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Abstract 
In this paper, a classification scheme has been 
proposed to classify crackles based on waveform 
features and frequency domain features. This 
purpose is very important in the analysis of 
respiratory disorders. In fact, morphological 
characters of crackles can be well represented by 
time amplitude distribution. Thus, they convey 
significant diagnostic information, for their precise 
timing in the respiratory cycle, their repeatability, 
and shape all mightily correlate with pulmonary 
diseases. The ability to analyze the acoustic patterns 
of these breathing-induced phenomena will enhance 
the expertise of the physiology and 
pathophysiology of respiratory disorders that can be 
very useful in clinical considerations. 
Keywords: Lung sound, Classification, Crackles   Fuzzy 
Logic, Fine, Coarse, Medium. 

 
  

1. Introduction 
 
Crackles have been the most adventitious lung 
sound treated by numerous researchers. In fact, due 
to their transitory character and difficulty to 
separate them from noise in original lung sound, 
different theories and approaches were investigated 
along the last decades. In fact, computerized 
analysis of lung sounds have been a longstanding 
technique that has included a large verity of 
methodologies and procedures presented by experts 
in this field. However, the most important earliest 
work is due to Gavriely et al. [1]; they grasp the 
versatility of lung sound analysis by revealing 
additional useful information needed to diagnose a 
patient with a respiratory disease. Murphy et al [2]. 
Holford et al [3] and Piiril et al [4] have proposed 
empirical rules defining crackles as remarkable 
characteristic of multiple lung diseases.  
A normalisation of a large number of features that 
can parameterize the lung crackles have been 
established via CORSA. Nevertheless, we need still 
to investigate in this field because of great 
correlation between many lung diseases and 

crackles and also, till nowadays, statistics about 
their identification and estimation during a 
respiratory signal needs additional homogenisation 
and standardisation. Also it is worthy to note that 
crackles have moving character during time. The 
pitch, spectrum, and timing of the crackles are 
different in each species of disease. In addition, the 
precise number of crackles can indicate the severity 
of a disease [4]. Crackles also have a short duration 
and low intensity that is inaccessible to the human 
ear without computerized analysis that can provide 
precious information in the early detection of lung 
pathologies. 
 
Yeginer and Kahya [5] have used a wavelet 
network to characterize crackles within a lung 
sound signal by optimizing two weight factors, 
scaling, time-shifting, and frequency parameters. A 
fine/coarse crackles identification based on 
probabilistic based rules has been established. The 
most recent work of M Bahoura [6] has been 
focused on an automatic system for crackles 
extraction and classification. A high separation rate 
has been found; and this filter was justified to be 
very advantageous with less signal distortion. In 
this paper we will detail our methodology for 
crackles detection and classification in the case of 
two pulmonary diseases. Crackles detection and 
extraction have been achieved using a Hilbert- 
multiscale product algorithm that is well described 
by Ayari et al [7]. We will be focused in this paper 
on a new crackles classification scheme to enhance 
the morphology of crackles detected in some 
pulmonary diseases and to ascertain their real 
characteristics. This scheme is based on two 
complementary approaches: the first one is based 
on a statistic method and the second one is based on 
fuzzy logic non linear classifiers. It is shown that 
those two approaches have lead to an automatic 
decision scheme for the classification of two 
pulmonary diseases with a high accuracy. 
 
      
 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 448

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



2. Crackles parameters 
 
According to the study of Murphy et al. [8], 
different parameters have been used to characterize 
and classify crackles, mainly the initial deflection 
width (IDW) which is the duration of the first 
deflection of the crackle and the two-cycle duration 
(2CD) which is the duration of first two cycles of 
the crackle.  In the study of Hoevers and Loudon 
[9], four parameters have been utilized to classify 
crackles: mainly, largest deflection width (LDW1) 
which is the largest deflection of the crackle and the 
widths of its first three rights and left neighbours 
denoted by (LDW2, LDW3 and LDW4). Those 
parameters are denoted by (Fig. 1). Homma and 
Matsuzakill [10], and Mitsuru Munakat & al [11] 
have introduced also time expanded waveforms: 1/4 
cycle duration of crackles waveform, and 9/4 cycle 
duration of crackle waveforms, denoted by T1 and 
T2 in Fig. 2. Thus, it was demonstrated in their 
studies that such features can be the best basics to 
distinguish between fine and coarse crackles. 
To bring more precision to the crackles distinction 
and then classification, we have choice T1, T2, 
IDW, 2CD, LDW1 to LDW3 which are described 
previously and also the maximum amplitude in the 
crackle waveform denoted by Amp. The maximum 
peak frequency extracted from the spectral 
frequency analysis of the crackle waveform denoted 
by PF is also used as a frequency domain crackle 
feature. A part of those features was used by 
standard definitions to classify crackles into fine or 
coarse. In fact, according to the American Thoracic 
Society (ATS) [12], the mean durations of initial 
deflection width (IDW) and two-cycle duration 
(2CD) of coarse crackles are specified to be 1.5 and 
10 ms, and those of fine crackles are 0.7 and 5 ms, 
respectively. Thus, according to Computerized 
Respiratory Sound Analysis (CORSA) definitions, 
a coarse crackle is defined with 2CD >10 ms [8, 9], 
and a fine crackle has 2CD <10 ms. In the review of 
pulmonary analysis [13] it is assumed that a fine 
crackle is defined with deflection width (IDW) and 
two cycle duration (2CD) of 0.92 ms, and 6.05 ms 
respectively. But coarse crackles were considered to 
be designated with IDW and 2CD > 1.25 ms and > 
9.23 ms respectively.  
It is aimed in the present study to develop an 
algorithm that allows calculating a set of crackles 
features that we have chosen to detect and classify 
crackles and also to count their number in a 
breathing phase (inspiration or expiration). The 
algorithm build in this study involves two purposes 
which are developed simultaneously. 
The first purpose is based on time-amplitude 
response analysis of the lung signal and the second 
one involves fast Fourier transform analysis of the 
lung signals. This issue was successfully obtained 
based on the following detailed description and also 
illustrated with the flowchart presented by Fig. 3. 

 
Fig. 1 A typical crackle waveform: four parameters, largest 

deflection widths (LDW1–4) 

 

 
 

Fig. 2 A typical crackle waveform: two parameters T1 and T2 
defined by Holford [3] 

 
The first purpose is based on time-amplitude 
response analysis of the lung signal and the second 
one involves fast Fourier transform analysis of the 
lung signals. This issue was successfully obtained 
based on the following detailed description and also 
illustrated with the flowchart presented by Fig. 3. 
Thus, the precise starting points of crackles are 
indicated by locations of peaks of LDW1 in time-
amplitude distribution which is used as the 
reference point for selection of attracts zones AZ, 
and the wave that follows the starting point is 
manifested in time-amplitude distribution which is 
illustrated by Fig. 1. Thus, we obtain relative 
narrow band waveform representing the oscillating 
pattern of crackles. This reference point renders the 
automatic processing of the crackle possible once it 
is detected Fig. 4. The second extremum before and 
the third extremum after the peak of LDW1 are 
appointed as the start–end points of a region that 
includes 2CD and are exemplified by Fig. 1. The 
crossing zeros and the first derivative of the 
crackles are calculated via a Matlab script to fix the 
1/4 cycle duration and 9/4 cycle duration 
parameters T1 and T2 Fig. 5. Then, a feature 
subroutine is called to calculate wave form features 
(T1, T2, IDW, 2CD, LDW1-3, Amp) and also to 
count the number of crackles in a respiratory phase. 
Crackle wave forms can be therefore plotted Fig. 6 
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and saved to be used for frequency analysis Fig. 7. 
It is outstandingly noted that an intermediate step of 
identification is used to ascertain that the captured 
depicted crackle wave does not contain a vesicular 
sound. This step was achieved using a subroutine 
that computes the maximum error between the 
wave form and a Matlab smooth function, Fig. 8. 
Almost vesicular sounds tested with this subroutine 
have an estimated error ranging from 0.8 to 1.5; so 
that they could be distinctly detected and separated 
from crackles waves Fig. 9.  
 

 

Fig. 3 Flowchart of the automatic crackles detection and 
classification 

 
Peak detector subroutine was used to allow the 
separation of peaks associated with crackles. Also, 
a zero crossing subroutine was used to identify the 
crossroads between the crackle wave and the time 
axis, so that it is possible to define precisely all 
wave features Fig. 7. We think that those features 
can be very useful in crackles classification step, as 
they describe crackles pattern that are strictly 
dependent on the physical morphology of the 
crackle.  
 

 
Fig. 4 crackles detection and extraction  

 

 
 

Fig. 5 peaks and zeros detection of the with features crackles 
calculation. : MDW = 0.0019; TTD = 0.0172; IDW = 9.9773e-

004; MCD = 0.0014; TMA = 0.7742; NCD = 5; FQD = 4.9887e-
004; NFCD = 0.0031. 

 

 
 

Fig. 6 crackles are plotted to be used in frequency analysis 

 

 
 

Fig. 7 Frequency spectrum domain of the considered crackle   
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Fig. 8 Identification of the crackle with smooth function 
(identification max error e = 0.02 %) 

 

 
 

Fig. 9 Depicting and identifying crackles 

 
At this stage the entire respiratory signal is ready to 
the last phase of crackles depicting, identification 
and count automatically. The classification of all 
detected crackles is based on the assessment of the 
different computed features.  
 
 
3. Automatic crackles classification  
 
In this section, we are interested with crackles 
classification using different approaches for data 
obtained from various databases. In fact, data was 
collected from Wilkins [14], Lehrer [15], LARALE 
[16] and our own build database with patients from 
Charle Nicole Hospital in Tunisia. We have studied 
10 patients selected from 15 patients with 
pulmonary fibrosis diagnosed at Charle Nicole 
Hospital. The diagnosed patients have similar 
criteria such as progressive dyspnoea without 
airway obstruction. Also we have studied 10 
patients with chronic bronchitis with sputum 
production. All patients had cough and sputum for 
at least 3 months. Our database was build with lung 
signals recorded using a Littman electronic 
stethoscope Fig. 10, throughout full inspiration and 
full expiration at the right posterior chest wall in 
order to reduce the effect of heart sounds 
interferences. Then, data was saved in the 
stethoscope and transmitted to the computer via 
infrared device. Data was firstly analyzed using the 

Littman software [17], and then a pre-processing 
analysis was conducted to reduce noise effect.  
 

 

Fig. 10 Littman stethoscope S4100 

 
The different sounds considered from the other 
databases are heard over the normal chest. 
Breathing cycle is divided into two stages: 
inspiration and expiration. Each segment is 
characterized by rich information (waveform, 
timing, number and regional distribution of 
crackles). These segments, in each cycle, are further 
partitioned into six phases, namely, early, mid, late 
inspiration and expiration phases. These phases are 
defined according to the inspired and expired air 
volume during respiration.  
 
In the case of data collected using a digital Littman 
Stethoscope, the time duration of recorded signal 
including multiple respiratory phases was between 
30s and 60s, which is a period covering up to 3 to 6 
respiratory cycles. After each recording, the data 
was transferred via an infrared USB device to the 
computer to be analyzed. All recorded files were 
first transferred to a lung sound analyzer Littman 
software after being converted to a digital wave 
format. The pre-processing procedure was built 
using Matlab signal processing toolbox. Lung 
sounds were displayed within waveforms or 
frequency amplitude domain presentations. 
Preceding the recording lung sound phases, all 
patients were identified by name, age, sex and type 
of pathology. Measurements of different sounds 
were established by auscultation with the assistance 
of specialized clinicians. The verification of the 
number of crackles existing in each respiratory 
phase was established with the presence of experts 
in the crackles domain and we have counted 
crackles from the time expanded waveforms 
included in a particular phase from each recorded 
respiratory sound. In fact, the characteristics and 
wealth of crackles is analogous in every cycle 
assimilated to a given lung pathology. Total number 
of crackles is counted from 10 inspiration or 
expiration phases. Feature vectors, extracted from 
segments of respiratory cycles from different 
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patients are jointed into a feature set. In fact, the 
necessity to divide a cycle into phases rises because 
of the non stationary nature of the data within a 
cycle. Such a division of a respiratory cycle is 
consistent with the auscultation terminology since 
all phases are usually considered as the most 
informative and distinctive parts of a respiratory 
sound signal. Thus, the total number of measured 
feature vectors available in a phase, e.g., in early 
inspiration, equals to the number of features times 
the total number of patients. After separation of a 
cycle feature set into phase features sets, each phase 
is classified separately. In a second step we have 
applied this algorithm on signals involving fine and 
coarse crackles from various data bases and results 
are presented in Table 1. Where TP, FP and FN are 
the number of the true positive, false positive and 
false negative respectively [18]. SG11_C1, 
SG11_C2, SG11_C3, SG11_C4, are the referred 
patient with the first, second, third and fourth cycles 
for the first group of pulmonary disease. The other 
patients in the two pulmonary diseases are denoted 
similarly. The true positive indicates the number of 
crackles correctly detected; false positive indicates 
the number of the false detections and false 
negative specifies the number of crackle missed by 
the developed algorithm. One can notice the 
versatility of this method.  
 

Table 1 

 
 
3.1 Performances of crackles extraction 
algorithm  
 

To evaluate the performance of the proposed 
algorithm of crackles detection and extraction, we 
have performed a comparative study that is well 
illustrated in references Xiaoguang et al [18], Mete 
Yeginera et al [19] and Hadjileontiadis [20], these 
two measures were indispensable to estimate either 
the separation rate or the noise quantification. To 
achieve this task, we have computed the ratios 
described with equations above and results are 
summarized in table .3. The separation rate is done 
with equation (1)  
 
SR (%) = SN / RN *100.             (1) 
Where RN is the existent number of crackles in the 
vesicular sounds, and SN is the correctly separated 
number of crackles using the developed algorithm.  
To evaluate the performances of our algorithm of 
crackles detection and extraction, we have 
computed parameters suggested in [19], which are 
designated by: sensitivity S % and positive 
predictivity P%. 

Sensitivity % =  
୘୔

୘୔ା୊୒	
	∗ 100	                       (2) 

Positive Predictivity % =   
୘୔

୘୔ା୊୔	
	∗ 100         (3) 

 
TP_G1 and TP_G2 are designating, the total 
number of patients belonging to first group and 
second group of lung pathologies, respectively. 
Therefore, results of Table 2 display a sensitivity of 
98.34 % and a positive predictivity of 97.88 %. 
This method has performed a high accuracy in 
detecting crackles automatically for 80 respiratory 
cycles. 
 

Table 2 synthesis of crackle count 

 
 
3.2. Crackles morphology and classification 
 
The aim of this section is crackles classification 
using different classification algorithms in order to 
assess the real behaviour of crackles morphology. 
This step is being extensively important to enhance 
the automatic lung disease classification. Data used 
to carry crackles classification is deduced from 
features characteristics defined in the previous 
section 2. For every feature extracted from the 
waveform signal, we tried to conceive a matrix with 
two columns. The respiratory pathologies 
considered herein are presented with two groups of 
patient diseases; pulmonary fibrosis with fine 
inspiratory crackles and bronchitis with sputum 
marked with coarse crackles both of them are 
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common lung disorders. The first column 
represents the elementary mean characteristic of the 
feature determined for crackles presented in the 
lung signal of a designated (inspiration or 
expiration phase) of patients with chronic 
bronchitis, and the second colon represents the 
same elementary mean characteristic of the feature 
crackles for patients with pulmonary fibrosis.  
Classification experiments were achieved on 
respiratory databases described above, to test the 
proposed novel classification scheme, assuming 
that respiratory sound signals are cyclic biological 
data.  
 
There is distinctly a statistical difference between 
groups of features belonging to both pathologies 
considered in this study. We have attempted to 
present data classification problem, from two 
strategies. The first one is based on statistics theory 
and the second involves the fuzzy logic non linear 
classifiers algorithms. 
 
A matrix of features data vectors is stored as 
column-wise. Each column represents a feature 
vector among the features extracted and calculated 
from crackles in adventitious lung signals. Features 
vectors are constituted with the following features 
(T1, T2, IDW, 2CD, PF, LDW1 LDW2, LDW3, and 
Amp) and they are calculated for both lung 
diseases. The feature vectors representing the same 
features and resulting from two different groups of 
lung diseases are located contiguous in the matrix 
data. So the vectors are defined as follows. [T1_G1, 
T1_G2, T2_G1, T2_G2, IDW_G1, IDW_G2, 
2CD_G1, 2CD_G2, ln(PF)_G1, ln(PF)_G2, 
LDW1_G1, LDW1_G2, LDW2_G1, LDW2_G2, 
LDW3_G1, LDW3_G2,  Amp_G1,Amp_G2, ]. 
It is noted that, to overcome the problem of large 
gap of dimensionality between features vectors, we 
have substitute the peak frequency vector by its 
logarithm value, so that PF (peak frequency feature 
vector is substituted by Ln (PF). It is noticeable that 
all features with indices ( _G1) are designating 
features from patients with pulmonary fibrosis and 
features with indices ( _G2) are representing 
features from the second group of pulmonary 
disease that is chronic bronchitis. This build matrix 
was represented by the statistical graphic tool 
Tukey's box plot. In fact, the best model that 
characterizes, obviously central tendency 
parameters, and dispersion parameters is the 
Tukey's box plot which captures magnitude of the 
data series and its dispersion. Actually, we are 
dealing essentially with a schematic representation 
of statistical distribution by incorporating 
parameters of central tendency and dispersion; so 
that comparisons between different series are 
manifestly determined Fig. 11.  
This graph shows the variation range of each group 
of feature values. The minimum, maximum and 

medium values in each vector are well emphasized, 
thus it is possible to distinguish between crackles 
that are specified to be fine or coarse. When we 
analyse the box plot representation, one can see the 
separation or overlap between two consecutive 
groups of features representing the same parameter 
for both pathologies. In fact, it is clear that medians 
of two consecutive boxes representing the same 
feature vector and revealing both pathologies are 
mostly well separated and we distinguish a large 
discrepancy between those medians. 
 

 
 

Fig. 11 box plot of all vector features and their statistical 
parameters. (The column of feature matrix are designated by a 
numbering ranging from 1 to 18, and the statistical parameters 
(median, first quartile, third quartile, minimum and maximum 

parameters, the whiskers extend to the most extreme data points 
of every feature vector are well indicated) 

 

In few cases the two consecutive boxes are 
overlapped and have common feature values. This 
connotation is likely happening for the third large 
deflection width LDW3; (boxes at column 15 and 
16) and maximum amplitude (boxes corresponding 
to column 17 and 18). Those vectors are sharing 
some feature values, so that we could have some 
blurriness about their membership when they are 
used in a clustering process. This concept can lead 
to two further forward-thinking. The first one which 
is most obvious assumes that those particular 
features cannot be considered alone to conclude 
about the classification of the crackles into fine or 
coarse classes. Every comparison between two 
similar features belonging to each group of lung 
disease is a complementary information included 
into a complex decision scheme based on the 18 
features [T1_G1, T1_G2, T2_G1, T2_G2, 
IDW_G1, IDW_G2, 2CD_G1, 2CD_G2, 
ln(PF)_G1, ln(PF)_G2, LDW1_G1, LDW1_G2, 
LDW2_G1, LDW2_G2, LDW3_G1, LDW3_G2,  
Amp_G1,Amp_G2, ]. 
The second thinking is much more like with the 
presence of an intermediate class of crackles that is 
called medium and in this case; features 
characterizing those crackles can be distinct from 
fine or coarse features definitions. To assess the 
trustworthiness of both sights we have established a 
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clustering analysis based on non linear fuzzy 
classifiers. 
 
 
4. Fuzzy clustering analysis 
 
It is worthy to notice that a nonlinear classifier is 
absolutely indispensable to create decision 
boundaries. There are different ways to build such 
nonlinear statistics based on hard classifiers. That’s 
why we have opted for four classifiers; denoted by 
Fuzzy_Clust1, which is a hard partitioning method, 
Fuzzy_Clust2, and Fuzzy_Clust3, which are fuzzy 
clustering methods. Those algorithms are based on 
suitable distances metrics and also they can be 
straightforwardly used when dealing with relatively 
small sized data, such as the case in our study. 
Those fuzzy partitioning methods with different 
distance norms are well described in [21], [22]. It is 
proposed to divide the vector features data sets into 
subsets (called clusters), using hard and fuzzy 
partitioning, so that transitions between the subsets 
can be considered as hard or steady. An overview 
about the theoretical concept of those unsupervised 
partitioning will be defined in the following 
sections 
 
4.1 Classification algorithms with fuzzy logic 
 
The fuzzy partition can be viewed as a 
generalization of the partition; it can achieve real 
values in the interval [0, 1].  
The matrix UN x c = [µik] represents the fuzzy 
partition with conditions given by: 

 

µkj  ∈ [0, 1]; 1൑i ൑  N, 1 ൑ k  ൑ c.                       (1) 
∑ μ୧୩
ୡ
୩ୀଵ  =1,     1൑i 	൑  N, 

0൑ ∑ μ୧୩
ୡ
୩ୀଵ  =1,   ൑k		൑  c 

 
The i-th column of the matrix U contains the values 
of the membership function of the i-th fuzzy set of 
X. the total sum of each column must be equal to 1, 
and therefore the number of total membership of 
each xk in X is equal to one. The distribution of 
membership among the c fuzzy subsets is not 
constrained. It should be noted that in the case of a 
probability score, the sum of degrees belonging to a 
data point must not be equal to one. 
 
4.2 Fuzzy_Clust1 algorithm 
 
Hard partitioning methods are simple and popular, 
although their results are not always reliable and 
these algorithms have numerical problems also. 
From an n x N data set, the Fuzzy_Clust1 algorithm 
allocate each data point to one pole of the cluster c 
to minimize the sum of the square cluster of this 
group: 
 ∑ ∑ ‖x୩ െ	v୧‖ଶ

୒
୩஫୅౟

ୡ
୧ୀଵ             (2) 

 
Ai is a set of data objects (data points) in the i-th 
cluster and vi means the average of these points 
around the cluster i, it is really a standard distance. 
In Fuzzy_Clust1 algorithm, vi is called the cluster 
prototype, which is the cluster centre. 

௜ݒ          ൌ 	
∑ ೣೖ
ಿ೔
ೖసభ
ಿ೔

        (3) 
Ni is being the number of objects in Ai. 
In Fuzzy_Clust1 algorithm, the cluster centres are 
the objects closest to the average data in a cluster. 
V=ሼݒ௜ 	∈ ܺ, 1 ൑ ݅	 ൑ ܿሽ. It is useful for example 
when each data point represents a position of a 
system, so there is no continuity in the data space. 
In this case, the average of the points in a set does 
not exist. 
 
4.3 Fuzzy_Clust2 algorithm  
 
The classification algorithm using fuzzy logic and 
Fuzzy_Clust2 is based on the minimization of an 
objective function called Fuzzy_Clust2 functional. 
It is defined by Dunn [21] as: 
 
;ሺܺܬ							 ܷ, ܸሻ ൌ 	∑ ∑ ሺߤ௜௞ሻ௠	‖ݔ௞ െ ூ‖஺ݒ

ଶே
௞ୀଵ

௖
௜ୀଵ    (4) 

With ܸ ൌ ሾݒଵ, ,ଶݒ …… . . , ,௖ሿݒ ௜ݒ 	 ∈ ܴ௡		 
 
Is a vector of cluster prototypes (centres), which 
must be determined as follows: 

௜௞஺ܦ                     
ଶ 	ൌ 	 ௞ݔ‖ െ	ݒ௜	‖஺

ଶ        (5) 

ൌ ሺݔ௞ െ	ݒ௜ሻ்ܣሺݔ௞ െ	ݒ௜ሻ 
 
It is a standard of the squared distances.  
Statistically, the latter distance may be regarded as 
a measure of the total variance of xk from the 
cluster vi. The minimization of the functional of this 
Fuzzy_Clust2 is a nonlinear optimization problem 
that can be solved using a variety of methods, 
ranging from the minimization of group of 
coordinates to the genetic algorithm. The most 
popular method, however, is a simple Picard 
iteration through the first order conditions for fixed 
points (stationary) in the above equation, known as 
Fuzzy_Clust2 algorithm. 
 
4.4 Fuzzy_Clust3 algorithm  
 
Fuzzy_Clust3 extended the standard Fuzzy_Clust2 
by using an adaptive distance norm, in order to 
detect clusters of different geometrical shapes in 
one data set [23]. Each cluster has its own standard 
Ai including the matrix, which gives the distance 
following standard: 
 
௜௞஺ܦ    

ଶ ൌ ሺ	ݔ௞ െ	ݒ௜ሻ்ܣூሺ	ݔ௞ െ	ݒ௜ሻ,									(6) 
		1	 ൑ ݇	 ൑ ܰ.	 
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The matrices Ai are used as optimization variables 
in the functional Fuzzy_Clust2, allowing each 
cluster to adapt the standard distance to the surface 
of each local topological data. 
If A is the c-uple of the standard matrices 
including: A = (A1, A2,.. Ac). The objective 
function of the Fuzzy_Clust3 algorithm is defined 
by: 
;ሺܺܬ          ܷ, ܸ, ሻܣ ൌ 	∑ ∑ ሺߤ௜௞ሻ௠	ܦ௜௞஺೔

ଶே
௞ୀଵ

௖
௜ୀଵ 			    (7) 

‖௜ܣ‖     ൌ 	ߩ				,	 			௜ߩ	 ൐ 0 
 
Where ρi is fixed for each cluster. Using the 
method of Lagrange multiplier, the following 
expression is obtained for Ai: 
௜ܣ																											 ൌ 	 ሾߩ௜ detሺܨ௜ሻሿଵ/௡	ܨ௜

ିଵ           (8) 
 
With Fi is the fuzzy covariance matrix of the ith 
cluster defined by: 
 

ܨ																								 ൌ 	
∑ ሺఓ೔ೖሻ೘ሺ௫ೖି௩೔ሻ೅
ಿ
ೖసభ	

∑ ሺఓ೔ೖሻ೘
ಿ
ೖసభ

         (9) 

 
Examples of classification with those classifiers 
algorithms are presented by Figures 12 to 18. 
 
Recordings from different databases described in 
the previous section were used, and features data 
analyzed are collected from 4 respiratory cycles in 
each patient lung sound record.  
As illustrated by Figures 12 to 17, the classification 
performances on the amplitude feature of both 
considered lung diseases (chronic bronchitis and 
pulmonary fibrosis) are presented.  
 
The three decision algorithms, specified by, 
Fuzzy_Clust1, Fuzzy_Clust2, and Fuzzy_Clust3 
have been compared. For two features parameters; 
crackles amplitude (Amp) and (LDW3) for both 
groups of pulmonary diseases. The comparison 
carried in this paragraph is based on standard 
indexes that are defined as follows. 
 
The first partition index (SC); is defined as the ratio 
of the sum of compactness and separation of the 
clusters. It constitutes the sum of individual cluster 
validity measures normalized through division by 
the fuzzy cardinality of each cluster as it is defined 
in reference [24]. This parameter SC is helpful 
when comparing different partitions that are defined 
with equal number of clusters. A lower value of SC 
indicates a better partition. Also we have used 
another separation index (S); which is opposite to 
partition index (SC), it uses a minimum-distance 
separation for partition validity [23]. The optimal 
number of clusters should minimize the value of 
this index. It is well noted that the only difference 
of SC and S is the approach of the separation of 
clusters. As a final point, we have used Dunn's 
Index (DI), it is originally proposed to identify 
"compact and well separated clusters". So the result 

of the clustering has to be recalculated as it was a 
hard separating algorithm. In the case of overlapped 
clusters the values of DI are not really unswerving 
because of re-division of the results with the hard 
partition method. The performances of those 
indexes are shown in Table 3.  
 
It can be observed that all indexes have significant 
values. The classification index of the feature 
amplitude is varying in the range of (0.05 to 0.8) for 
all algorithms, and then in the range of (0.009 to 
2.9), for the LDW3 feature. These values are known 
to be significantly good enough.  
   
One can notice that some algorithms are more 
robust than others when there is a frugality data 
problem. Mean values presented in Table 3 are 
displaying decision clusters for partition indexes 
constructed after 10 runs of independent 
initialization parameters that are automatically 
generated with a random process. We have 
enhanced performances of different algorithms by 
running for every case the algorithm up to 10 times 
and then define the mean value of performances 
indexes, to unsure that results are being stationary 
and to minimize errors in indexes values that can be 
related to the randomized initialisation of 
calculation parameters. Furthermore, it was 
recommended to do this step in order to boost the 
performances of different algorithms. In fact, this 
number of runs brigs stable results with reasonable 
time of calculation. 
   
The most advantage of using such fuzzy clustering 
algorithms is due to the kernel and distance assess 
used to compute the density distribution of clusters, 
which cannot operate well while classifying vectors 
with spares data.  
These experiments show that the three 
Fuzzy_clust1, Fuzzy_Clust2 and Fuzzy cust3 
algorithms have overcome this simple sized 
problem and have carried significant results.  
 

 
Figure 12 Fuzzy_Clust1 algorithm applied to the amplitude 

feature, with two clusters separation, c=2 
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Figure 13 Fuzzy_Clust1 algorithm applied to the amplitude 

feature, with two clusters separation, c=3 
Scatter plots indicate that there is a slight overlap between the 

two classes, in spite of their separate clustering tendency. 

 

 
Figure 14 Fuzzy_Clust2 algorithm applied to the amplitude 

feature, with two clusters separation, c=3 

 

 
Figure 15 Fuzzy_Clust2 algorithm applied to the amplitude 

feature, with two clusters separation, c=2 

 

 
Figure 16 Fuzzy_Clust3 algorithm applied to the amplitude 

feature, with three clusters separation, c= 3.  
 

 
Figure 17 Fuzzy_Clust3 algorithm applied to the amplitude 

feature, with two clusters separation, c=2. 

 
At this stage, it was possible to measure the 
clustering algorithms validity using the indices 
calculated and summarized in the Table 3. Those 
indices are defined according to the definition of 
functions assessing individual clusters partition.  

 
Table 3 

 
 

While calculating validity measure indexes to 
estimate the goodness of an algorithm for the data 
sets associated with LDW3 and Amp features, some 
conclusions can be emphasized. For DI index 
Fuzzy_Clust1 and Fuzzy_Clast2 are almost similar 
for both features Amp and LDW3. It is important to 
notice that the best results are obtained with three 
clusters for each of the clustering algorithms. The 
DI indexes are similar in the case of LDW3 for all 
both algorithms; Fuzy_Clust1 and Fuzzy_Clust2. In 
the case of Amp feature, Fuzzy_Clust1 seems to be 
the best classifier as we get the highest DI index.  
 
It is concluded that with all classifiers, the data sets 
are presenting better performances with three 
clusters. Thus, according to analysis of Amp and 
LDW3 features, the existence of three groups of 
crackles is imminent. In addition, the analysis of 
Fig. 12, Fig. 15 and Fig. 17 show the existence an 
overlap between data sets of the two clusters. This 
fact can be explained by the existence of a third 
category of crackles which are identified as medium 
crackles, and then characterized with different 
feature parameters. This fact confirms results 
performed in reference [19]. It is concluded actually 
that a large statistical noteworthy difference exists 
between the crackles in the two pulmonary diseases 
analysed in this study; pulmonary fibrosis and 
chronic bronchitis. But, according to results of 
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features analysis, both of diseases are characterized 
with different category of crackles that are 
statistically distinguished as described in the 
following section.  
 
4.5 Synthesis of crackles classification   
 
Using definitions of features properties defined in 
section 2, and features parameters established in 
section 3, we have computed the different category 
of crackles present in each group of pulmonary 
disease. A statistical distribution of the number of 
crackles classified by category for both lung 
pathologies can lead to the data presented in Table4 
below. 
 
In fact, this table summarises the classification 
results of crackles detected in the two lung 
pathologies; S_G1, S_G2 designating the data 
collected from patients belonging to first group and 
second group of lung pathologies, respectively. The 
first group is corresponding to pulmonary fibrosis 
and the second one is corresponding to chronic 
bronchitis. NFC, NCC, NMC are abbreviations of 
number of fine crackles, number of coarse crackles 
and number of medium crackles detected in every 
set of pulmonary disease respectively.  
 

 
Table .4 

   S_G1  S_G2 

NFC  34  4 
NCC  4  27 
NMC  4  9 

 
 
5. Conclusion 
 
In this research, a classification scheme has been 
proposed to classify crackles extracted 
automatically from two groups of pathologic lung 
signals. In this scheme we have involved two 
methodologies; the first one is a statistics based 
methodology and the second is a fuzzy non linear 
classifiers methodology. It was demonstrated the 
existence of three categories of crackles in both 
signals, but with different proportions and spread. 
In this study we have pointed out the importance of 
using a large number of features extracted from 
crackles to ensure the real category of crackles. 
Thus, we have selected 9 features to enhance the 
factual behaviour of crackles and to distinguish 
between their morphology; features related to the 
waveform characteristics, such as amplitude, and 
time duration of the crackle waveform are the most 
relevant features in crackles characteristics 
distinction. The 1/4 cycle duration T1, and 9/4 
cycle duration T2 defer information that is 
qualitatively a confirmation of information 

capitulated from IDW, LDW2 and LDW3. 
Maximum amplitude and total time deflection of a 
crackle may represent information coming from 
pressure inside the pulmonary arteries. So that in 
the case of patients with chronic bronchitis, 
obstruction in pulmonary airways is mostly affected 
by a high amplitude cracking. Conversely, in the 
case of fine crackling, amplitude of the waveform is 
much lower than it is in coarse crackles case. The 
nine characteristics features developed in this study 
are carrying complementary information about the 
morphology of crackles detected in 80 respiratory 
cycles from patients associated to two groups of 
pulmonary diseases; (pulmonary fibrosis and 
pulmonary bronchitis). Thus, statistics from 
features analysis have shown that individual 
crackles can be separated into three groups (fine 
crackles, coarse crackles and medium crackles). 
The number and the spread of crackles that are 
extracted from the two groups of pulmonary 
diseases may be significant in the pathology 
interpretation attendance. These results suggest that 
spectral and waveforms characteristics of crackles 
may help to improve the accuracy of pulmonary 
auscultation and to spread out our knowledge about 
how crackles are generated.  
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