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Abstract 
In this paper, a hybrid synchronous and asynchronous digital FIR 
fil ter is designed and implemented in FPGA using VHDL. The 
digital FIR filter of high throughput, low latency operating at 
above 1.3 GHz was designed. An adaptive high capacity 
pipelined was introduced in the hybrid synchronous 
asynchronous design of the filter. The degree of the pipelining is 
dynamically variable depending upon the input. Concurrent 
execution of software or program can be achieved in FPGA 
through parallel processing. The designed digital FIR filter is 
simulated using ModelSim and implemented using Xilinx. The 
simulation results are presented for different order such as 3, 6 
and 15. The FIR filter designed is synthesized in Xilinx 9.1i and 
the device utilization report is presented for filter of order 3, 6 and 
15.  
Keywords: FPGA, Asynchronous pipeline, dynamic logic, FIR 
Filter 

1. Introduction 

Basically the filters are designed by using finite number of 
samples of impulse response which is termed as finite 
impulse response filters. It is a non- recursive, discrete-
time filter. The output depends only on present and 
previous inputs. It is to remove unwanted parts of the 
signal such as random noise and also to extract useful parts 
of the signals such as the components lying within a certain 
frequency range [1], [2]. FIR filters are inherently stable 
due to the fact that all the poles are located at the origin 
and thus are located within the unit circle. FIR filters 
require no feedback means that any rounding errors are 
compounded by some iteration. They can be designed to 
be linear phase by making the coefficient sequence 
symmetric , linear phase or phase change proportional to 
frequency , corresponds to equal delay at all frequencies. 
 
In signal processing, the function of a filter is to measure 
unwanted parts of the signal such as random noise and to 

extract useful parts of the signal, such as the components 
lying within a certain frequency range [3]. Digital filter 
uses a digital processor to perform numerical calculation 
on sampled value of the signal. The processor may be a 
general purpose computer such as PC or a specialized DSP 
(digital signal processor) chip. 
The types of the filter are as follows:  
• Low pass filter: They leave to pass the low 
frequencies.  
• High pass filter: They leave to pass the high 
frequencies and they strongly attenuate the low ones.  
• Band pass filter: They leave to pass the mean 
frequencies and they attenuate the high  
Ones and the low ones.  

2. Overview of Digital Implementation of FIR  

2.1 Digital Implementation of FIR Filter using DSP  

Distributed Arithmetic has been used to implement a bit-
serial scheme of a general asymmetric version of an FIR 
filter, taking optimal advantage of the 4-input LUT-based 
structure of FPGAs and a highly area-efficient multiplier-
less FIR filter is designed. To implement DSP functions in 
Field FPGAs, which offer a balanced solution in 
comparison with traditional devices? Although ASICs and 
DSP chips have been the traditional solution for high 
performance applications, now the technology and the 
market are imposing new rules. On one hand, high 
development costs and time-to-market factors associated 
with ASICs can be prohibitive for certain applications and, 
on the other hand, programmable DSP processors can be 
unable to reach a desired performance due to their 
sequential-execution architecture. The research Community 
has put great effort in designing efficient architectures for 
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DSP functions such as FIR filters, which are extensively 
used in multiple applications in telecommunications, 
wireless or satellite communications, video and audio 
processing, biomedical signal processing and many others. 
Traditionally, the design methods were mainly focused in 
multiplier-based architectures to implement the multiply-
and- Accumulate (MAC) blocks that constitute the central 
piece in FIR filters and several DSP functions: But careful 
analysis shows that multiplier-based filter implementations 
may become highly expensive [2], [4].  
 
2.2 Digital Implementation of FIR Filter using FPGA  
 
FPGAs offer a very attractive solution that balance high 
flexibility, time-to-market, cost and performance. This 
issue has been partially solved with the new generation of 
low- cost FPGAs that have embedded DSP blocks. 
However, if the final product will reside on an ASIC for 
instance, the problem is still present. To resolve this issue, 
several multipliers-less schemes were proposed. Basically, 
these methods can be classified in two categories according 
to how they manipulate the filter coefficients for the multiply 
operation. The first type of multiplier-less technique is the 
conversion-based approach, in which the coefficients are 
transformed to other numeric representations whose 
hardware implementation or manipulation is more efficient 
than the traditional binary representation. Example of such 
techniques is the Canonic Sign Digit method, in which 
coefficients are represented by a combination of powers of 
two in such a way that multiplication can be simply 
implemented with adder/subtractions and shifters, and the 
Dempster-Mcleod method, which similarly involves the 
representation of filter coefficients with powers of two but 
in this case arranging partial results in cascade to introduce 
further savings in the usage of adders. The second type of 
multiplier-less method involves the use of memories 
(RAMs, ROMs) or LUTs to store pre-computed values of 
coefficient operations. These are called memory-based 
methods. Examples of them are found in the Constant 
Coefficient Multiplier method and the very-well known 
DA method. DA appeared as a very efficient solution 
especially suited for LUT-based FPGA architectures. This 
technique is a multiplier-less architecture that is based on 
an efficient partition of the function in partial terms using 
2's complement binary representation of data. The partial 
terms can be pre-computed and stored in LUTs. The 
flexibility of this algorithm on FPGAs permits everything 
from bit-serial implementations to pipelined or full-parallel 
versions of the scheme, which can greatly improve the 
design performance. The main problem with DA is that the 
requirement of memory/LUT capacity increases 
exponentially with the order of the filter, given that DA 
implementations need 2K - words (K being the number of 
taps of the filter). That constitutes a first obstacle for FIR 

filters of high order. A flexible architecture that gradually 
replaces LUT requirements with multiplexer/adder pairs 
was introduced. An asymmetric FIR filter architecture 
using the bit-serial LUT-based DA technique is 
presented. For this implementation, we use a scheme that 
takes advantage of the 4-input LUTs in FPGAs, and 
rearranges the input sequence to implement a modified 
version of the shifter/accumulator stage. We show that our 
modified version is superior in terms of area to previous 
LUT-less DA architectures [5], [7].  
 
3. Problem Formulation  
 
In the existing method, fixed order filter is used. The filter 
is a ten-tap six bit FIR filter Partial sums are pre-computed 
and stored in a LUT, indexed by the input data values. The 
signed-digit offset binary notation is used in which the 
symbols “0” and “1” stand for negative and positive co-
efficient of powers of 2.The Figure1.Shows that Existing 
Fixed Mode Filter. 
 
 
 
 
 
 
                              Fig. 1 Existing fixed tap Mixed Mode Filter 

 
 

4. Proposed Methodology 
 
In this method, variable order filter is proposed. 
Fig.2.Shows the Programmable tap fixed mode Filter. We 
can change the filter order to any number if purpose the 3rd 
order, 5th order, 15th order can be designed. Concurrent 
execution of software or program can be achieved in 
FPGA through adaptive high capacities pipelined which 
performed parallel processing. With this methodology we 
aim to design a digital FIR filter operating at above 
1.3GHZ.  
 
 
 
 
 
 
 
 
 
 
          Fig. 2 Proposed Programmable tap fixed mode Filter 
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5. Design Concepts of Digital FIR Filter 
 
Fir filter are commonly designed in DSP and FPGA 
platforms. Therefore, the basic design concepts using DSP 
and FPGA are discussed below. 
 
5.1 Design Concepts of Digital FIR Filter using DSP 
 
A design method for FIR digital filter based on DSP 
processor with fixed point series in which the coefficient of 
filter is obtained and verified with the DSP measuring 
system. The digital filter’s all functionalities met design 
expectations. Filtering plays a significant role in digital 
signal processing. Digital filtering is a basic calculation 
method for language and graphics treatment, mode 
recognition, and spectrum analysis. This method has many 
advantages over an analogue filter, such as broad design 
amplitude, precision guarantee, and accurate linear phase 
position; and prevention of voltage shifting, temperature 
migration, and noise. Since its response to unit impulse is 
in limited long sequence, FIR filter is always stable. In 
addition to those advantages, digital filtering using DSP 
chip is flexible, convenient to change the filter’s 
parameters, and easy to modify its specificity. The 
methodologies for high-level synthesis of dedicated DSP 
architectures using the COMET design system is in use. 
The system is tuned to the synthesis of DSP ASICs from 
behavioral specifications written in VHDL. COMET is 
capable of generating more efficient architectures using 
innovative scheduling and resource allocation algorithms 
which exploit the cluster information and maximize the 
parallel tasks. With these transformations, major 
improvements are achieved with fewer registers and 
interconnections; an industrial quality design is then 
derived in both FIR and elliptic filter examples. Filter 
banks are often used in signal and image processing 
applications for dividing a signal into frequency bands and 
reconstructing the signal from the individual bands. 
Quadrature Mirror Filter is one particular application using 
the sub-band coding technique, have not able advantages 
for image compression / restoration compared with the 
Discrete Cosine Transform. Silicon compilation has 
become essential to automate the VLSI design of DSP 
system as chips increase in size and complexity. High-level 
synthesis, an important front end task from an algorithmic 
behavioral specification, has received a lot of attention in 
both the academic and Industrial environments. Generally, 
the input description is converted into a Data Flow Graph 
and all synthesis tasks work from this Data Flow Graph. 
Behavioral synthesis is a complex task composed primarily 
of two interacting subtasks: scheduling and allocation. A 
great deal of progress has been made on the theory of high-
level synthesis and promising results [2, 4]. 
 

5.2 Design Concepts of Digital FIR Filter using 
FPGA 
 
Implementation of the filter requires considerably less 
resources than the previousdesign using DSP. This requires 
about half the resources in terms of configurable blocks, 
lookup tables. The saving in the adder chain is not so high, 
since most of the adder tree size is dictated by the 
coefficients size, not by the samples size. The lookup 
tables must be writable. This increases its complexity, 
especially in terms of routing resources. The mixer 
multiplier must be implemented using hard multipliers, not 
lookup tables. A single large lookup table to hold 
sine/cosine values is still needed. Especially for Altera 
FPGAs, this is a large advantage, as these chips have 
smaller RAM blocks, but also one or two large RAMs. Re-
tuning the band is relatively slow [5, 11]. The filter has no 
capability for frequency hopping. This is not a 
requirement, and tap reloading is in any case faster than for 
a full1024 tap filter. Some intelligence is needed in the 
control processor to recalculate filter taps from the low 
pass prototype, but this is within the capabilities of any 
current microprocessor. We use ModelSim Tool to 
determine filter coefficients, and designed a 16-
orderconstant coefficient FIR filter by VHDL language [3, 
9], simulate filters, the results meet performance 
requirements. As the word indicates, a filter separates a 
desired signal from unwanted disturbances. When we want 
to remove a disturbance such as noise from an audio 
signal, we design an appropriate filter that passes only the 
desires signal. But only in a few cases can we remove the 
disturbance completely and recover the desired signal; 
most of the time we have to settle for a compromise, most 
of the disturbance is rejected, most of the signal is 
recovered. The first candidate in filter is a linear filter. The 
main reason for this choice is that we have a good 
understanding of how a linear system operates. It is only 
when a linear design fails or it yields unsatisfactory results 
that we look for other solutions, such as nonlinear or, 
adaptive techniques, for example. Digital filters include 
infinite impulse response (UR) digital filter and finite 
impulse response (FIR) digital filter. As the FIR system 
have a lot of good features, such as only zeros, the system 
stability, operation speed quickly, linear phase 
characteristics and design flexibility, so that FIR has been 
widely used in the digital audio, image processing, data 
transmission, biomedical and other areas. FIR filter has a 
variety of ways to achieve, with the processing of modem 
electronic technology, taking use of field programmable 
gate array FPGA for digital signal processing technology 
has made rapid development, FPGA with high integration, 
high speed and reliability advantages, FIR filter 
implementation using FPGA is becoming a trend. The 
algorithm is proposed for the design of low complexity 
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linear phase finite impulse response (FIR) filters with 
optimum discrete coefficients. The proposed algorithm, 
based on mixed integer linear programming, efficiently 
traverses the discrete coefficient solutions and searches for 
the optimum one that results in an implementation using 
minimum number of adders. During the searching process, 
discrete coefficients are dynamically synthesized based on 
a continuously updated sub expression space and, most 
essentially, a monitoring mechanism is introduced to 
enable the algorithm’s awareness of optimality. Benchmark 
examples have shown that the proposed algorithm can, in 
most cases, produce the optimum designs using minimum 
number of adders for the given specifications. The 
proposed algorithm can be simply extended for the 
optimum design with the maximum adder depth constraint. 
Linear phase finite impulse response (FIR) filters are 
widely used in digital signal applications such as speech 
coding, image processing, MultiMate systems, etc. 
Although the stability and linear phase is guaranteed, the 
complexity and power consumption of the linear phase FIR 
filter are usually much higher than that of the infinite 
impulse response (IIR) filter which meets the same 
magnitude response specifications. Therefore, many efforts 
have been dedicated to the design of low complexity and 
low-power linear phase FIR filters. A conventional filter 
structure, called transposed direct form, in which the input 
signal is first multiplied by the constant filter coefficients 
and then goes into the delay elements. This operation is 
often referred to as multiple constants multiplication 
problem. The constant multipliers can be realized using 
multiplier less techniques where the general multipliers are 
replaced by a network of shifts and adders. The adders can 
be further classified into structural adders and multiplier 
block adders. Structural Adders are used to add the 
temporarily stored values. An efficient semi definite 
programming method for the design of a class of linear 
phase finite impulse response filter banks whose filters 
have optimal frequency selectivity for a prescribed 
regularity order is proposed. The design problem is 
formulated as the minimization of the least square error 
subject to peak error constraints and regularity constraints. 
By using the linear matrix inequality characterization of 
the trigonometric semi-infinite constraints, it can then be 
exactly cast as a Semi definite programming problem with 
a small number of variables and, hence, can be solved 
efficiently. Finally, the image coding performance of the 
filter bank is presented. The filter has found important 
applications in image processing, speech processing, 
communications, and the construction of wavelet bases. 
The filter bank design is commonly formulated as a highly 
nonlinear optimization problem because of the perfect 
reconstruction condition. As a result, high complexity 
algorithms are required to obtain a good solution, and the 
globally optimal solution is not guaranteed. To reduce the 

computational complexity of the design, finding filter bank 
structures that structurally satisfy perfect reconstruction is 
of great interest. Lifting structures are very attractive for 
the construction and implementation of filter and wavelets 
because the perfect reconstruction property can be 
structurally imposed offers a filter bank with low 
implementation complexity. However, there are certain 
restrictions on the frequency responses. 
 
6. Digital FIR Filter Architecture  
 
 The architecture of the FIR filter is shown in figure.3.The 
filter is a ten-tap six-bit FIR filter using the distributed 
arithmetic architecture. Six bit Slices, stacked on top of 
each other. It consists of three portions namely [3].  
 
6.1 Left Synchronous Portion 
 
 Receives data from the environment and processes it into 
partial sums Asynchronous portion: Ads the partial sums to 
compute the final result. 
 
6.2 Right Synchronous Portion 
 
Right Synchronous Portion synchronizes the result to the 
clock and produces it as an output for the environment. 
Data inputs enter from the left, and are processed by the 
filter as they flow to the right. The filter can be divided 
into three portions, from Left to right. The leftmost portion 
is clocked, from the input side to the domino latches. The 
middle portion, from the XOR gates to the end of the carry 
look ahead adder, is asynchronous. Finally, the rightmost 
portion, consisting of an output latch, is again clocked. The 
architecture of the filter is best understood by following the 
flow of data from left to right [4]. As the stream of data 
enters the filter, it first passes through a shift register, 
which stores the most recent input values that are needed 
to compute the filter output. In particular, for a p-tap filter, 
for each bit, there is a p-place shift register that stores the 
most recent history for that bit. These stored input values 
are then multiplied by their respective filter weights. The 
multiplication is accomplished very efficiently by fetching 
precompiled results from a lookup table.                     
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                                                                    Fig. 3 FIR Filter Architecture 

 
 
 
 
The entire multiplication process is bit-sliced, with one 
slice for each bit of the input data. The result of the 
multiplications is a set of partial sums which are fed to the 
asynchronous portion of the filter pipeline for addition [5]. 
In the figure1, the lookup table is composed of two banks 
of registers containing the precompiled result scaled even 
and odd partial sums and two output multiplexors. 
 
6.3 Asynchronous Portion  
 
It is a nine-stage pipeline that adds all of the partial sums 
together, and produces the result. Finally, this result is 
latched by a clocked latch and output to the right 
environment. 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

. 
 
 
 
 
 
7. FILTER IMPLEMENTATION 
 
The FIR filter implementation is now considered in more 
detail. The synchronous and asynchronous portions of the 
chip are discussed separately, followed by a discussion of 
the interface between the two domains [6]. 
 
7.1 Synchronous Portion 
 
The synchronous portion of the filter consists of two parts, 
one at the input side of the filter, and the other at the 
output side. 
 
7.2 Synchronous Input Portion 
 
This part receives the input to the filter. The input stream 
consists of data values which are six bits wide [5]. A 10-
slot shift register at the input side of the filter stores the 10 
most recent data values. These stored input values are 
needed to compute the current filter output, which is a 
weighted sum of these values. The multiplication of inputs 
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by their respective filter weights is accomplished very 
efficiently by pre-computing all possible products and 
storing them into a lookup table. The entire multiplication 
is bit-sliced, with one slice for each of the six bits in the 
input data. Therefore, within each bit slice, there are 10 
input bits which together forma 10-bit address for 
accessing the lookup table [3]. 
The size of the lookup table is reduced by employing two 
techniques is used: the 10-bit address is divided into two 5-
bit addresses, one composed of only the even-index bits, 
and the other composed of the odd-index bits. Each of 
these two addresses has a distinct lookup table associated 
with it [6]. To understand the filter operation with a 
partitioned lookup table, consider a simulation of partial 
sum lookup. The 10-bit pattern (after passing through the 
decoder unit) is used to generate separate groups of even 
and odd-indexed bits. In particular [6], only the five even 
bits are used; they are forked to the even multiplexor as its 
select bits, and also to a clocked register where, after one 
clock cycle delay, they become the odd-index select bits to 
the bottom multiplexor, for the next clock cycle. 
Appropriate entries in the event and odd lookup tables are 
then selected and sent to the domino latches. 
  
A signed-digit offset binary notation is used to represent 
table entries and addresses, which enable the separation of 
the sign-bit from each address, further shortening the 
addresses to 4-bit words.[4] As a result, the table size is 
dramatically reduced: two tables with only 16 (= 24) 
entries each are needed, as opposed to one table with 1024 
(= 210) entries. The lookup tables are implemented using 
registers and multiplexors. Each table has 16 registers, 
each of which can store an 8-bit entry, per bit slice. Each 
of the tables has a 16:1 multiplexor at its output, controlled 
by the 4-bit address word.2 The odd-index address word is 
generated front he even-index address word by delaying it 
by one clock cycle[5]. The result of the multiplication is a 
set of products, called partial sums, that is sent to the 
asynchronous pipeline for addition, through the 
synchronous-asynchronous interface [2]. 
 
7.3 Synchronous Output Portion 
 
The right synchronous portion simply consists of 
a master slave latch that receives the final result 
from the asynchronous pipeline and makes it 
available as the filter output. 
 
7.4 Asynchronous Portion: 
 
The asynchronous portion of the filter consists of a 
pipeline that lies between the synchronous input and output 

portions, the function of this asynchronous pipeline is to 
take the partial sums generated byte synchronous input 
portion, add them up to produce the final filter result, and 
send it to the synchronous output portion. The pipeline was 
designed using the high-capacity pipeline style the 
asynchronous data path uses dynamic logic, and consists of 
nine stages [1], [2]. The first stage is a layer of XOR gates 
that restores the correct sign to the partial sums. The next 
five stages correspond to five layers of carry save adders 
The last three stages implement a carry look ahead adder 
Since both true and complement values of the data bits are 
needed to compute the XOR and addition functions, the 
entire data path was implemented in dual-rail. 
 
The data path is quite wide at the input to the first stage: 
216 wires (= (8 data bits + 1 sign bit) (even and odd) ·6 
(bit slices) ·2 (wires/bit)). The output of the last stage is a 
15-bit result represented using 30 wires. Interestingly, 
since the filter has a very fine-grain data path, no explicit 
matched delays are required [6]. The delay of each 
function block is matched by the completion generator’s 
AC element itself, through appropriate device sizing. The 
self-timed control of a high-capacity pipeline needs a slight 
modification to handle the wide data path of the filter. In 
particular, buffers must be inserted in order to amplify the 
control signals which are broadcast to the entire width of 
the data path [4]. Two different versions of the control 
were designed, one more robust and the other faster. 
The two versions differ in the placement of the amplifying 
buffers. In the first version, the buffers amplify data path as 
well as the completion generator. This version is very 
robust to variations in buffer delays because the 
completion signals are delayed by the same amount as the 
data path [3], [4]. However, the buffers are on the critical 
path, thus increasing the pipeline cycle time. In the second 
version, the completion generators use control signals that 
are tapped off from before the buffers. As a result, the 
buffer delays are taken off of the critical path, resulting in 
a shorter cycle time. However, each stage’s function block 
now lags behind its completion generator by an amount 
equal to the buffer delay. Consequently, for the pipeline to 
function correctly, all the stages throughout the pipeline 
are required to have comparable buffer delays 
 
7.5 Synchronous-Asynchronous Interfaces 
 
The interface between the asynchronous and the 
synchronous portions of the chip must mediate certain 
differences in data representation and control sequencing. 
In particular, the asynchronous data path uses dual-rail 
dynamic logic, whereas the synchronous portions of the 
chip use single-rail static logic [5], [6]. Moreover, the 
asynchronous pipeline communicates by means of local 
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handshakes (using req’s and ack’s) at each end, whereas 
the synchronous portion uses global clocking. 
 
8. Internal Modules 
 
The internal modules used for the design of the digital FIR 
filter are Adder, Multiplexer and Shift and Add 
Multiplication. The respective internal modules are 
explained in details as follows: 
 
8.1Adder 
 
An Adder is a digital circuit that performs addition of 
number in modern computer adders reside in the arithmetic 
logic unit where other operation are performed. Adder can 
be constructed for much numerical representation such as 
binary coded decimal. The most common adders operate 
on binary number. 
 
8.2 Multiplexer 
 
It is a device that performs multiplexing. It selects one of 
many analog or digital input signals and forwards the 
selected input to a single line. An electronic multiplexer 
makes it possible for several signal to share one device. 
The multiplexer units are used to select the appropriate 
output from the shift and add unit 
 
8.3 Shift-and-Add Multiplication 
 
Shift-and-add method adds the multiplicand X to itself Y 
times, where Y denotes the Multiplier. In the binary 
multiplication, the digits are 0 and 1; each step of the 
multiplication is simple. If the multiplier digit is 1, a copy 
of the multiplicand (1 × multiplicand) is placed in the 
proper positions; if the multiplier digit is 0, a number of 0 
digits (1 × multiplicand) are placed in the proper positions 
 
 
 
 
 
 
 
 
 
 
 
 
 

                         Fig. 4 Final Version of Shift and Add Multiplication 
Circuit. 

 

 

Consider the multiplication of positive numbers. The first 
version of the multiplier circuit, which implements the 
shift-and-add multiplication method for two n-bit numbers, 
is shown in the figure. The 2n-bit product register (A) is 
initialized to 0. Since the basic algorithm shifts the 
multiplicand register (B) left one position each step to 
align the multiplicand with the sum being accumulated in 
the product register, we use a 2n-bitmultiplicand register 
with the multiplicand placed in the right half of the register 
and with 0in the left half. 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 

Fig. 5 Flowchart of the Final version algorithm of the Shift                        
and Add Multiplication 

 
 
The Fig.5. Shows the basic steps needed for the 
multiplication. The algorithm starts by loading the 
multiplicand into the B register, loading the multiplier into 
the Q register, and initializing the A register to 0. The 
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counter N is initialized to n. The least significant bit of the 
multiplier register (Q0) determines whether the 
multiplicand is added to the product register. The left shift 
of the multiplicand has the effect of shifting the 
intermediate products to the left. The right shift of the 
multiplier prepares the next bit of the multiplier to examine 
in the next iteration.  
9. FPGA Design flow 
The flow chart of a typical FPGA design flow is shown in 
Fig.6. The design flow and FPGA design methodologies 
are reviewed by eminent researchers. The design 
specifications are written first to describe the functionality, 
interface and overall architecture of the digital circuit to be 
designed with short development time [5]. A behavioral 
description is then created to analyze the design in terms of 
functionality to meet the performance, compliance to 
standards and other high-level issues. Behavioral 
descriptions can be written with HDLs and it is converted 
to RTL description in an HDL. The designer has to 
describe the data flow to implement the desired digital 
circuit using any market standard simulator. The 
functionality of the intended application is verified in the 
functional verification and tested using different set of 
stimulus. The Logic synthesis tools convert the RTL 
description to a technology independent gate-level net list, 
which is a description of the circuit in terms of gates and 
connections between them. Behavioral synthesis tools have 
begun to emerge recently. These tools can create RTL 
descriptions from a behavioral or algorithmic description 
of the circuit.. 
  
 
 
 
 
 
 
 
 
 

 
 
 
 
 
                  
 
 
 
 
 
 

 
 

Fig. 6 Flow chart of FPGA Design Flow 

 

Formal verification is widely used to verify traditional 
standard cell ASIC designs. The term timing analysis is 
used to refer to two methods called Static Timing Analyses 
(STA) and the timing simulation. By running formal 
verification in conjunction with STA, it is confirmed that 
the post-route net list is the same as the RTL design in 
functionality. STA is one of the techniques available to 
verify the timing of a digital design. The STA is static 
since the analysis of the design is carried out statistically 
and does not depend upon the data values being applied at 
the input pins. An alternate approach used to verify the 
timing is the timing simulation which can verify the 
functionality as well as the timing of the design where a 
stimulus is applied on input signals, resulting behavior is 
observed and verified, then time is advanced with new 
input stimulus applied, and the behavior is observed and 
verified and so on. Thus, timing analysis simply refers to 
the analysis of the design for timing issues. In power 
analysis, power consumption of the implemented digital 
circuit is calculated to satisfy the power requirement 
specifications. After meeting all the specifications, the 
PROM file is generated to download into FPGA/CPLD 
using JTAG Cable. The Signal Integrity (SI) stage 
addresses two concerns in the design aspects; they are 
timing and the quality of the signal. The goal of signal 
integrity analysis is to ensure reliable high-speed data 
transmission. In a digital system, a signal is transmitted 
from one component to another in the form of logic '1' or 
'0', which is actually at certain reference voltage levels. 
The receiving component needs to sample the data in order 
to obtain the binary coded information. Any delay of the 
data or distortion of the data will result in a failure of the 
data transmission. The SI check plays an important role in 
high speed FPGA design in order to satisfy the quality of 
the signal at the far end of the board route, as well as the 
propagation delay. Major FPGA vendors provide ISE 
comprising simulator, synthesizer and implementation 
tools and third party support is provided for simulation, 
synthesis, power analysis depending on the design 
requirement. 
 
10. RESULTS & DISCUSSIONS  
 
In this paper the internal modules such as adder, multiplexer 
and shift and add multiplication is used as the basic 
modules. First, the basic modules are simulated and the 
results are presented. Then designed digital FIR filter is 
simulated for different orders and frequencies and the 
results are presented.  
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             Fig. 7 Simulation Result of Adder 
 
 

 
 

                     Fig. 8 Simulation Result of Multiplexer 

 

 
 

                              Fig. 9 Simulation Result of Shift and Add multiplication 

10.1Simulation results of digital FIR filter with 
different orders 
  
The simulated results of digital FIR filter of different 
orders such as order 3, order 6 and order 15 are presented 
below with their order, cut off frequencies and sampling 
frequencies respectively. As the order of the filter 
increases, the performance of the filter increases. The 
magnitude of the output signal decreases when the 
frequency of the input signal increases. The response of the 

band stop filter is clearly visible when the order of the 
filter increases 
 

 
 
Fig. 10 FIR Filter output of Order3, cut off frequency 4MHZ, sampling rate 

50MHZ 

 
 

 
 

Fig 11 FIR Filter output of order 6, cutoff frequency 4MHz, sampling rate 
50MHz 

 
 

 
 

Fig. 12 FIR Filter output of order 15, cutoff frequency 4MHz, sampling   
rate 50MHz 
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10.2 Synthesis Report 
 
The FIR filter designed is synthesized using Xilinx 9.1i 
and the device utilization report is presented for the order 
3, 6 and 15 in Table 1 to Table 3 respectively. 
 

Table 1: Synthesis report of FIR filter of order 3 

Logic utilization Used Available 
 

Utilization 
 

Number of Slices 64 3584 1% 

Number of Slice 
Flip Flops 

84 7168 1% 

Number of 4 input 
LUTs 

67 7168 0% 

Number of bonded 
IOBs 

27 141 19% 

Number of GCLKs 1 8 12% 

 
 

                   Table 2: Synthesis report of FIR filter of order 6 
Logic Utilization Used Available Utilization 
Number of Slices 113 3584 3% 
Number of Slice 
Flip Flops 

121 7168 1% 

Number of 4 input 
LUTs 

125 7168 1% 

Number of bonded 
IOBs 

29 141 20% 

 
 
 

Table 3: Synthesis report of FIR filter of order 15 
Logic Utilization Used Available Utilization 
Number of Slices 219 3584 6% 
Number of Slice 
Flip Flops 

198 7168 2% 

Number of 4 input 
LUTs 

365 7168 5% 

Number of 4 input 
LUTs 

30 141 21% 

Number of 
GCLKs 

1 8 12% 

 
11. Conclusion  
 
A hybrid synchronous and asynchronous digital FIR filter 
has been designed and Implemented in FPGA using 
VHDL. The digital FIR filter of high throughput, low 
latency operating at above 1.3 GHz has been designed. An 
adaptive high capacity pipelined was introduced in the 
hybrid synchronous asynchronous design of the filter. The 
degree of the pipelining is dynamically variable depending 
upon the input. Concurrent execution of software or 
program can be achieved in FPGA through parallel 
processing. The designed digital FIR filter is simulated 

using ModelSim and synthesized using Xilinx. The 
simulated results of digital FIR filter of different orders. As 
the order of the filter increases, the performance of the 
filter increases. The magnitude of the output signal 
decreases when the frequency of the input signal increases. 
The response of the band stop filter is clearly visible when 
the order of the filter increases. The FIR filter designed is 
synthesized in Xilinx 9.1i and the device utilization report is 
presented for filter of order 3, 6 and 15 respectively.  
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