Ids for EPC class-1 standard of 96 bits long length is shown for simulation purpose of 

algorithm simulation. 

Table 2 Example set of 10 Tag Id’s for 1-10 items in a section 

Item no. Tag ID number 

Item 1 '010111000100001100110010010001000001110000101111010111010110000000010010001001110001010100000000' 

Item 2 '000010100100100100110010011000110100110100101100000111100100010101001001001110110110010000000000' 

Item 3 '001001110101000101011101001100010101100100010100010100010010001000111000010101010000001100000000' 

Item 4 '001010010010111100100011000101010100001000100001001100100101100100010000001101010001011000000000' 

Item 5 '001000010100111000101100010000110100110001010010010011100101001000100101010001110101000000000000' 

Item 6 '010000100101110000110100010000110001110100110000001000000010110000111110010101010000001000000000' 

Item 7 '111000100101000100010101010101110000000000011010001001000001110100111010001111010001101000000000' 

Item 8 '110111000101001000001000000100100100100100010010010111110101000001011100001010010011101000000000' 

Item 9 '100011000100110100000010010000110101101101100001001011100001111100011011001101100101111100000000' 

Item 10 '100100000110010001001101001010110100001001001001010011010100000000010000000011000011110000000000' 

. 

 

4.   Simulation Environment 

 
  MATLAB 7.0 is used for algorithm evaluation. Assuming tags 

(Active tags) having 96 bits long id (as per EPC standards), in 

conjunction with single reader for inventory tracking is used in 

retail store for simplification of the problem. 

 

5.  Proposed Algorithm 
 

Our proposed Algorithm is similar to Query Tree 

Algorithm in that it sends the prefix from reader but 

requires the memory unlike Query tree, to remember the 

particular bit position which suffers collision so that further 

query can be sent to avoid collisions occurred at that 

particular bit position using the same query by just flipping 

the bits at the position where collision occurred in next 

round. Proposed Algorithm works in following manner. 

 

1. Firstly Reader broadcasts the Make group command 

and k as user defined number so that the tag responds 

with only k bits in subsequent rounds. 

 

 

2. Then all the tags make two groups as Group 1 and 

Group 0 ,according to reader command, according to 

the initials of the ID as ‘1’ and ‘0’ respectively. 

 

 

3. Then reader sends Query command firstly to the group 

1 by XORing the k bits from the available database of 

tag sets population being inventoried as prefix. 

 

4. Tags send k bit responses to the reader and then two 

subgroups are made according to the responses sent by 

the tags one subgroup of the tags which are having 

same collided bit positions (bits at the same positions 

are collided) and another one are the tags which are     

not   having the same collided bit positions. 

 

Retail Store[Retail bazaar] 

Section-I(Food Items) 

Item1- 

.. 

Item10- 

Section-II(Cosmetics) 

Item1- 

.. 

Item10- 

Section-III(Apparels) 

Item1- 

.. 

Item10- 

Section-IV(Furniture) 

Item1- 

.. 

Item10- 

Section-V(Electronics Items) 

Item1- 

.. 

Item10- 

Section-VI(Glossary) 

Item1- 

.. 

Item10- 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 87

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

5. Then again the query command is within two 

subgroups one by one subgroup 1 having different 

collided bit positions is sent the same command as in 

previous round, by just flipping the number of bits at 

corresponding colliding bit position as prefix, and the 

subgroup 2 an alternate query is sent  by Xoring the 

next k bits. 

 

 

6. If at the step number 5 all tags are identified then tags 

send the rest of the bits (user defined) of ID number for 

full tag identification and go for step 7 otherwise 

another query command as prefix by Xoring the next k 

bits from the database of tag sets is sent to the tags and 

steps 4 to 6 are repeated again for group1. 

 

 

7. Reader sends the Acknowledgement to those tags 

which are identified fully.  

 

8. Steps 1 to 7 are repeated for group 2 if all tags from 

group 1 are identified. 

Flow chart of the algorithm has been given in Figure 1 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Yes No 

No All tags 

identified  

Same Steps 

are repeated 

as for group 2 

Yes 

All tags 

acknowledged 

Alternate 
query  

Xoring the 
next k bits 

in inventory 
record 

 

Reader Broadcast  

Make group request 

Tags 

Starting  
bit 

0 

Group 2 

Group 1 

Host 

Computer 

Collisions 

1 

Sub group 2 

Acknowledgement 

Resend 

previous Query 

by flipping the 

bits at 

Collision 
position  

Query 

(xoring 
the first k-
bits of tag 
sets) 

Next K bit 
Tag 
responses  

Yes No- then tags send rest 
number of bits 

Sub group 1 

Tags responses 
having (same 

collided bit 
positions) 

Tags responses 
having (different 

collided bit 
positions) 

 

Fig-1 Flow chart of modified query tree algorithm 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 88

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

 

 

Performance analysis of proposed algorithm vs. 

existing algorithm 

 

According to the above proposed algorithm, firstly the 

reader broadcasts the make group command and user 

defined k bits to inform the tags, to answer only the k bits 

in response and make groups of two, as group 1 and group 

2. Tags make the group into two according to the starting 

bit of their id numbers as ‘0’ or ‘1’. After making two 

groups, command is sent by reader, one by one, within 

each group, to resolve the issue within one group first. 

Query by the reader is sent by Xoring the k ID bits of tags 

in group 1 as information is available with company 

database. Then the tag responses of k bits are judged by 

the reader for every bit position whether it suffered from 

collision or not, if no collision case then one tag may get 

identified and reader issues acknowledgement command to 

tag in next round otherwise in collision case two conditions 

may arise (i) collision occurrence at the same bit positions 

for more than one tag (ii) collision occurrence at different 

bit positions. So accordingly two subgroups (subgroup 1 

and 2 respectively) may be formed and in subgroup2 case 

the same command is used in subsequent rounds utilizing 

the information gathered from the tag responses only by 

complementing the bits which suffered collisions until all 

tags from the same subgroup get identified while for 

subgroup1 an alternate query by Xoring the next k bits of 

the tag sets from this subgroup is sent and abovementioned 

steps are repeated. Same process steps are followed by 

group 2. Here for this algorithm simulation k (user defined 

number) is taken as 4. Performance analysis between 

existing and proposed algorithm shows better efficiency in 

identification with minimum number of transmissions 

between reader and tags (table-2 and table 3). Graph (fig-2 

and fig -3) shows number of collisions in different rounds 

in modified and existing algorithms here x denotes 

collisions occurred at that position. Table-2 is the round 

wise detail of transmitted bits in optimized query tree 

algorithm and in Table-3 same information about existing 

query tree algorithm has been shown. Further table-4 gives 

the comparative performance evaluation between the two 

above mentioned algorithm.

 
Table-2: Optimized query tree algorithm 

Round Status Reader Command / Query Tags Response 

1 Nil Reader broadcasts –‘Make 

Group command and , k = 4’ 

Make two groups 

(Group1-Tags whose ID bit is starting from ‘0’ 

(Tag 1,Tag2,Tag 3,Tag 4,Tag 5,Tag 6) 

Group 2- whose ID bit is starting from ‘1’ 

( Tag 7,Tag 8,Tag 9,Tag 10) 

 

2 NIL ‘0111’(Next by Xoring the 2nd 

bit to 2nd+kth bit of tag ID 

bits of all tags from Group 

1) 

Tag1-‘xx11’ ( k=4 bits response starting from 2nd bit to 2nd+kth bit ) 

Tag2-‘0xx1’ ( k=4 bits response starting from 2nd bit to 2nd+kth bit) 

Tag3-‘01xx’ (k=4 bits response starting from 2nd bit to 2nd+kth bit ) 

Tag4-‘01x1’ ( k=4 bits response starting from 2nd bit to 2nd+kth bit ) 

Tag5-‘01xx’ (k=4 bits response starting from 2nd bit to 2nd+kth bit )  

Tag6-‘xxxx’ (k=4 bits response starting from 2nd bit to 2nd+kth bit) 

 

3 

 

Tag 1 identified 

 

‘1011’(‘0111’Query is utilized 

by just complementing the 

corresponding tag bits at ‘x’ 

position ) 

 

Tag1-‘1000’( matched prefix case, hence next 4 bits response) 

4 Tag 2 identified ‘0001’(‘0111’Query is utilized 

by just complementing the 

corresponding tag bits at ‘x’ 

position ) 

Tag2-‘0100’( matched prefix case, hence next 4 bits response) 

5 Tag 4 identified ‘0101’(‘0111’Query is utilized 

by just complementing the 

corresponding tag bits at ‘x’ 

position ) 

Tag 4-‘0010’( matched prefix case, hence next 4 bits response) 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 89

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

Round Status Reader Command / Query Tags Response 

6 Tag 3 identified ‘0100’(‘0111’Query is utilized 

by just complementing the 

corresponding tag bits at ‘x’ 

position ) 

Tag3-1110( matched prefix case, hence next 4 bits response) 

7 Tag 5 identified ‘1101’(‘0111’Query is utilized 

by just complementing the 

corresponding tag bits at ‘x’ 

position ) 

Tag5- ‘0010’( matched prefix case, hence next 4 bits response) 

8 Tag 6 identified ‘1000’(‘0111’Query is utilized 

by just complementing the 

corresponding tag bits at ‘x’ 

position ) 

Tag6-‘0100’( matched prefix case, hence next 4 bits response) 

 

9 

 

NIL 

 

‘0100’(Next Query by Xoring 

the 2nd bit to 2nd+kth bit of 

tag ID bits of all tags from 

Group 2) 

 

Tag 7-‘x100’( k=4 bits response starting from 2nd bit to 2nd+kth bit ) 

Tag 8-‘xxxx’( k=4 bits response starting from 2nd bit to 2nd+kth bit ) 

Tag 9-‘0x0x’( k=4 bits response starting from 2nd bit to 2nd+kth bit ) 

Tag 10-‘0xx0’(k=4 bits response starting from 2nd bit to 2nd+kth bit ) 

10 Tag 7 identified ‘1100’ Tag 7-‘0100’ 

11 Tag 8 identified ‘1011’ Tag8-‘1000’ 

12 Tag 9 identified ‘0001’ Tag9- ‘1000’ 

13 Tag10identified ‘0010’ Tag 10-‘0000’ 

 

 

No of rounds performed                     : 13 

No. of transmitted bits from reader    : 48 

No. of transmitted bits from tags       : 80 
 

 

Table-3: Existing query tree algorithm 

 

Number of 

Round 

Identified 

Tags 

Reader Query Tag Response Status 

1 NIL ‘0’ 

 

Tag1-10111000(next 8 bits) 

Tag2-00010100(next 8 bits) 

Tag3-01001110(next 8 bits) 

Tag4-01010010 (next 8 bits) 

Tag5-01000010(next 8 bits) 

Tag6-10000100 (next 8bits) 

Collision 

2 NIL ‘00’ Tag2- 00101001(next 8 bits) 

Tag3-10011101(next 8 bits) 

Tag4-10100100(next 8 bits) 

Tag5-10000101(next 8 bits) 

Collision 

3 Tag1 ‘01’ Tag 1-01110001(next 8 bits) Tag 1 identified 

(No collision) 

4 NIL ‘10’ Tag 9- 00110001(next 8 bits) 

Tag 10- 01000001(next 8 bits) 

Collision 

5 Tag 2 ‘000’ Tag2-01010010(next 8 bits) Tag 2 identified 

(No collision) 

6 NIL ‘001’ Tag3 -00111010(next 8 bits) 

Tag4-01001001(next 8 bits) 

Tag5-00001010(next 8 bits) 

Collision 

7 Tag 6 ‘010’ Tag 6-‘00010010’(next 8 bits) Tag 6 identified 

(No collision) 

8 NIL ‘011’ No response _ 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 90

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

Number of 

Round 

Identified 

Tags 

Reader Query Tag Response Status 

9 NIL ‘1’ Tag 7-11000100(next 8 bits) 

Tag 8- 10111000(next 8 bits) 

Tag 9- 00011000(next 8 bits) 

Tag 10-00100000(next 8 bits) 

Collision 

10 NIL ‘10’ Tag 9-‘00110001’(next 8 bits) 

Tag 10-‘01000001’(next 8 bits) 

 

Collision 

11 NIL ‘11’ Tag 7-10001001(next 8 bits) 

Tag 8-01110001(next 8 bits) 

Collision 

12 NIL ‘100’ Tag 9-‘01100010’(next 8 bits) 

Tag 10-‘10000011’(next 8 bits) 

 

Collision 

13 NIL ‘101’ No response _ 

14 Tag 8  ‘110’ Tag 8-11100010(next 8 bits) Tag 8 identified 

(No collision) 

15 Tag 7 ‘111’ Tag-7-00010010 (next 8 bits) Tag 7 identified 

(No collision) 

16 Tag 9 ‘1000’ Tag 9- 11000100(next 8 bits) Tag 9 identified 

(No collision) 

17 Tag 10 ‘1001’ Tag 10-00000110(next 8 bits) Tag 10 identified 

(No collision) 

18 NIL ‘001’ Tag 3-‘00001010’(next 8 bits) 

Tag 4-‘01001001’(next 8 bits) 

Tag 5-‘00001010’(next 8 bits) 

Collision 

19 NIL ‘0010’ Tag3- 01110101(next 8 bits) 

Tag4- 10010010(next 8 bits) 

Tag5- 00010100(next 8 bits) 

Collision 

20 NIL ‘00100’ Tag3- 11101010(next 8 bits) 

Tag5- 00101001(next 8 bits) 

Collision 

21 Tag 3 ‘001001’ Tag 3- 11010100(next 8 bits) Tag 3 identified 

(No collision) 

22 Tag 5 ‘001000’ Tag 5- 01010011(next 8 bits) Tag 5 identified 

(No collision) 

23 Tag 4 ‘00101’ Tag 4 -00100101(next 8 bits) Tag 4 identified 

(No collision) 

 
No of rounds performed:  23 

No. of transmitted bits from reader    : 73 

No. of transmitted bits from tags       : 344 

 
Table 4: Performance comparison table 

 

 Query Tree Modified Query Tree 

No. of rounds performed 23 13 

% reduction in transmitted bits from reader(transmitted reader bits from existing 

algorithm- transmitted reader bits from proposed algorithm)/(transmitted reader 

bits from existing algorithm) 

-- 34.24% 

% reduction in transmitted bit from  tags(transmitted tag bits from existing 

algorithm- transmitted tag bits from proposed algorithm)/( transmitted tag bits 

from existing algorithm) 

-- 76.74% 

Throughput= (No. of  rounds with successful identification /Total no. of 

rounds)x100 

 

43.47% 76.92% 

Efficiency= Number of transmitted  sent in successful identification 

round(reader+tags)/Total number of transmitted  bits(Tags + Reader) 
28.53% 62.5% 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 91

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

In following figures graphical representation of comparative 

performance evaluation between the above mentioned two 

algorithms has been shown. Figure 4 and 5 are the existing Query 

Tree algorithm representation wile figure 6 and 7 are the 

optimized Query Tree Algorithm. 

 
Number of rounds 

Fig. 4 Number of collisions vs. round (existing Query Tree Algorithm) 

 

 
Number of rounds 

Fig. 5 Number of transmissions vs. round (existing Query Tree 

Algorithm)  

 

              

 
                    Number of rounds 

Fig. 7 Number of transmissions vs. round (Optimized Query Tree 

Algorithm) 

 

6. Conclusions and Future Scope 

Performance analysis shows that achieved throughput and 

efficiency is better as compared to existing query tree algorithm. 

Number of rounds performed is lesser achieving lesser time 

required than the case of existing query tree algorithm with 

minimum number of transmitted bits. To identify multiple 

numbers of tags by reducing the transmitted data with minimum 

number of collisions, without losing information has become a 

great issue in RFID Inventory tracking applications. Hence our 

proposed Algorithm has made an attempt to resolve this issue by 

optimizing the number of transmission bits, giving energy 

efficient and faster solution as compared to traditional query tree 

algorithm. In future this algorithm can be made more practical by  

utilizing greater number of tags. 

 

Number of rounds 

Fig. 6 Number of collisions vs. round (Optimized Query Tree Algorithm) 

 

 

 

 

 

 

 

 

 

N
u

m
b

er
 O

f 
co

ll
is

io
n

s 

N
u

m
b

er
 O

f 
co

ll
is

io
n

s 

T
o

ta
l 

N
u

m
b

er
 O

f 
tr

an
sm

is
si

o
n

s 

N
u

m
b

er
 O

f 
tr

an
sm

is
si

o
n

s 

N
u

m
b

er
 O

f 
co

ll
is

io
n

s 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 92

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

  

References 

 
 

[1] Aysegul Sarac, Absi Nabil, Dauzere-Peres     Stephane,  

“A literature review on the impact of RFID 

technologies on supply chain management”, Elsevier 

International Journal of production Economics , pp.78-

79, 2010. 

[2]   Dheeraj K. Klair, Kwan-Wu Chin, Raad and Raad, 

“An investigation into the energy efficiency of      pure 

and slotted Aloha Based anti-Collision Protocols”, 

IEEE international symposium on world of wireless, 

mobile and multimedia networks, 2007, pp.1-4. 

[3] Derakhshan, R., Orlowska, M.E and Xue Li, “RFID 

Data Management: Challenges and Opportunities”, 

IEEE International Conference on RFID, 2007, pp.175-

182. 

 [4] Guangsong Yang, Mingbo Xiao and Chaoyang Chen 

“A simple energy balancing method in RFID sensor 

Network” IEEE workshop on Anti-counterfeiting, 

security, identification, 2007, pp.306 – 310. 

[5] Lei Pan and Hongyi Wu “Smart Trend-Traversal: A 

Low Delay and Energy Tag Arbitration Protocol for 

Large RFID Systems”, IEEE Transactions on wireless 

communications, 2011, vol.-10, pp. 2571- 2573,  

[6] Yan Xin-qing, Yin Zhou-ping and Xiong You-lun ‘A 

comparative Study on the Splitting Tree based 

Protocols for RFID Tag Identification’, IEEE journal 

of ICCS, pp. 332-336, 2008. 

[7] Lei Zhu, Tak-Shing and Peter Yum, “A critical survey 

and analysis of RFID anti-collision mechanism”, IEEE 

communications magazine, 2011, vol.-49, pp. 214-221. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 93

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




