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Abstract 
Motivated by pattern grammars of Dassow et al [3] and 
cooperating distributed grammar systems by Csuhaj – Varju et al 
[5], we introduce a new grammar system, called cooperating 
distributed pattern grammar system CDPGS. In this system all 
the components considered are Pattern grammars. The resultant 
family of languages is compared with other families of languages 
and also we introduce a learning algorithm for cooperating 
distributed pattern grammar system. 
Keywords: Pattern grammar, Cooperating Distributed 
grammar system, Learning, Oracle. 

1. Introduction 

Angluin et al [1], while studying the problem of learning or 
inferring a pattern common to all strings in a given sample, 
introduced pattern languages. A pattern is a finite string of 
constants (or terminal symbols) and variables (or non 
terminal symbols). A pattern language is the set of all 
strings obtained by substituting for each variable symbol in 
the pattern, any nonempty strings of constants, with 
different occurrences of the same variable being replaced 
by the same string. 
 
Dassow et al [3], defined a new generative device, called a 
pattern grammar, motivated by the study of Angluin [1]. 
The idea here is to start from a finite set A of axioms 
which are over an alphabet of constants; given a set P of 
patterns which are strings over constants and variables, 
replace the variables in a given pattern by axioms and 
continue the process with the current set of strings, 
obtained by such operations. The replacement is done in 
parallel which means all variables occurring in a pattern 
are replaced simultaneously. It is also uniform which 
means same variables are replaced by same string at a 
particular step. All strings generated in this way constitute 
the associated language called a pattern language.  
 
The theory of grammar systems [11] is an interesting and a 
deeply investigated area of formal language theory. A 
variety of grammar systems have been considered in the 
literature and among these a cooperating distributed (CD) 
grammar system by Csuhj – Varju et al [5] has been 

studied by many researchers. A compact account of many 
of these details is provided by Dassow et al [2]. A 
cooperating distributed (CD) grammar system comes from 
black board systems. Each component grammar 
corresponds in this model to a particular knowledge source 
of the black board system. The global data base of the 
black board systems – the black board – is modeled by 
sentential form in which the component grammars of the 
grammar system make their rewritings. Here we examine 
CD grammar systems whose components are pattern 
grammars 

2. Pattern Grammar 

A pattern with k variables is a word over T ∪ X, where X 
= {x1, x2, …, xk}. A pattern with k variables is said to be in 
canonical form if, for each i ≤  k, the right most occurrence 
of xi in p occurs to the right of the rightmost occurrence of 
xi – 1. For a pattern p with k variables and a set of k strings 
u1, u2, …uk ∈ T*, let p[x1 : u1, x2 : u2, …xk : uk] denote the 
strings obtained by substituting ui for each occurrence of xi 
in p. The language L(p) =     { p[x1 : u1, x2 : u2, …xk : uk] /  
u1, u2, …uk ∈ T*} generated by using substitutions of this 
type is the language generated by the pattern p. We first 
recall the definition of pattern grammar by Dassow et al 
[8]. 
 
Definition 2.1: [8] A pattern grammar (PG) is a 4 – tuple 

),,,( PAXG �=  where � is an alphabet whose 
elements are called constants, X is an alphabet whose 
elements are called variables. A ⊆  �* is a finite set of 
elements of �* called axioms and P ⊆ (Σ ∪ X)+ is a finite 
set of words called patterns where each word contains 
atleast one variable. The rewriting is done as follows: 
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This means that, P(A) contains words obtained by 
replacing the variables in the pattern by words from A and 
different occurrences of the same variable are replaced by 
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the same word. Then the pattern language (PL) generated 
by G is L(G) =  P ∪ A ∪ P (A) ∪ P(P (A)) ∪… 
 
Example 2.1: G = ({a, b}, {δ}, {ab}, {aδb}) is a pattern 
grammar generating language L(G) = {anbn / n ≥ 1}, as A = 
{ab}, P(A) = {aabb}, P(P(A)) = {aaabbb} and so on.  
 
We observe that the concept of variables is similar to that 
of variable in Chomskian grammar. But the rewriting 
process is different; it is uniform, in the sense that all the 
occurrences of a variable in a pattern are replaced by the 
same word and the variables are rewritten in parallel. Still, 
the pattern grammars generate languages which are 
incomparable with Chomskian languages and 
Lyndenmayer languages. 

3. Cooperating Distributed Grammar System 

Definition 3.1: [5] A cooperating distributed grammar 
system (CD grammar system for short) is an (n + 2) tuple Γ 
= (T, G1, G2, …, Gn, S)  
where, 

• For 1 ≤ i ≤ n, each Gi = (Ni, Ti, Pi) is a (usual) 
context – free grammar with the set Ni of non 
terminals, the set Ti of terminals, the set Pi of 
context – free rules, and without axiom, 

• T is a subset of �
n

i iT
1=

, 

• �
n

i iNS
1=

∈   = N 

The grammars Gi, 1 ≤ i ≤ n, are called the components of  

Γ. Further iii TNV ∪=   and �
n

i iVV
1=Γ =  

The grammars correspond to the agents solving the 
problem on the black board; any rule represents some 
pieces of knowledge which results in a possible change on 
the black board. The axiom S is the formal counterpart of 
the problem on the black board in the beginning. The 
alphabet T contains the letters which correspond to such 
knowledge pieces which are accepted as solutions / part of 
solutions. 
 
Definition 3.2: Let Γ be a CD grammar system as in 
Definition 3.1. Let x, y ∈ Vi

*. Then we write x	k
G y iff 

there are words x1, x2 …… xk+1 such that 
(i) x = x1, y = xk+1, 
(ii) xj 	 G xj+1, ie., xj = x′ Aj xj′′, xj+1 = x′ wj xj′′, Aj→ 

wj ∈Pi, 1 ≤ j ≤ k 
Moreover, we write 

,' kksomeforyxiffyx k
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Any derivation k
Gi

x	 y corresponds to k discrete 

derivation steps in succession in the grammar Gi, and this 
represents k changes of the partial solution on the 
blackboard by one of the agents according to her/his/its 
rules reflecting the knowledge. Thus the ≤ k-derivation 
mode corresponds to a time limitation, since the agent can 
perform at most k changes. The ≥ k-derivation mode 
represents competence since it requires that the agent can 
perform at least k changes, she/he/it must contribute at 
least k times in succession to the solving. The *-mode 
meets the case where the agent can work at the blackboard 
as long as she/he/it wants to do. Finally, the t-mode of 
derivation corresponds to that strategy where any agent has 
to perform solving steps at the blackboard as long as 
she/he/it can contribute to the process of solving. 
 
Definition 3.3: Let  

f ∈ {t, *, 1, 2, . . . , ≤1, ≤2, . . . , ≥1, ≥2, …}, 
and let Γ be a CD grammar system. Then the language 
Lf(Γ) generated by Γ is defined as the set of all words z ∈ 
T* for which there is a derivation 

f
Gi

wS
10 	= f

Gi
w

21	  f
Gi

w
32 	    . . . f

G ri
	 .zwr =  

 
We now give some examples in order to illustrate the 
concepts. 
Example 3.1: Let us consider the CD grammar system 
  Γ = ({a, b, c}, G1, G2, S), 
With 
G1 = ({A, B}, {A′, B′, a, b, c}, {A→aA′b, B→cB′, A→ab, 
B→c}), 
G2 = ({S, S′, A′, B′}, {A, B}, {S→S′, S′ → AB, A′→A, 
B′→B}) 
Then we obtain 
L1 (Γ) = L* (Γ) = L≤k (Γ) = L≥1 (Γ) = Lt (Γ) = {an bn cm| n ≥ 
1, m ≥ 1}, k ≥ 1, 
 L2 (Γ) = L≥2 (Γ) = Lt (Γ) = {an bn cn| n ≥ 1,n ≥ 1}, 
Lk (Γ) = L≥k (Γ) = 0 for k  ≥ 3. 
We show the relation only for Li (Γ) and L2 (Γ); the proofs 
for the other relations are analogous and left to the reader. 
 
It is clear that the derivation starts with S 	 S′ 	 A B 
using the rules from P2. We now have to change to P1 (or 
the derivation is already blocked in the k- or ≥k-mode of 
derivation for k ≥ 3) and one of the following cases holds: 
 
 Case 0. A B 	 2abc. 
 Case 1. A B 	 2abcB′. 
 Case 2. A B 	 2aA′bc. 
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 Case 3. A B 	 2aA′bcB′. 
In Case 0 the derivation has been terminated. 
First we consider the derivation in the t-mode. 
In Case 1 we can continue only in the following way: 
abcB′ 	 t  abcB 	 t  abccB′ 	 t  abccB 	 t  abc3 B′ 	 t  
abc3 B 	 t   . . .  
 . . . 	 t  abcr-2 B 	 t  abcr-1 B ′	 t  abcr-1 B 	 t  abcr. 
Analogously, in Case 2 only words and all words of the 
form ar br c, r ≥ 2, can be generated.  
  
In Case 3 we have to continue with applications of A′→A, 
B′→B. This yields aAbcB. Using rules of P1 we obtain 
a2b2c2 or a2b2c2 B′ or a2 A′ b2c2 or a2 A′ b2c2 B′. In all these 
cases we derive a word of the same structure as in the 
previous cases, only the power of the terminal letters is 
changed from 1 to 2. Therefore it is easy to see that  

L t (Γ) = {anbncm /  n ≥ 1, m ≥ 1} 
Now let us consider the derivation in 2 – mode. Then in 
the above cases 1 and 2 the derivation is blocked since we 
can apply one rule of P2. Thus the only correct derivations 
are of the form  
S 	 2  AB 	 2  a A′ bcB′ 	 2  aAbcB 	 2  a2A′ b2c2 B′ 	 
2  a2A b2c2 B 	 2   . . .  
 . . . 	 2  an – 1A bn - 1 cn-1 B 	 2  abcr-1 B ′	 t  anbncn. 
This proves   

L 2 (Γ) = {anbncn /  n ≥ 1} 

4.  Cooperating Distributed Pattern Grammar 
System 

In the new model we consider pattern grammars as 
components. We define the system with pattern grammars 
as components. 
  
Definition 4.1: A cooperating distributed pattern grammar 
system (CDPGS for short) is an (n + 3) tuple            
  Γ = (Σ, G1, G2, …, Gn, X, A)  
where, 
for 1 ≤ i ≤ n, each ),,( iiii PXG �=  is a (usual) pattern 

grammar where �I ⊆� is an alphabet whose elements are 
called constants, Xi ⊆  X is an alphabet whose elements 
are called variables. A ⊆  �* is a finite set of elements 
called axioms and Pi ⊆ (Σi ∪ Xi )

+ is a finite set of words 
called patterns where each word contains atleast one 
variable. The grammar Gi, 1 ≤ i ≤ n, are called the 
components of Γ.  The rewriting in the ith component is 
done as follows: If L is the set of words given as input to 
the ith component then, in a single step, it gets the language 
Pi (L) from Pi, where 
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This means that, Pi(L) contains words obtained by 
replacing the variables in the pattern by words from L and 
different occurrences of the same variable are replaced by 
the same word. If ith component works for k steps 
continuously, then we write y ∈Pi

k (x) if there are words 
x1, x2 …… xk+1 such that 
(i) x = x1, y = xk+1, 
(ii) xj + 1∈Pi ({xj}), j = 1, 2, …, k   
Moreover, we write 
y ∈Pi

* (x) iff y ∈Pi
k (x) for some k.  

The *-mode is the case where the agent can work at the 
blackboard as long as she/he/it wants to do.  
In this section we give few examples for the model 
CDPGS. In CDPGS we start derivation from the first 
component and words that are collected in the last 
component form the required language.   
 
Example 4.1: Γ = ({a, b, c}, G1, G2, {δ1, δ2}, {c}),       
G1 = ({a}, {δ1}, {δ1b}) 
G2 = ({b}, {δ}, {aδ2}),  
For  k = 1, L (Γ) = {ancbn / n ≥ 1}.  
The derivation is as follows: At the beginning the first 
component produces a word ‘cb’, and then this word is 
taken as the axiom for the second component and the word 
‘acb’ is produced. Now the word ‘acb’ which is produced 
in second component is considered as axiom for the first 
component thus the word ‘acb2’ is produced, this is treated 
as axiom for the next derivation in the second component 
and the word a2cb2 is generated. After n subsequent 
derivations the language generated in the first component 
is ancbn. 
 
Example 4.2: Γ = ({a, b}, G1, G2, {δ1, δ2}, {λ})       
G1 = ({a}, {δ1}, {aδ1}) 
G2 = ({b}, {δ2}, {δ2b}),  
If k = 1, then L (Γ) = {anbn / n ≥ 1}.  
The derivation is as follows: At the beginning the first 
component produces a word ‘a’, and then this word is 
taken as the axiom for the second component and the word 
‘ab’ is produced. Now the word ‘ab’ which is produced in 
second component is considered as axiom for the first 
component thus the word ‘a2b’ is produced, this is treated 
as axiom for the next derivation in the second component 
and the word a2b2 is generated. After n subsequent 
derivations the language generated in the second 
component is anbn. 
Similarly if k = 2, the language generated is {a2n b2n /  n ≥ 
1}. And hence in general if there are k discrete derivation 
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steps in succession in the grammar Gi, the language 
generated is {ak n bk n / n ≥ 1}.   
 
Example 4.3: Γ = ({a, b, c}, G1, G2, {δ1, δ2}, {c}),       
G1 = ({a, b, c}, {δ1},{ aδ1a, bδ1b}) 
G2 = ({a, b, c}, {δ2}, { aδ2a, bδ2b}),  
L (Γ) = {wcwR / w ∈  {a, b}+}.  
The derivation is as follows: At the beginning the first 
component produces a words ‘aca’ and ‘bcb’, and then 
these words are taken as the axiom set for the second 
component and the words ‘a2c a2’, ‘bacab’, ‘abcba’ and 
‘b2cb2’ are produced. Now this set of words are taken as 
axiom set for the first component and thus the words ‘a3c 
a3’, ‘abacaba’, ‘a2bcba2’, ‘ab2cb2a’, ‘ba2ca2b’, ‘b2acab2’, 
‘babcbab’ and ‘b3c b3’ are generated.  After n subsequent 
derivations the language generated is {wcwR / w € {a, b}+}                                                                                                                                                                                          
 
Example 4.4: Γ = ({a, b}, G1, G2, {δ1, δ2}, {b}),       
G1 = ({a}, {δ1}, {aδ1}) 
G2 = ({b}, {δ}, {δ2b}),  
L (Γ) = {anbm / n, m ≥ 1}.  
If there is no restriction on k, then the language generated 
is {anbm / n, m ≥ 1}.  
 
Proposition 4.1:  CD(PL) – PL ≠ φ 
Proof: This is seen from the fact that the language {anbm / 
n, m � 1} is in Cooperating Distributed Pattern Language 
CDPL but not in pattern language PL.  
 
Proposition 4.2: The family of Cooperating Distributed 
Pattern languages CDPL and the family of Pattern 
languages PL are comparable 
Proof:  The language {anbn / n � 1} is in PL for it is 
generated by the pattern grammar ({a, b}, {δ}, {ab}, 
{aδb}) also it is in CDPL. Thus CDPL � PL � φ 
 
Proposition 4.3:  

1. The family of context – free languages (CFL) and 
CDPL are comparable 

2. The family of regular languages (RL) and CDPL 
are incomparable 

Proof:   
    1    The statement 1 is due to the fact that the language 
{wcwR / w ∈  {a, b}+} is in both CFL and CDPL  

2    The statement 2 is due to the fact that the language 
{anbn / n � 1} is in CDPL but not in RL 

  
Theorem 4.1: If L ∈ CDPL (Cooperating Distributed 
Pattern Language) is an infinite language over �, then 
there is u € �+ such that for all n � 1a string of the form 
w1u

kn w2 is in �+, where w1, w2 ∈�+ and k is the number 
of discrete derivation steps in succession in the grammar 
system. 

Proof: Consider a CDPG system Γ = (Σ, G1, G2,…, Gm , X, 
A). Let us take a component grammar ),,( iiii PXG �= . 

As L is infinite the length of the pattern must be greater 
than 1 (i.e) �pi�> 1. For such pattern pi we distinguish 
several cases: 
 
(i) pi = u�x, u ∈  �i

+, � ∈  Xi, x ∈  (�I ∪ Xi)
*. Clearly, 

L(G) contains al strings of the form ukzyn, k � 1, z 
∈  A, yk is obtained by replacing � in pi by z, each 
variable, if any, in x by strings in A, then replacing 
� in pi by the result and each variable in x, if any, by 
strings in A and repeating this operation n times. 

(ii) pi = = x�u, u ∈  �i
+, � ∈  Xi, x ∈  (�i ∪ Xi)

*. The 
reversed situation is obtained. 

(iii) pi = = �1i x�2i , �1i , �2i ∈  Xi equal or not, x ∈  (�I ∪ 
Xi)

+. Let z1, z2 be in A and y be obtained by 
replacing in x all variables, if any, by strings in A.  

Then all strings of the form ukv or vuk is generated in the 
component grammar Gi. Now as the CDP grammar system 
Γ = (Σ, G1, G2,…, Gm , X) consists of m components, the 
strings generated in the component Gi are used as axioms 
by some other component, and these strings are used by yet 
another component. This process is repeated n number of 
times. Thus at the end, the language generated by the 
system Γ = (Σ, G1, G2,…, Gn, X, A) consists of words 
w1u

kn w2. 

5.  Learning Cooperating Distributed Pattern 
Grammar System 

Consider the situation where the learning algorithm is 
allowed to make queries to an oracle. In [4], the notion of 
“minimally adequate teacher” (MAT) is introduced and the 
teacher (Oracle) answers membership and equivalence 
queries in order to construct a learning algorithm for 
regular sets. In [5], the notions of subset and superset 
queries are introduced. For a subset (superset) query, the 
input is a concept C and the output is ‘yes’ if C is a subset 
(superset) of the target concept C*

 and ‘no’ otherwise. If 
the answer is ‘no’, counter example x from C – C* (C* - C) 
is also returned. Restricted subset queries and restricted 
superset queries, where no counter example is returned are 
also introduced in [5]. 
 
We try to learn a CDPGS grammar system with a single 
pattern which is in canonical form. The technique of the 
algorithm is as follows: First, the pattern of the pattern 
grammar is learnt using prefix queries and the axioms are 
learnt using restricted subset queries.  
 
We recall that a word u∈ Σ* is a prefix of another word w 
∈ Σ*, if there exists a word v ∈ Σ*, such that w = uv. Thus 
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in a prefix query, the concept to be learnt is usually a word 
w over the underlying alphabet T. The input is a word u ∈ 
Σ* and the output is “yes”, if u is a prefix of w and “no” 
otherwise. The class of all k variable patterns is denoted by 
Pk.  
 
We now present an algorithm that exactly identifies in 
polynomial time the class Pk.of pattern languages using 
prefix queries. Let p = p1p2…pn be the pattern to be 
identified. We begin by checking whether p1 is a constant. 
Hence for each a ∈ Σ we make a prefix query for a.. If the 
output is “no” to each of these queries we conclude that p1 
is a variable and since p is in canonical form p1 =  x1.  
 
Suppose at some stage we have discovered that p1p2 p3… 
pi is a prefix of p and j = max {r / ps = x r for 1 ≤ s ≤ i}. 
Again we check whether pi + 1 is a constant by making 
prefix query for p1 p2 p3… pi a, a ∈  Σ. As before if each of 
these queries yields a negative answer, we conclude that pi 

+ 1 is a variable and query whether p1 p 2… pi xr is a prefix 
for each r ≤ j + 1. We conclude that the pattern is complete 
if each of these queries receives a negative reply.  Now, to 
learn axiom set A, initially fix A = φ. Arrange the words in 

�
m

i

i

1=

� (m the maximum length of the axiom is known) are 

arranged according to increasing order of length and 
among the words of equal length lexicographically. Let 
them be x1, x2… xs. At the tth step ask the restricted subset 
query for (T, A ∪ {xt}, p). If the answer is ‘yes’, increment 
A to A ∪ {xt}. If the answer is ‘no’, A is not incremented. 
The output at the last step is the required PG.   
 
The advantage of this learning is, a sample word from the 
language generated by the system is not needed to learn the 
system as is done in parallel communication.  
 
Algorithm  
Input: 
The alphabets Σj, Xj, a positive sample w ∈ Σj

+ of length r 
with w = w1w2….wr, the length ‘n’ of the pattern, the 
maximum length ‘m’ of the axiom, r ≥ n , words t1, t2…, ts 

of �
m

i

i
j

10=

� given in the increasing length order, among 

words of equal length according to lexicographic order. 
 
 
Output: 
 A cooperating distributed pattern grammar system  

( )AXGG ,,,, 21Σ=Γ′  with ( )Γ=Γ′ LL )(  
 

 

 

Procedure (Pattern 1) 
Begin 
J = 1  
 
Module 1 
 i = 0, p = �, number of characters in the pattern is n 
First set 
 for a � Σj 
 begin 
  Ask prefix query for pa 
     if answer is “yes” then 
        begin 
   p = pa 
     i = i +1 
       if i is equal to n 
      begin 
    exit 
      end 
      call first set 
         else  
    call module 2 
    end 
  end 
Module 2  
Second set 
 for x � Xj 
 begin 
  Ask prefix query for px 
    if answer is “yes” then 
       begin 
   p = px 
     i = i + 1 
       if I is equal to n 
  begin 
   exit 
  end 
  call second set 
 else 
  call module 1 
 end 
 end   
            end 
 
Procedure (Axiom) 

Let x1, x2, …, xs be the words in �
m

i

i
j

1=

� arranged in 

lexicographic order 
A = φ 
 for t = 1 to s do 
  begin 
   ask restricted subset query for 
G =  (Σj , A ∪ {xt}, {p}) 
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    If ‘yes’ then A = A ∪ 
{x} and t = t + 1 
   else output  G 
  end 
Print the Cooperating grammar (Σj ,Xj, pj) 
 
 
 
Procedure (Pattern 2) 
 
Begin 
J = j +1  
 
Module 1 
 i = 0, p = �, number of characters in the pattern is n 
First set 
 for a � Σj 
 begin 
  Ask prefix query for pa 
     if answer is “yes” then 
        begin 
   p = pa 
     i = i +1 
       if i is equal to n 
      begin 
    exit 
      end 
      call first set 
         else  
    call module 2 
    end 
  end 
Module 2  
Second set 
 for x � Xj 
 begin 
  Ask prefix query for px 
    if answer is “yes” then 
       begin 
   p = px 
     i = i + 1 
       if I is equal to n 
  begin 
   exit 
  end 
  call second set 
 else 
  call module 1 
    end 
    end 
              end 

6. Example run for PC (PL) 

Let us consider a CDPG system given in the example 4.2 
with two components, which are pattern grammars. First 
we try to learn pattern grammar 1. To learn a pattern 
grammar it is enough if we find the pattern p and the axiom 
set A. Here the length of the pattern 1 is two and maximum 
length of the axiom is one and the alphabet Σ = {a, b, c}. 
Let p = p1p2. First we check whether p1 is a constant. Thus 
for a ∈ Σ1, a prefix query is asked. The answer will be 
“no” since the pattern is �1b.  Thus p1 = �1 is learnt. Now 
for a ∈ Σ1 we ask a prefix query for �1a. The answer will 
be “no”. Again for b ∈Σ1, a prefix query is asked for �1b. 
The answer will be “yes”. Since we get answer “yes” we 
conclude that p1 as �1b.  
 
Now, to learn axiom set A, initially fix A = φ. The words 

in �
3

1=

�
i

i are arranged according to increasing order of 

length and among the words of equal length 
lexicographically. Let them be a, b, c, aa, bb, cc, ab, ba, ac, 
ca, bc, cb, abc, bca, … Now the restricted subset query for 
(Σ, A ∪ {a}, p1) is asked. As the answer is ‘no’ one more 
subset query (Σ, A ∪  {b}, p1) is asked. Here the teacher 
answers no. Then we ask subset query (Σ, A ∪ {c}, p1). 
Here the teacher answers yes. Thus the axiom set is learnt 
which is {c}. Thus the pattern 1 and axiom are learnt.  
 
Now since the CDPGS has two components which are 
pattern grammars, we try to find the second component 
whose pattern (pattern 2) is learnt as explained above. The 
axiom 2 need not be learnt because the output of the first 
component is the axiom of the second component.  
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