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Abstract 
 In the recent years, the distribution of possible future losses for 
portfolios, such as bonds or loans, exhibits strongly asymmetric 
behavior. In this paper, we have analyzed the effective portfolio 
risk management through a computational state space model by 
using particle filter through sequential estimation of volatility. 
The computational model comprises with Extended weight 
Moving Average Model and Black Scholes-Option Pricing 
model as well as GARCH deterministic volatility model. The 
outcome of the model establishes the effectiveness of particle 
filter for estimating volatility of call option prices for future 
portfolio returns and it can able to predict the investor’s 
financial risk and measures in a significant manner. 
 
Keywords: Portfolio, financial risk, volatility, particle 

filter, call option, put option. 

1. INTRODUCTION 

The volatility of a stock is defined as the measure of 
variation of price of a financial instrument over a time 
period . When the time period of interest is one year, then 
the volatility is an annual volatility year  and when the 
time period of interest is one day, then the volatility is a 
daily volatility  Whatsoever, annual volatility is 
frequently estimated by first estimation daily volatility 
using daily log stock returns data. The three main 
purposes of Estimating volatility are for risk 
management, for asset allocation, and for taking bets on 
future volatility. A large part of risk management is 
measuring the potential future losses of a portfolio of 
assets, and in order to measure these potential losses, 
estimates must be made of future volatilities and 
correlations 
 
The Black-Scholes partial deferential equation and 
ultimately solve the equation for a European call option 
In the BSOPM (Black Scholes-Option Pricing model) 
framework, the annual volatility is taken as constant. It 
employs a common method which simply calculates the 

sample standard deviation of the daily log returns of the 
stock over the past N days by using the equations as 
below: 
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Where the average value of the stock return is given as 





n

i

iR
n

R
1

1   

Where n is the number of stock return and  
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Si gives us an estimate of daily volatility. t .Since year  

is an annual quantity; we have to scale or estimate St. 
year  which is estimated by 
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 Where TD is the annual number of Trading Days (TD) 
 
To simulate return values for testing the methods, we will 
use the stochastic differential equation that corresponds 
to geometric Brownian motion,  

dXdt
S

dS
   

where )(tS  is the stock price at time t,   is a measure 
of the average rate of growth of the asset price, dt  is the 
change in time,   is the volatility, and dX  is known as 
a Wiener process because it is a random normal variable 
with a mean of zero and a standard deviation of dt  
 
For the numerical simulation the initial asset price was 
set equal to p, Where p is a numerical value.  In terms of 
the model 0S = p, and St  is the closing price for day t.  
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We will assume that we can obtain a closing stock price 
for 365 consecutive days 
 

1t t i tS S St dt S dX          
 
The sample standard deviation St, provides a very simple 
tool for estimating daily volatility t ,since it assigns 

equal weight to each daily log return Rt. Apart from this, 
we can also utilize quite more accurate weighted 
techniques Like ARCH and GARCH models. From 
equation (1) Rt-i which is defined as the continuously 
compounded return on the stock during day t-i.. Squaring 

t  and St of the conditional daily variance on day t, 
using the most recent N observations of u, we can obtain 
the equation (4) as below: 
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We can employ another alluring technique for estimating 
the conditional daily variance 2

t  that involves assigning 
weights i   to the most recent observations of u as 
shown in the equation (5). 22 _^
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Where, 
 
           i j0 ,     When i>=j 
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As we agree on a point that the most recent observations 
must be assign more weight as compare to the earlier 
observations. The recent observations likely contains 
more information about the current level of the 
conditional daily variance 2

t  . The total Weight of all 
observation must be hundred percentage i.e one. Further 
this idea can be extended by adding a long run average 
VL in the equation (5). The long run average must have a 
weight  as specified in equation (6). 
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When 
N

ii 1
1


     and i j0 ,     When i>=j 

 
If we replace u  in equation (6) by the true long-term 
“true” mean u of the return Ut, then we can able to 
obtain a deterministic expression for the true conditional 
daily variance 2

t  . This leads to Engle’s ARCH(N) 
model, where the weights again sum to unity and the 
expressional representation is as below: 
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u  can be considered to be zero. The Bollerslev’s 

GARCH approach which extends the idea of Engle’s 
ARCH approach in equation (7) by applying true  
conditional daily variance from past days into the 
deterministic expression for the true conditional daily 
variance of the current days. The GARCH ( P,Q) model 
may be defined as in the equation (8, 9, 10) 
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The term t   is a zero mean random disturbance, or 
stock , in the mean u of  Ut. The equation (9) is known 
as  the conditional daily mean model and equation (10) is 
known as the conditional daily variance model. 2

t   can 
also be viewed as the conditional daily variance of the 
GARCH disturbance term t  with the expressional 
value as: 
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The most popular specification of the conditional daily 
variance for the simple GARCH(P,Q) model is a 
GARCH(1,1) which is represented as: 
 

2 2 2
t L t 1 t 1V ,                                       (11) 

Where 1;    
LV 0;   

, 0   
 
The exponentially weighted moving average (EWMA) 
model is a particular case of GARCH(1,1,) model when 
we set  γ=0, 1  and     in the equation (11) The 
EWMA Model with the expression as follows: 
 

 2 2 2
t t 1 t 11                                            (12) 

 
For modeling time varying volatility purposes, utilization 
of EWMA models can produce more significance.  
 
For estimating volatility from a well recognized model 
like GARCH(M,N) can be embedded with Black Scholes 
Option Pricing Model using Auxiliary Particle filter 
techniques.  
The Pricing model for European Style call option with 
non-divident underlying stock price of Black Scholes 
Option Price model has the solution for Ct(Call Option at 
Time t) 
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here N denotes the cdf of the standard Gussian N(0,1). St 
is the underlying stock price at time t, r is the risk free 
annual rate of interest, K is the Strike Price of the call 
option to be mature T-t. 

 
2.  MODEL FRAME WORK 

 
Generally 2

t represents the daily conditional variance of 
the underlying stock price at day t, whereas St is denoted 
as, the underlying stock price at day t. Let we define obs

tc  
as the observed market price of the call option at day t. T 
is denoted as the maturity date of the call option and r as 
annual  risk free rate of interest. 
 

Now we introduce the following sequential estimation of 
volatility model framework with system equation and 
observation equation as follows: 
 
System Equation :  

2 2 2
1 1[ (1 ) ]t t t t        

 
Observation Equation: 
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Where λ=0.94  
 
The errors in the system and observation equations are 
additive which can be and as such the equations may 
naturally be expressed as follows. 
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Observation Equation : 
2ln( ) ln([ ( (( | : ), , ) )Obs
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As per the definition, the system error term t  which 
is additive to ensure the non-negativity of the 
conditional daily variance 2

t , required to be non-
negative. The observation error term t  is additive 

so that the observed option price obs
tc  is ensured 

as non-negative and t  helps to enforce Merton's 
first lower bound, 1 . The additive error terms 
signifies that the "error" generally scales with the 
signal which means, on sheer basis, higher values 
of both 2

t  and obs
tc  are more prone to higher noise as 

compared to lower values of  2
t  and obs

tc . System noise 
in equation (10) is represented as t  and the additive 
observation noise in equation (11) is represented as 

t .  In the system equation (10), benchmark 
Riskmetrics EWMA model is utilized. As 
mentioned by Siergiy Ladokhin in his thesis with 
analysis , the EWMA model is a simple and 
general model and well accepted to a wide range 
of stock return data.  
 
While developing this Riskmetrics model, 
analysts at J.P. Morgan has processed 480 
financial time series and associated each series 
with an "optimal" decay factor   which 
minimized the root mean squared error (RMSE) of 
the conditional variance forecast as specified in 
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[4]. The model employs, RMSE as the forecast 
error measure criterion. For the daily log stock 
return data, it was observed that with a decay 
factor of   = 0.94, it can able to yield the 
optimal results for the given set of time series.  
Apart from that, It was also discovered that this 
particular specification of the EWMA model 
consistently can able to capture various 
characteristics of daily log stock return data, 
along with volatility clustering which another 
advantage of this model. Riskmetrics EWMA 
model assumes that zt~N(0,1), where t t tz    as 
per the GARCH (P,Q) model.  
The random system error t  basically captures 
the nonsystematic biases of the EWMA model. It 
is intended to account for those errors of the 
deterministic EWMA model which either varies 
randomly or non-systematically over a period of 
time. In the other side, the deterministic volatility 
model is less capable to capture many of the 
complex features of stock return data, such as 
the leverage effect, etc., hence this random error 
term is required to be included for smooth 
functioning in the EWMA model. But in 
practical, heteroskedastic error is more suitably 
included as opposed to a simple white noise 
assumption for t . In addition, it may be 
worthwhile to model any systematic elements of 
the EWMA model error, though it throws more 
challenging task. Pragmatically modelers may be 
more eager to use more sophisticated GARCH 
models, like the E-GARCH model, rather than 
attempting to model the EWMA model error t  
due to its complex characteristics.  
In the observation equation (11), BSOPM is used 
as a base model for the observed option price, 
while allowing for a random observation error t  
which is accounted for the non-systematic 
shortcomings of the BSOPM. It is apparent that 
equation (3) expresses ln (ct) as a non-linear 
function of the state ln( 2

t ). For simplification, 
the assumption is taken that the random error 
that processes t  and t  are basically represented 
as Gaussian white noise. On the other hand with 
the leptokurtotic nature of financial data, it seems 
that a more fat-tailed distribution such as the 
Student t might be appropriate to yield the 
appropriate result. That’s why, it is apparent 
that a particle filter is far more appropriate as 
compared to a Extended Kalman filter, despite  
this being most basic model, because the particle 
filter has been designed in a diversified manner 

which can very effectively able to handle non-
linear, non-Gaussian state space models.  

3..  ASSUMPTIONS UNDERTAKEN IN THE PROPOSED 

MODEL 

 
As this model is being passed through a Auxiliary 
particle filter, definitely, all of the underlying 
assumptions of the particle filter well utilized here also. 
Six assumptions are being taken for smooth functioning 
of the designed model which are specified as follows: 
 
A1 : The System error terms t ~ NIID ( 0,  )  denotes 

Gussian white noise where  denotes the standard 
deviation of the system error process. 
 
A2 : In the system equation, the Risk metrics Extended 
Weighted Moving Average generating process Zt ~ 
N(0,1), where  t t tz    . That signifies that, the 
Riskmetrics model is a specification of Gussian 
GARCH(1,1) model. 
 
A3 : The initial pdfs of the two state vector variables are 
Gaussian ln(   2 2 ) ~ N( 0, ln( 2)SD  ) and ln(c1) ~ N(0, 
SDln(c1)   Where ln( 2)SD   and SD ln(c1)  denote the standard 
deviation of the initial state vector variables. Here, it has 
been assumed that the trading takes place in an arbitrage-
free environment, where the market is completely 
efficient with the view that “unusual” trades do not take 
place. For which, an option equilibrium or true 
theoretical value Ct is assumed to be more equivalent to 
its observed market price Ct abs. The BSOPM model 
error is fully observable, even though it reflects the 
models divergence from a theoretical option price Ct. 
 
A4: Here, it is assumed that there exists a zero 
correlation between the underlying stock prices St and 
the BSOPM model error ( or observation error ). The  
critical point is that when the underlying stock price data 
and option price data are not recorded synchronously or  
the actual trading of the underlying stock necessitate the 
trading of the associated equity option at that time, this 
assumption is not valid.. 
 
A5: The conditional distribution of ST is lognormal and 
allows to be expressed in close format 
 
A6: In the last assumption, the underlying stock price St 
and the risk-free model are observed without error. 
Although it can be assumed that errors in the observed 
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values of St are already observed in the observation error 
t . 

 
 
4. MODEL SIMULATION 

 
For model simulation, we have to first trace out the 
specific parameter values and initial values that have 
been used in this particular simulation process so that 
simulation becomes easier. 

As, it has been observed that, the standard 
deviation SDv, of the observation error vt is 
defined at a very small quantity i.e. 0.05 which 
emphasizes our confidence that the error-adjusted 
BSOPM price ct probably does not deviate from 
the observed market price obs

tc by more than 
roughly 10% i.e. e±3SDV = e±0.10  ≈ (0.74,1.12). 
Therefore, an initial value ln ( obs

tc ) of 1.9 has taken 
because it can able to finds out the approximate 
difference of 5% between  c1

(obs) and c1  (where ln 
(c1)=1.8) effectively. All the intial values ana 
parameters are used in the model is listed in the 
Table 1. 
 
 

TABLE 1: INITIAL VALUES AND PARAMETERS FOR MODEL 
SIMULATION 

Variable Value Meaning 
T 256 Maturity of the call option 

(days). 
TD 256 Annual number of trading 

days. 
K 50 Strike price of the call option 

(Rs). 
 

np 1000 Number of particles per time 
step (i.e. day). 
 

r 0.02 Risk free rate of annual 
interest  

xl1 0.0005 Initial value of the first 
component of the state at day 
t=1. 

x21 1.8 Initial value of the second 
component of the state at day 
t=1. 

S1 55 Initial value of the 
underlying stock at day t = 1. 

µu 0.00025 Long-term average of the 
daily log returns on the 
underlying stock. 

u1 0.02 Initial value of the daily log 
return on the underlying 
stock (between end of day 1 
and end of day 0).  
 

z1 1.9 Initial value of the 
observation at day t = 1. 

SDη 0.05 Standard deviation of first 
component of system noise. 

SDξ 0.04 Standard deviation of second 
component of system noise. 

SDv 0.05 Standard deviation of 
observation noise. 

 
5. ANALYSIS OF THE SIMULATION RESULT 

 
 

 
 
       Fig. 1: Daily Log returns and Observed option price 

 
The simulated stock price experiences a general growth 
trend over the 256 day period although there are sporadic 
period of decline in St as well and they are projected in 
fig. 1 to fig. 6 with different attributes. 

 
 

Fig. 2: Daily Log returns and Expected Observed value 
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The Standard deviation of the observed error is found to 
be quite small at .05. This confirms our belief that the 
error adjusted by BSOPM price Ct probably does not 
deviate from the observed market price Ct Obs by more 
roughly 10%. 
 
It has been observed that Auxiliary particle filter is 
effective in tracking the dynamic of both components of 
the state vector. As our simulated stock does not 
experience many sharp jumps in its volatility; which 
proves that the time series is fairly steady in comparison 
to others.  

 
 

Fig. 3: Daily Log return of Underlying Stock Price 
 

 
 

Fig. 4: Daily Log return of System Noise 
 

 
Fig. 5: System Noise of Simulated Model 

 

 
Fig. 6: Observation of Simulated Model 

 
Another fact it has been observed that, the predictive 
distribution get progressively wider as we move from one 
step prediction to seven step prediction which is due to 
the uncertainty of our estimates increases with the 
forecast horizon. In over 95% of the time steps, the 95% 
PIs for the one-step, two step, and seven steps predictions 
can able to confine the true observed value. 
 
6. CONCLUSION 

 
The proposed hybrid model which is a complete 
equilibrium model of the option pricing problem, 
provides the final formula, which is the function of 
observable variables which can effectively utilized for 
solving problems through particle filter. Rather than 
assuming that the logarithm of the stock price follows a 
normal distribution, we assume that the square root of the 
stock price follows a normal distribution. Due to its 
mathematical as well as computational characteristics our 
proposed model in this paper carries a pragmatic 
alternative for risk analysis of portfolios.  
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