

������������	
	���	�������������	
	���	�������������	
	���	�������������	
	���	������� ������������ ������������ ������������ ����������

Sindhu J Kumaar1 and P. J. Abisha2

 1 Department of Mathematics, B. S. Abdur Rahman University
Chennai − 600048, India

2 Department of Mathematics, Madras Christian College
Tambaram, Chennai −600059, India

Abstract
Motivated by pattern grammars of Dassow et al [3] and
cooperating distributed grammar systems by Csuhaj – Varju et al
[5], we introduce a new grammar system, called cooperating
distributed pattern grammar system CDPGS. In this system all
the components considered are Pattern grammars. The resultant
family of languages is compared with other families of languages
and also we introduce a learning algorithm for cooperating
distributed pattern grammar system.
Keywords: Pattern grammar, Cooperating Distributed
grammar system, Learning, Oracle.

1. Introduction

Angluin et al [1], while studying the problem of learning or
inferring a pattern common to all strings in a given sample,
introduced pattern languages. A pattern is a finite string of
constants (or terminal symbols) and variables (or non
terminal symbols). A pattern language is the set of all
strings obtained by substituting for each variable symbol in
the pattern, any nonempty strings of constants, with
different occurrences of the same variable being replaced
by the same string.

Dassow et al [3], defined a new generative device, called a
pattern grammar, motivated by the study of Angluin [1].
The idea here is to start from a finite set A of axioms
which are over an alphabet of constants; given a set P of
patterns which are strings over constants and variables,
replace the variables in a given pattern by axioms and
continue the process with the current set of strings,
obtained by such operations. The replacement is done in
parallel which means all variables occurring in a pattern
are replaced simultaneously. It is also uniform which
means same variables are replaced by same string at a
particular step. All strings generated in this way constitute
the associated language called a pattern language.

The theory of grammar systems [11] is an interesting and a
deeply investigated area of formal language theory. A
variety of grammar systems have been considered in the
literature and among these a cooperating distributed (CD)
grammar system by Csuhj – Varju et al [5] has been

studied by many researchers. A compact account of many
of these details is provided by Dassow et al [2]. A
cooperating distributed (CD) grammar system comes from
black board systems. Each component grammar
corresponds in this model to a particular knowledge source
of the black board system. The global data base of the
black board systems – the black board – is modeled by
sentential form in which the component grammars of the
grammar system make their rewritings. Here we examine
CD grammar systems whose components are pattern
grammars

2. Pattern Grammar

A pattern with k variables is a word over T ∪ X, where X
= {x1, x2, …, xk}. A pattern with k variables is said to be in
canonical form if, for each i ≤ k, the right most occurrence
of xi in p occurs to the right of the rightmost occurrence of
xi – 1. For a pattern p with k variables and a set of k strings
u1, u2, …uk ∈ T*, let p[x1 : u1, x2 : u2, …xk : uk] denote the
strings obtained by substituting ui for each occurrence of xi
in p. The language L(p) = { p[x1 : u1, x2 : u2, …xk : uk] /
u1, u2, …uk ∈ T*} generated by using substitutions of this
type is the language generated by the pattern p. We first
recall the definition of pattern grammar by Dassow et al
[8].

Definition 2.1: [8] A pattern grammar (PG) is a 4 – tuple

),,,(PAXG �= where � is an alphabet whose
elements are called constants, X is an alphabet whose
elements are called variables. A ⊆ �* is a finite set of
elements of �* called axioms and P ⊆ (Σ ∪ X)+ is a finite
set of words called patterns where each word contains
atleast one variable. The rewriting is done as follows:

()
��

�
�
�

��

�
�
�

≤≤∈∈+≤≤�∈

∈
=

++

kiXAxkiu

Puuuuuxuxuxu
AP

kk

kk

iii

kikiikikii

1,,,11,

,.../...
*

121121 2121

δ

δδδ

This means that, P(A) contains words obtained by
replacing the variables in the pattern by words from A and
different occurrences of the same variable are replaced by

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 423

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

the same word. Then the pattern language (PL) generated
by G is L(G) = P ∪ A ∪ P (A) ∪ P(P (A)) ∪…

Example 2.1: G = ({a, b}, {δ}, {ab}, {aδb}) is a pattern
grammar generating language L(G) = {anbn / n ≥ 1}, as A =
{ab}, P(A) = {aabb}, P(P(A)) = {aaabbb} and so on.

We observe that the concept of variables is similar to that
of variable in Chomskian grammar. But the rewriting
process is different; it is uniform, in the sense that all the
occurrences of a variable in a pattern are replaced by the
same word and the variables are rewritten in parallel. Still,
the pattern grammars generate languages which are
incomparable with Chomskian languages and
Lyndenmayer languages.

3. Cooperating Distributed Grammar System

Definition 3.1: [5] A cooperating distributed grammar
system (CD grammar system for short) is an (n + 2) tuple Γ
= (T, G1, G2, …, Gn, S)
where,

• For 1 ≤ i ≤ n, each Gi = (Ni, Ti, Pi) is a (usual)
context – free grammar with the set Ni of non
terminals, the set Ti of terminals, the set Pi of
context – free rules, and without axiom,

• T is a subset of �
n

i iT
1=

,

• �
n

i iNS
1=

∈ = N

The grammars Gi, 1 ≤ i ≤ n, are called the components of

Γ. Further iii TNV ∪= and �
n

i iVV
1=Γ =

The grammars correspond to the agents solving the
problem on the black board; any rule represents some
pieces of knowledge which results in a possible change on
the black board. The axiom S is the formal counterpart of
the problem on the black board in the beginning. The
alphabet T contains the letters which correspond to such
knowledge pieces which are accepted as solutions / part of
solutions.

Definition 3.2: Let Γ be a CD grammar system as in
Definition 3.1. Let x, y ∈ Vi

*. Then we write x	k
G y iff

there are words x1, x2 …… xk+1 such that
(i) x = x1, y = xk+1,
(ii) xj 	 G xj+1, ie., xj = x′ Aj xj′′, xj+1 = x′ wj xj′′, Aj→

wj ∈Pi, 1 ≤ j ≤ k
Moreover, we write

,' kksomeforyxiffyx k
G

k
G ii

≤′		≤

,' kksomeforyxiffyx k
G

k
G ii

≥′		≥

,* ksomeforyxiffyx k
GG ii

		

.** zywithyznoisthereandyxiffyx
iii GG

t
G 	≠		

Any derivation k
Gi

x	 y corresponds to k discrete

derivation steps in succession in the grammar Gi, and this
represents k changes of the partial solution on the
blackboard by one of the agents according to her/his/its
rules reflecting the knowledge. Thus the ≤ k-derivation
mode corresponds to a time limitation, since the agent can
perform at most k changes. The ≥ k-derivation mode
represents competence since it requires that the agent can
perform at least k changes, she/he/it must contribute at
least k times in succession to the solving. The *-mode
meets the case where the agent can work at the blackboard
as long as she/he/it wants to do. Finally, the t-mode of
derivation corresponds to that strategy where any agent has
to perform solving steps at the blackboard as long as
she/he/it can contribute to the process of solving.

Definition 3.3: Let

f ∈ {t, *, 1, 2, . . . , ≤1, ≤2, . . . , ≥1, ≥2, …},
and let Γ be a CD grammar system. Then the language
Lf(Γ) generated by Γ is defined as the set of all words z ∈
T* for which there is a derivation

f
Gi

wS
10 	= f

Gi
w

21	 f
Gi

w
32 	 . . . f

G ri
	 .zwr =

We now give some examples in order to illustrate the
concepts.
Example 3.1: Let us consider the CD grammar system
 Γ = ({a, b, c}, G1, G2, S),
With
G1 = ({A, B}, {A′, B′, a, b, c}, {A→aA′b, B→cB′, A→ab,
B→c}),
G2 = ({S, S′, A′, B′}, {A, B}, {S→S′, S′ → AB, A′→A,
B′→B})
Then we obtain
L1 (Γ) = L* (Γ) = L≤k (Γ) = L≥1 (Γ) = Lt (Γ) = {an bn cm| n ≥
1, m ≥ 1}, k ≥ 1,
 L2 (Γ) = L≥2 (Γ) = Lt (Γ) = {an bn cn| n ≥ 1,n ≥ 1},
Lk (Γ) = L≥k (Γ) = 0 for k ≥ 3.
We show the relation only for Li (Γ) and L2 (Γ); the proofs
for the other relations are analogous and left to the reader.

It is clear that the derivation starts with S 	 S′ 	 A B
using the rules from P2. We now have to change to P1 (or
the derivation is already blocked in the k- or ≥k-mode of
derivation for k ≥ 3) and one of the following cases holds:

 Case 0. A B 	 2abc.
 Case 1. A B 	 2abcB′.
 Case 2. A B 	 2aA′bc.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 424

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Case 3. A B 	 2aA′bcB′.
In Case 0 the derivation has been terminated.
First we consider the derivation in the t-mode.
In Case 1 we can continue only in the following way:
abcB′ 	 t abcB 	 t abccB′ 	 t abccB 	 t abc3 B′ 	 t
abc3 B 	 t . . .
 . . . 	 t abcr-2 B 	 t abcr-1 B ′	 t abcr-1 B 	 t abcr.
Analogously, in Case 2 only words and all words of the
form ar br c, r ≥ 2, can be generated.

In Case 3 we have to continue with applications of A′→A,
B′→B. This yields aAbcB. Using rules of P1 we obtain
a2b2c2 or a2b2c2 B′ or a2 A′ b2c2 or a2 A′ b2c2 B′. In all these
cases we derive a word of the same structure as in the
previous cases, only the power of the terminal letters is
changed from 1 to 2. Therefore it is easy to see that

L t (Γ) = {anbncm / n ≥ 1, m ≥ 1}
Now let us consider the derivation in 2 – mode. Then in
the above cases 1 and 2 the derivation is blocked since we
can apply one rule of P2. Thus the only correct derivations
are of the form
S 	 2 AB 	 2 a A′ bcB′ 	 2 aAbcB 	 2 a2A′ b2c2 B′ 	
2 a2A b2c2 B 	 2 . . .
 . . . 	 2 an – 1A bn - 1 cn-1 B 	 2 abcr-1 B ′	 t anbncn.
This proves

L 2 (Γ) = {anbncn / n ≥ 1}

4. Cooperating Distributed Pattern Grammar
System

In the new model we consider pattern grammars as
components. We define the system with pattern grammars
as components.

Definition 4.1: A cooperating distributed pattern grammar
system (CDPGS for short) is an (n + 3) tuple
 Γ = (Σ, G1, G2, …, Gn, X, A)
where,
for 1 ≤ i ≤ n, each),,(iiii PXG �= is a (usual) pattern

grammar where �I ⊆� is an alphabet whose elements are
called constants, Xi ⊆ X is an alphabet whose elements
are called variables. A ⊆ �* is a finite set of elements
called axioms and Pi ⊆ (Σi ∪ Xi)

+ is a finite set of words
called patterns where each word contains atleast one
variable. The grammar Gi, 1 ≤ i ≤ n, are called the
components of Γ. The rewriting in the ith component is
done as follows: If L is the set of words given as input to
the ith component then, in a single step, it gets the language
Pi (L) from Pi, where

()
��

�
�
�

��

�
�
�

≤≤∈∈+≤≤�∈

∈
=

++

kiXLxkiu

Puuuuuxuxuxu
LP

iiii

ikikiikikii

i

kk

kk

1,,,11,

,.../...
*

121121 2121

δ

δδδ

This means that, Pi(L) contains words obtained by
replacing the variables in the pattern by words from L and
different occurrences of the same variable are replaced by
the same word. If ith component works for k steps
continuously, then we write y ∈Pi

k (x) if there are words
x1, x2 …… xk+1 such that
(i) x = x1, y = xk+1,
(ii) xj + 1∈Pi ({xj}), j = 1, 2, …, k
Moreover, we write
y ∈Pi

* (x) iff y ∈Pi
k (x) for some k.

The *-mode is the case where the agent can work at the
blackboard as long as she/he/it wants to do.
In this section we give few examples for the model
CDPGS. In CDPGS we start derivation from the first
component and words that are collected in the last
component form the required language.

Example 4.1: Γ = ({a, b, c}, G1, G2, {δ1, δ2}, {c}),
G1 = ({a}, {δ1}, {δ1b})
G2 = ({b}, {δ}, {aδ2}),
For k = 1, L (Γ) = {ancbn / n ≥ 1}.
The derivation is as follows: At the beginning the first
component produces a word ‘cb’, and then this word is
taken as the axiom for the second component and the word
‘acb’ is produced. Now the word ‘acb’ which is produced
in second component is considered as axiom for the first
component thus the word ‘acb2’ is produced, this is treated
as axiom for the next derivation in the second component
and the word a2cb2 is generated. After n subsequent
derivations the language generated in the first component
is ancbn.

Example 4.2: Γ = ({a, b}, G1, G2, {δ1, δ2}, {λ})
G1 = ({a}, {δ1}, {aδ1})
G2 = ({b}, {δ2}, {δ2b}),
If k = 1, then L (Γ) = {anbn / n ≥ 1}.
The derivation is as follows: At the beginning the first
component produces a word ‘a’, and then this word is
taken as the axiom for the second component and the word
‘ab’ is produced. Now the word ‘ab’ which is produced in
second component is considered as axiom for the first
component thus the word ‘a2b’ is produced, this is treated
as axiom for the next derivation in the second component
and the word a2b2 is generated. After n subsequent
derivations the language generated in the second
component is anbn.
Similarly if k = 2, the language generated is {a2n b2n / n ≥
1}. And hence in general if there are k discrete derivation

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 425

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

steps in succession in the grammar Gi, the language
generated is {ak n bk n / n ≥ 1}.

Example 4.3: Γ = ({a, b, c}, G1, G2, {δ1, δ2}, {c}),
G1 = ({a, b, c}, {δ1},{ aδ1a, bδ1b})
G2 = ({a, b, c}, {δ2}, { aδ2a, bδ2b}),
L (Γ) = {wcwR / w ∈ {a, b}+}.
The derivation is as follows: At the beginning the first
component produces a words ‘aca’ and ‘bcb’, and then
these words are taken as the axiom set for the second
component and the words ‘a2c a2’, ‘bacab’, ‘abcba’ and
‘b2cb2’ are produced. Now this set of words are taken as
axiom set for the first component and thus the words ‘a3c
a3’, ‘abacaba’, ‘a2bcba2’, ‘ab2cb2a’, ‘ba2ca2b’, ‘b2acab2’,
‘babcbab’ and ‘b3c b3’ are generated. After n subsequent
derivations the language generated is {wcwR / w € {a, b}+}

Example 4.4: Γ = ({a, b}, G1, G2, {δ1, δ2}, {b}),
G1 = ({a}, {δ1}, {aδ1})
G2 = ({b}, {δ}, {δ2b}),
L (Γ) = {anbm / n, m ≥ 1}.
If there is no restriction on k, then the language generated
is {anbm / n, m ≥ 1}.

Proposition 4.1: CD(PL) – PL ≠ φ
Proof: This is seen from the fact that the language {anbm /
n, m � 1} is in Cooperating Distributed Pattern Language
CDPL but not in pattern language PL.

Proposition 4.2: The family of Cooperating Distributed
Pattern languages CDPL and the family of Pattern
languages PL are comparable
Proof: The language {anbn / n � 1} is in PL for it is
generated by the pattern grammar ({a, b}, {δ}, {ab},
{aδb}) also it is in CDPL. Thus CDPL � PL � φ

Proposition 4.3:

1. The family of context – free languages (CFL) and
CDPL are comparable

2. The family of regular languages (RL) and CDPL
are incomparable

Proof:
 1 The statement 1 is due to the fact that the language
{wcwR / w ∈ {a, b}+} is in both CFL and CDPL

2 The statement 2 is due to the fact that the language
{anbn / n � 1} is in CDPL but not in RL

Theorem 4.1: If L ∈ CDPL (Cooperating Distributed
Pattern Language) is an infinite language over �, then
there is u € �+ such that for all n � 1a string of the form
w1u

kn w2 is in �+, where w1, w2 ∈�+ and k is the number
of discrete derivation steps in succession in the grammar
system.

Proof: Consider a CDPG system Γ = (Σ, G1, G2,…, Gm , X,
A). Let us take a component grammar),,(iiii PXG �= .

As L is infinite the length of the pattern must be greater
than 1 (i.e) �pi�> 1. For such pattern pi we distinguish
several cases:

(i) pi = u�x, u ∈ �i

+, � ∈ Xi, x ∈ (�I ∪ Xi)
*. Clearly,

L(G) contains al strings of the form ukzyn, k � 1, z
∈ A, yk is obtained by replacing � in pi by z, each
variable, if any, in x by strings in A, then replacing
� in pi by the result and each variable in x, if any, by
strings in A and repeating this operation n times.

(ii) pi = = x�u, u ∈ �i
+, � ∈ Xi, x ∈ (�i ∪ Xi)

*. The
reversed situation is obtained.

(iii) pi = = �1i x�2i , �1i , �2i ∈ Xi equal or not, x ∈ (�I ∪
Xi)

+. Let z1, z2 be in A and y be obtained by
replacing in x all variables, if any, by strings in A.

Then all strings of the form ukv or vuk is generated in the
component grammar Gi. Now as the CDP grammar system
Γ = (Σ, G1, G2,…, Gm , X) consists of m components, the
strings generated in the component Gi are used as axioms
by some other component, and these strings are used by yet
another component. This process is repeated n number of
times. Thus at the end, the language generated by the
system Γ = (Σ, G1, G2,…, Gn, X, A) consists of words
w1u

kn w2.

5. Learning Cooperating Distributed Pattern
Grammar System

Consider the situation where the learning algorithm is
allowed to make queries to an oracle. In [4], the notion of
“minimally adequate teacher” (MAT) is introduced and the
teacher (Oracle) answers membership and equivalence
queries in order to construct a learning algorithm for
regular sets. In [5], the notions of subset and superset
queries are introduced. For a subset (superset) query, the
input is a concept C and the output is ‘yes’ if C is a subset
(superset) of the target concept C*

 and ‘no’ otherwise. If
the answer is ‘no’, counter example x from C – C* (C* - C)
is also returned. Restricted subset queries and restricted
superset queries, where no counter example is returned are
also introduced in [5].

We try to learn a CDPGS grammar system with a single
pattern which is in canonical form. The technique of the
algorithm is as follows: First, the pattern of the pattern
grammar is learnt using prefix queries and the axioms are
learnt using restricted subset queries.

We recall that a word u∈ Σ* is a prefix of another word w
∈ Σ*, if there exists a word v ∈ Σ*, such that w = uv. Thus

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 426

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

in a prefix query, the concept to be learnt is usually a word
w over the underlying alphabet T. The input is a word u ∈
Σ* and the output is “yes”, if u is a prefix of w and “no”
otherwise. The class of all k variable patterns is denoted by
Pk.

We now present an algorithm that exactly identifies in
polynomial time the class Pk.of pattern languages using
prefix queries. Let p = p1p2…pn be the pattern to be
identified. We begin by checking whether p1 is a constant.
Hence for each a ∈ Σ we make a prefix query for a.. If the
output is “no” to each of these queries we conclude that p1
is a variable and since p is in canonical form p1 = x1.

Suppose at some stage we have discovered that p1p2 p3…
pi is a prefix of p and j = max {r / ps = x r for 1 ≤ s ≤ i}.
Again we check whether pi + 1 is a constant by making
prefix query for p1 p2 p3… pi a, a ∈ Σ. As before if each of
these queries yields a negative answer, we conclude that pi

+ 1 is a variable and query whether p1 p 2… pi xr is a prefix
for each r ≤ j + 1. We conclude that the pattern is complete
if each of these queries receives a negative reply. Now, to
learn axiom set A, initially fix A = φ. Arrange the words in

�
m

i

i

1=

� (m the maximum length of the axiom is known) are

arranged according to increasing order of length and
among the words of equal length lexicographically. Let
them be x1, x2… xs. At the tth step ask the restricted subset
query for (T, A ∪ {xt}, p). If the answer is ‘yes’, increment
A to A ∪ {xt}. If the answer is ‘no’, A is not incremented.
The output at the last step is the required PG.

The advantage of this learning is, a sample word from the
language generated by the system is not needed to learn the
system as is done in parallel communication.

Algorithm
Input:
The alphabets Σj, Xj, a positive sample w ∈ Σj

+ of length r
with w = w1w2….wr, the length ‘n’ of the pattern, the
maximum length ‘m’ of the axiom, r ≥ n , words t1, t2…, ts

of �
m

i

i
j

10=

� given in the increasing length order, among

words of equal length according to lexicographic order.

Output:
 A cooperating distributed pattern grammar system

()AXGG ,,,, 21Σ=Γ′ with ()Γ=Γ′ LL)(

Procedure (Pattern 1)
Begin
J = 1

Module 1
 i = 0, p = �, number of characters in the pattern is n
First set
 for a � Σj
 begin
 Ask prefix query for pa
 if answer is “yes” then
 begin
 p = pa
 i = i +1
 if i is equal to n
 begin
 exit
 end
 call first set
 else
 call module 2
 end
 end
Module 2
Second set
 for x � Xj
 begin
 Ask prefix query for px
 if answer is “yes” then
 begin
 p = px
 i = i + 1
 if I is equal to n
 begin
 exit
 end
 call second set
 else
 call module 1
 end
 end
 end

Procedure (Axiom)

Let x1, x2, …, xs be the words in �
m

i

i
j

1=

� arranged in

lexicographic order
A = φ
 for t = 1 to s do
 begin
 ask restricted subset query for
G = (Σj , A ∪ {xt}, {p})

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 427

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 If ‘yes’ then A = A ∪
{x} and t = t + 1
 else output G
 end
Print the Cooperating grammar (Σj ,Xj, pj)

Procedure (Pattern 2)

Begin
J = j +1

Module 1
 i = 0, p = �, number of characters in the pattern is n
First set
 for a � Σj
 begin
 Ask prefix query for pa
 if answer is “yes” then
 begin
 p = pa
 i = i +1
 if i is equal to n
 begin
 exit
 end
 call first set
 else
 call module 2
 end
 end
Module 2
Second set
 for x � Xj
 begin
 Ask prefix query for px
 if answer is “yes” then
 begin
 p = px
 i = i + 1
 if I is equal to n
 begin
 exit
 end
 call second set
 else
 call module 1
 end
 end
 end

6. Example run for PC (PL)

Let us consider a CDPG system given in the example 4.2
with two components, which are pattern grammars. First
we try to learn pattern grammar 1. To learn a pattern
grammar it is enough if we find the pattern p and the axiom
set A. Here the length of the pattern 1 is two and maximum
length of the axiom is one and the alphabet Σ = {a, b, c}.
Let p = p1p2. First we check whether p1 is a constant. Thus
for a ∈ Σ1, a prefix query is asked. The answer will be
“no” since the pattern is �1b. Thus p1 = �1 is learnt. Now
for a ∈ Σ1 we ask a prefix query for �1a. The answer will
be “no”. Again for b ∈Σ1, a prefix query is asked for �1b.
The answer will be “yes”. Since we get answer “yes” we
conclude that p1 as �1b.

Now, to learn axiom set A, initially fix A = φ. The words

in �
3

1=

�
i

i are arranged according to increasing order of

length and among the words of equal length
lexicographically. Let them be a, b, c, aa, bb, cc, ab, ba, ac,
ca, bc, cb, abc, bca, … Now the restricted subset query for
(Σ, A ∪ {a}, p1) is asked. As the answer is ‘no’ one more
subset query (Σ, A ∪ {b}, p1) is asked. Here the teacher
answers no. Then we ask subset query (Σ, A ∪ {c}, p1).
Here the teacher answers yes. Thus the axiom set is learnt
which is {c}. Thus the pattern 1 and axiom are learnt.

Now since the CDPGS has two components which are
pattern grammars, we try to find the second component
whose pattern (pattern 2) is learnt as explained above. The
axiom 2 need not be learnt because the output of the first
component is the axiom of the second component.

References
[1] D. Angluin, Finding patterns common to a set of strings,

Journal of Computer and System Sciences 21(1980),
46−62.

[2] J. Dassow, Gh. Paun and G. Rozenberg, Generating
languages in a distributed way: Grammar systems, in
Handbook of Formal Languages (G. Rozenberg, A.
Salomaa eds.) Springer-Verlag, Berlin, Heidelberg,, 1997

[3] J. Dassow, Gh. Paun and A. Salomaa, Grammars based on
patterns, International Journal of Foundations of Computer
Science 4 (1993), 1−14.

[4] S. Demitrescu and G. Paun, On the power of Parallel
communicating grammar systems with right-linear
components, Theoretical Informatics and Applications,
31(4), 1997, 331−354.

[5] Erzsebet Csuhaj – Varju, J. Dassow, J. Kelemen and Gh.
Paun, Grammar Systems: A grammatical approach to
Distribution and Cooperation, Gordon and Breach Science
Publishers S. A, Switzerland, 1994.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 428

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[6] J. Gruska, The descriptional complexity of context – free
languages, in Proc. MFCS Symp., High Tatras, 1973, 71–
84.

[7] H. A. Maurer, A. Salomaa and D. Wood, Pure grammars,
Information and Control 44 (1980), 47−72.

[8] Gh. Paun, G. Rozenberg and A. Salomaa, Pattern
Grammars, Journal of Automata, Languages and
Combinatorics, 1, (1996), 219–235.

[9] Gh. Paun and L. Santean, Parallel communicating
grammar systems : the regular case, Ann. Univ. Buc., Serie
Materm -Inform., 38(1989), 55−63.

[10] G. Rozenberg and A. Salomaa, The Mathematical Theory
of L-Systerns, Academic Press, New York 1980.

[11] A. Salomaa, Formal Languages Academic Press, New
York, 1973.

[12] Victor Mitrana, Patterns and languages: An Overview,
Grammars 2 (1999), 149 – 173.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 429

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

