

A Proficient Design of Hybrid Synchronous and Asynchronous

Digital FIR Filter using FPGA

Paulchamybalaiah1 and Dr.Ila Vennila2

1Assistant Professor
Department Of ECE

Hindusthan Institute of Technology
Coimbatore-32

2Assistant Professor
Department Of EEE

PSG College of Technology
Coimbatore-32

Abstract
In this paper, a hybrid synchronous and asynchronous digital FIR
fil ter is designed and implemented in FPGA using VHDL. The
digital FIR filter of high throughput, low latency operating at
above 1.3 GHz was designed. An adaptive high capacity
pipelined was introduced in the hybrid synchronous
asynchronous design of the filter. The degree of the pipelining is
dynamically variable depending upon the input. Concurrent
execution of software or program can be achieved in FPGA
through parallel processing. The designed digital FIR filter is
simulated using ModelSim and implemented using Xilinx. The
simulation results are presented for different order such as 3, 6
and 15. The FIR filter designed is synthesized in Xilinx 9.1i and
the device utilization report is presented for filter of order 3, 6 and
15.
Keywords: FPGA, Asynchronous pipeline, dynamic logic, FIR
Filter

1. Introduction

Basically the filters are designed by using finite number of
samples of impulse response which is termed as finite
impulse response filters. It is a non- recursive, discrete-
time filter. The output depends only on present and
previous inputs. It is to remove unwanted parts of the
signal such as random noise and also to extract useful parts
of the signals such as the components lying within a certain
frequency range [1], [2]. FIR filters are inherently stable
due to the fact that all the poles are located at the origin
and thus are located within the unit circle. FIR filters
require no feedback means that any rounding errors are
compounded by some iteration. They can be designed to
be linear phase by making the coefficient sequence
symmetric , linear phase or phase change proportional to
frequency , corresponds to equal delay at all frequencies.

In signal processing, the function of a filter is to measure
unwanted parts of the signal such as random noise and to

extract useful parts of the signal, such as the components
lying within a certain frequency range [3]. Digital filter
uses a digital processor to perform numerical calculation
on sampled value of the signal. The processor may be a
general purpose computer such as PC or a specialized DSP
(digital signal processor) chip.
The types of the filter are as follows:
• Low pass filter: They leave to pass the low
frequencies.
• High pass filter: They leave to pass the high
frequencies and they strongly attenuate the low ones.
• Band pass filter: They leave to pass the mean
frequencies and they attenuate the high
Ones and the low ones.

2. Overview of Digital Implementation of FIR

2.1 Digital Implementation of FIR Filter using DSP

Distributed Arithmetic has been used to implement a bit-
serial scheme of a general asymmetric version of an FIR
filter, taking optimal advantage of the 4-input LUT-based
structure of FPGAs and a highly area-efficient multiplier-
less FIR filter is designed. To implement DSP functions in
Field FPGAs, which offer a balanced solution in
comparison with traditional devices? Although ASICs and
DSP chips have been the traditional solution for high
performance applications, now the technology and the
market are imposing new rules. On one hand, high
development costs and time-to-market factors associated
with ASICs can be prohibitive for certain applications and,
on the other hand, programmable DSP processors can be
unable to reach a desired performance due to their
sequential-execution architecture. The research Community
has put great effort in designing efficient architectures for

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 395

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

DSP functions such as FIR filters, which are extensively
used in multiple applications in telecommunications,
wireless or satellite communications, video and audio
processing, biomedical signal processing and many others.
Traditionally, the design methods were mainly focused in
multiplier-based architectures to implement the multiply-
and- Accumulate (MAC) blocks that constitute the central
piece in FIR filters and several DSP functions: But careful
analysis shows that multiplier-based filter implementations
may become highly expensive [2], [4].

2.2 Digital Implementation of FIR Filter using FPGA

FPGAs offer a very attractive solution that balance high
flexibility, time-to-market, cost and performance. This
issue has been partially solved with the new generation of
low- cost FPGAs that have embedded DSP blocks.
However, if the final product will reside on an ASIC for
instance, the problem is still present. To resolve this issue,
several multipliers-less schemes were proposed. Basically,
these methods can be classified in two categories according
to how they manipulate the filter coefficients for the multiply
operation. The first type of multiplier-less technique is the
conversion-based approach, in which the coefficients are
transformed to other numeric representations whose
hardware implementation or manipulation is more efficient
than the traditional binary representation. Example of such
techniques is the Canonic Sign Digit method, in which
coefficients are represented by a combination of powers of
two in such a way that multiplication can be simply
implemented with adder/subtractions and shifters, and the
Dempster-Mcleod method, which similarly involves the
representation of filter coefficients with powers of two but
in this case arranging partial results in cascade to introduce
further savings in the usage of adders. The second type of
multiplier-less method involves the use of memories
(RAMs, ROMs) or LUTs to store pre-computed values of
coefficient operations. These are called memory-based
methods. Examples of them are found in the Constant
Coefficient Multiplier method and the very-well known
DA method. DA appeared as a very efficient solution
especially suited for LUT-based FPGA architectures. This
technique is a multiplier-less architecture that is based on
an efficient partition of the function in partial terms using
2's complement binary representation of data. The partial
terms can be pre-computed and stored in LUTs. The
flexibility of this algorithm on FPGAs permits everything
from bit-serial implementations to pipelined or full-parallel
versions of the scheme, which can greatly improve the
design performance. The main problem with DA is that the
requirement of memory/LUT capacity increases
exponentially with the order of the filter, given that DA
implementations need 2K - words (K being the number of
taps of the filter). That constitutes a first obstacle for FIR

filters of high order. A flexible architecture that gradually
replaces LUT requirements with multiplexer/adder pairs
was introduced. An asymmetric FIR filter architecture
using the bit-serial LUT-based DA technique is
presented. For this implementation, we use a scheme that
takes advantage of the 4-input LUTs in FPGAs, and
rearranges the input sequence to implement a modified
version of the shifter/accumulator stage. We show that our
modified version is superior in terms of area to previous
LUT-less DA architectures [5], [7].

3. Problem Formulation

In the existing method, fixed order filter is used. The filter
is a ten-tap six bit FIR filter Partial sums are pre-computed
and stored in a LUT, indexed by the input data values. The
signed-digit offset binary notation is used in which the
symbols “0” and “1” stand for negative and positive co-
efficient of powers of 2.The Figure1.Shows that Existing
Fixed Mode Filter.

 Fig. 1 Existing fixed tap Mixed Mode Filter

4. Proposed Methodology

In this method, variable order filter is proposed.
Fig.2.Shows the Programmable tap fixed mode Filter. We
can change the filter order to any number if purpose the 3rd
order, 5th order, 15th order can be designed. Concurrent
execution of software or program can be achieved in
FPGA through adaptive high capacities pipelined which
performed parallel processing. With this methodology we
aim to design a digital FIR filter operating at above
1.3GHZ.

 Fig. 2 Proposed Programmable tap fixed mode Filter

Odd and Even
partial sum
generator

Adder

Output

Register
Filter
Input

Filter
Output

Left synchronous portion Right synchronous
portion

 Asynchronous
 Portion

 Filter
Input Filter output

Left synchronous portion
Right synchronous portion Asynchronous portion

Odd and Even

partial sum
generator

Adder

Output Register

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 396

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Design Concepts of Digital FIR Filter

Fir filter are commonly designed in DSP and FPGA
platforms. Therefore, the basic design concepts using DSP
and FPGA are discussed below.

5.1 Design Concepts of Digital FIR Filter using DSP

A design method for FIR digital filter based on DSP
processor with fixed point series in which the coefficient of
filter is obtained and verified with the DSP measuring
system. The digital filter’s all functionalities met design
expectations. Filtering plays a significant role in digital
signal processing. Digital filtering is a basic calculation
method for language and graphics treatment, mode
recognition, and spectrum analysis. This method has many
advantages over an analogue filter, such as broad design
amplitude, precision guarantee, and accurate linear phase
position; and prevention of voltage shifting, temperature
migration, and noise. Since its response to unit impulse is
in limited long sequence, FIR filter is always stable. In
addition to those advantages, digital filtering using DSP
chip is flexible, convenient to change the filter’s
parameters, and easy to modify its specificity. The
methodologies for high-level synthesis of dedicated DSP
architectures using the COMET design system is in use.
The system is tuned to the synthesis of DSP ASICs from
behavioral specifications written in VHDL. COMET is
capable of generating more efficient architectures using
innovative scheduling and resource allocation algorithms
which exploit the cluster information and maximize the
parallel tasks. With these transformations, major
improvements are achieved with fewer registers and
interconnections; an industrial quality design is then
derived in both FIR and elliptic filter examples. Filter
banks are often used in signal and image processing
applications for dividing a signal into frequency bands and
reconstructing the signal from the individual bands.
Quadrature Mirror Filter is one particular application using
the sub-band coding technique, have not able advantages
for image compression / restoration compared with the
Discrete Cosine Transform. Silicon compilation has
become essential to automate the VLSI design of DSP
system as chips increase in size and complexity. High-level
synthesis, an important front end task from an algorithmic
behavioral specification, has received a lot of attention in
both the academic and Industrial environments. Generally,
the input description is converted into a Data Flow Graph
and all synthesis tasks work from this Data Flow Graph.
Behavioral synthesis is a complex task composed primarily
of two interacting subtasks: scheduling and allocation. A
great deal of progress has been made on the theory of high-
level synthesis and promising results [2, 4].

5.2 Design Concepts of Digital FIR Filter using
FPGA

Implementation of the filter requires considerably less
resources than the previousdesign using DSP. This requires
about half the resources in terms of configurable blocks,
lookup tables. The saving in the adder chain is not so high,
since most of the adder tree size is dictated by the
coefficients size, not by the samples size. The lookup
tables must be writable. This increases its complexity,
especially in terms of routing resources. The mixer
multiplier must be implemented using hard multipliers, not
lookup tables. A single large lookup table to hold
sine/cosine values is still needed. Especially for Altera
FPGAs, this is a large advantage, as these chips have
smaller RAM blocks, but also one or two large RAMs. Re-
tuning the band is relatively slow [5, 11]. The filter has no
capability for frequency hopping. This is not a
requirement, and tap reloading is in any case faster than for
a full1024 tap filter. Some intelligence is needed in the
control processor to recalculate filter taps from the low
pass prototype, but this is within the capabilities of any
current microprocessor. We use ModelSim Tool to
determine filter coefficients, and designed a 16-
orderconstant coefficient FIR filter by VHDL language [3,
9], simulate filters, the results meet performance
requirements. As the word indicates, a filter separates a
desired signal from unwanted disturbances. When we want
to remove a disturbance such as noise from an audio
signal, we design an appropriate filter that passes only the
desires signal. But only in a few cases can we remove the
disturbance completely and recover the desired signal;
most of the time we have to settle for a compromise, most
of the disturbance is rejected, most of the signal is
recovered. The first candidate in filter is a linear filter. The
main reason for this choice is that we have a good
understanding of how a linear system operates. It is only
when a linear design fails or it yields unsatisfactory results
that we look for other solutions, such as nonlinear or,
adaptive techniques, for example. Digital filters include
infinite impulse response (UR) digital filter and finite
impulse response (FIR) digital filter. As the FIR system
have a lot of good features, such as only zeros, the system
stability, operation speed quickly, linear phase
characteristics and design flexibility, so that FIR has been
widely used in the digital audio, image processing, data
transmission, biomedical and other areas. FIR filter has a
variety of ways to achieve, with the processing of modem
electronic technology, taking use of field programmable
gate array FPGA for digital signal processing technology
has made rapid development, FPGA with high integration,
high speed and reliability advantages, FIR filter
implementation using FPGA is becoming a trend. The
algorithm is proposed for the design of low complexity

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 397

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

linear phase finite impulse response (FIR) filters with
optimum discrete coefficients. The proposed algorithm,
based on mixed integer linear programming, efficiently
traverses the discrete coefficient solutions and searches for
the optimum one that results in an implementation using
minimum number of adders. During the searching process,
discrete coefficients are dynamically synthesized based on
a continuously updated sub expression space and, most
essentially, a monitoring mechanism is introduced to
enable the algorithm’s awareness of optimality. Benchmark
examples have shown that the proposed algorithm can, in
most cases, produce the optimum designs using minimum
number of adders for the given specifications. The
proposed algorithm can be simply extended for the
optimum design with the maximum adder depth constraint.
Linear phase finite impulse response (FIR) filters are
widely used in digital signal applications such as speech
coding, image processing, MultiMate systems, etc.
Although the stability and linear phase is guaranteed, the
complexity and power consumption of the linear phase FIR
filter are usually much higher than that of the infinite
impulse response (IIR) filter which meets the same
magnitude response specifications. Therefore, many efforts
have been dedicated to the design of low complexity and
low-power linear phase FIR filters. A conventional filter
structure, called transposed direct form, in which the input
signal is first multiplied by the constant filter coefficients
and then goes into the delay elements. This operation is
often referred to as multiple constants multiplication
problem. The constant multipliers can be realized using
multiplier less techniques where the general multipliers are
replaced by a network of shifts and adders. The adders can
be further classified into structural adders and multiplier
block adders. Structural Adders are used to add the
temporarily stored values. An efficient semi definite
programming method for the design of a class of linear
phase finite impulse response filter banks whose filters
have optimal frequency selectivity for a prescribed
regularity order is proposed. The design problem is
formulated as the minimization of the least square error
subject to peak error constraints and regularity constraints.
By using the linear matrix inequality characterization of
the trigonometric semi-infinite constraints, it can then be
exactly cast as a Semi definite programming problem with
a small number of variables and, hence, can be solved
efficiently. Finally, the image coding performance of the
filter bank is presented. The filter has found important
applications in image processing, speech processing,
communications, and the construction of wavelet bases.
The filter bank design is commonly formulated as a highly
nonlinear optimization problem because of the perfect
reconstruction condition. As a result, high complexity
algorithms are required to obtain a good solution, and the
globally optimal solution is not guaranteed. To reduce the

computational complexity of the design, finding filter bank
structures that structurally satisfy perfect reconstruction is
of great interest. Lifting structures are very attractive for
the construction and implementation of filter and wavelets
because the perfect reconstruction property can be
structurally imposed offers a filter bank with low
implementation complexity. However, there are certain
restrictions on the frequency responses.

6. Digital FIR Filter Architecture

 The architecture of the FIR filter is shown in figure.3.The
filter is a ten-tap six-bit FIR filter using the distributed
arithmetic architecture. Six bit Slices, stacked on top of
each other. It consists of three portions namely [3].

6.1 Left Synchronous Portion

 Receives data from the environment and processes it into
partial sums Asynchronous portion: Ads the partial sums to
compute the final result.

6.2 Right Synchronous Portion

Right Synchronous Portion synchronizes the result to the
clock and produces it as an output for the environment.
Data inputs enter from the left, and are processed by the
filter as they flow to the right. The filter can be divided
into three portions, from Left to right. The leftmost portion
is clocked, from the input side to the domino latches. The
middle portion, from the XOR gates to the end of the carry
look ahead adder, is asynchronous. Finally, the rightmost
portion, consisting of an output latch, is again clocked. The
architecture of the filter is best understood by following the
flow of data from left to right [4]. As the stream of data
enters the filter, it first passes through a shift register,
which stores the most recent input values that are needed
to compute the filter output. In particular, for a p-tap filter,
for each bit, there is a p-place shift register that stores the
most recent history for that bit. These stored input values
are then multiplied by their respective filter weights. The
multiplication is accomplished very efficiently by fetching
precompiled results from a lookup table.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 398

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Fig. 3 FIR Filter Architecture

The entire multiplication process is bit-sliced, with one
slice for each bit of the input data. The result of the
multiplications is a set of partial sums which are fed to the
asynchronous portion of the filter pipeline for addition [5].
In the figure1, the lookup table is composed of two banks
of registers containing the precompiled result scaled even
and odd partial sums and two output multiplexors.

6.3 Asynchronous Portion

It is a nine-stage pipeline that adds all of the partial sums
together, and produces the result. Finally, this result is
latched by a clocked latch and output to the right
environment.

.

7. FILTER IMPLEMENTATION

The FIR filter implementation is now considered in more
detail. The synchronous and asynchronous portions of the
chip are discussed separately, followed by a discussion of
the interface between the two domains [6].

7.1 Synchronous Portion

The synchronous portion of the filter consists of two parts,
one at the input side of the filter, and the other at the
output side.

7.2 Synchronous Input Portion

This part receives the input to the filter. The input stream
consists of data values which are six bits wide [5]. A 10-
slot shift register at the input side of the filter stores the 10
most recent data values. These stored input values are
needed to compute the current filter output, which is a
weighted sum of these values. The multiplication of inputs

Shift
Register

Decoder

Register

16:1

Domino
Latch

Domino
Latch

16:1

Carry
Look
Ahead
Adder

Outp
ut
Latch

 Self timed control

Even Partial
sums

Odd Partial
sums

Yout

Xin

8b

8b

1

16b

16b

16b

4b

16b X 8b

16b X

16b X 8b

8b X 8b

8b X 8b

Carry
Save adder

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 399

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

by their respective filter weights is accomplished very
efficiently by pre-computing all possible products and
storing them into a lookup table. The entire multiplication
is bit-sliced, with one slice for each of the six bits in the
input data. Therefore, within each bit slice, there are 10
input bits which together forma 10-bit address for
accessing the lookup table [3].
The size of the lookup table is reduced by employing two
techniques is used: the 10-bit address is divided into two 5-
bit addresses, one composed of only the even-index bits,
and the other composed of the odd-index bits. Each of
these two addresses has a distinct lookup table associated
with it [6]. To understand the filter operation with a
partitioned lookup table, consider a simulation of partial
sum lookup. The 10-bit pattern (after passing through the
decoder unit) is used to generate separate groups of even
and odd-indexed bits. In particular [6], only the five even
bits are used; they are forked to the even multiplexor as its
select bits, and also to a clocked register where, after one
clock cycle delay, they become the odd-index select bits to
the bottom multiplexor, for the next clock cycle.
Appropriate entries in the event and odd lookup tables are
then selected and sent to the domino latches.

A signed-digit offset binary notation is used to represent
table entries and addresses, which enable the separation of
the sign-bit from each address, further shortening the
addresses to 4-bit words.[4] As a result, the table size is
dramatically reduced: two tables with only 16 (= 24)
entries each are needed, as opposed to one table with 1024
(= 210) entries. The lookup tables are implemented using
registers and multiplexors. Each table has 16 registers,
each of which can store an 8-bit entry, per bit slice. Each
of the tables has a 16:1 multiplexor at its output, controlled
by the 4-bit address word.2 The odd-index address word is
generated front he even-index address word by delaying it
by one clock cycle[5]. The result of the multiplication is a
set of products, called partial sums, that is sent to the
asynchronous pipeline for addition, through the
synchronous-asynchronous interface [2].

7.3 Synchronous Output Portion

The right synchronous portion simply consists of
a master slave latch that receives the final result
from the asynchronous pipeline and makes it
available as the filter output.

7.4 Asynchronous Portion:

The asynchronous portion of the filter consists of a
pipeline that lies between the synchronous input and output

portions, the function of this asynchronous pipeline is to
take the partial sums generated byte synchronous input
portion, add them up to produce the final filter result, and
send it to the synchronous output portion. The pipeline was
designed using the high-capacity pipeline style the
asynchronous data path uses dynamic logic, and consists of
nine stages [1], [2]. The first stage is a layer of XOR gates
that restores the correct sign to the partial sums. The next
five stages correspond to five layers of carry save adders
The last three stages implement a carry look ahead adder
Since both true and complement values of the data bits are
needed to compute the XOR and addition functions, the
entire data path was implemented in dual-rail.

The data path is quite wide at the input to the first stage:
216 wires (= (8 data bits + 1 sign bit) (even and odd) ·6
(bit slices) ·2 (wires/bit)). The output of the last stage is a
15-bit result represented using 30 wires. Interestingly,
since the filter has a very fine-grain data path, no explicit
matched delays are required [6]. The delay of each
function block is matched by the completion generator’s
AC element itself, through appropriate device sizing. The
self-timed control of a high-capacity pipeline needs a slight
modification to handle the wide data path of the filter. In
particular, buffers must be inserted in order to amplify the
control signals which are broadcast to the entire width of
the data path [4]. Two different versions of the control
were designed, one more robust and the other faster.
The two versions differ in the placement of the amplifying
buffers. In the first version, the buffers amplify data path as
well as the completion generator. This version is very
robust to variations in buffer delays because the
completion signals are delayed by the same amount as the
data path [3], [4]. However, the buffers are on the critical
path, thus increasing the pipeline cycle time. In the second
version, the completion generators use control signals that
are tapped off from before the buffers. As a result, the
buffer delays are taken off of the critical path, resulting in
a shorter cycle time. However, each stage’s function block
now lags behind its completion generator by an amount
equal to the buffer delay. Consequently, for the pipeline to
function correctly, all the stages throughout the pipeline
are required to have comparable buffer delays

7.5 Synchronous-Asynchronous Interfaces

The interface between the asynchronous and the
synchronous portions of the chip must mediate certain
differences in data representation and control sequencing.
In particular, the asynchronous data path uses dual-rail
dynamic logic, whereas the synchronous portions of the
chip use single-rail static logic [5], [6]. Moreover, the
asynchronous pipeline communicates by means of local

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 400

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

handshakes (using req’s and ack’s) at each end, whereas
the synchronous portion uses global clocking.

8. Internal Modules

The internal modules used for the design of the digital FIR
filter are Adder, Multiplexer and Shift and Add
Multiplication. The respective internal modules are
explained in details as follows:

8.1Adder

An Adder is a digital circuit that performs addition of
number in modern computer adders reside in the arithmetic
logic unit where other operation are performed. Adder can
be constructed for much numerical representation such as
binary coded decimal. The most common adders operate
on binary number.

8.2 Multiplexer

It is a device that performs multiplexing. It selects one of
many analog or digital input signals and forwards the
selected input to a single line. An electronic multiplexer
makes it possible for several signal to share one device.
The multiplexer units are used to select the appropriate
output from the shift and add unit

8.3 Shift-and-Add Multiplication

Shift-and-add method adds the multiplicand X to itself Y
times, where Y denotes the Multiplier. In the binary
multiplication, the digits are 0 and 1; each step of the
multiplication is simple. If the multiplier digit is 1, a copy
of the multiplicand (1 × multiplicand) is placed in the
proper positions; if the multiplier digit is 0, a number of 0
digits (1 × multiplicand) are placed in the proper positions

 Fig. 4 Final Version of Shift and Add Multiplication
Circuit.

Consider the multiplication of positive numbers. The first
version of the multiplier circuit, which implements the
shift-and-add multiplication method for two n-bit numbers,
is shown in the figure. The 2n-bit product register (A) is
initialized to 0. Since the basic algorithm shifts the
multiplicand register (B) left one position each step to
align the multiplicand with the sum being accumulated in
the product register, we use a 2n-bitmultiplicand register
with the multiplicand placed in the right half of the register
and with 0in the left half.

Fig. 5 Flowchart of the Final version algorithm of the Shift
and Add Multiplication

The Fig.5. Shows the basic steps needed for the
multiplication. The algorithm starts by loading the
multiplicand into the B register, loading the multiplier into
the Q register, and initializing the A register to 0. The

 B (Multiplicand)

 Control

 A (Product)

 Q (Multiplier, Product)

N
bits

N

bits

N
bits

N
bits

Add

Shift right

Write

ALU

 START

 Q0 = 1

An A+B

 Shift A_Q right

 N=0

 STOP

 N N-1

Yes

NO

Yes NO

B X,Q Y

A O,N n

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 401

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

counter N is initialized to n. The least significant bit of the
multiplier register (Q0) determines whether the
multiplicand is added to the product register. The left shift
of the multiplicand has the effect of shifting the
intermediate products to the left. The right shift of the
multiplier prepares the next bit of the multiplier to examine
in the next iteration.
9. FPGA Design flow
The flow chart of a typical FPGA design flow is shown in
Fig.6. The design flow and FPGA design methodologies
are reviewed by eminent researchers. The design
specifications are written first to describe the functionality,
interface and overall architecture of the digital circuit to be
designed with short development time [5]. A behavioral
description is then created to analyze the design in terms of
functionality to meet the performance, compliance to
standards and other high-level issues. Behavioral
descriptions can be written with HDLs and it is converted
to RTL description in an HDL. The designer has to
describe the data flow to implement the desired digital
circuit using any market standard simulator. The
functionality of the intended application is verified in the
functional verification and tested using different set of
stimulus. The Logic synthesis tools convert the RTL
description to a technology independent gate-level net list,
which is a description of the circuit in terms of gates and
connections between them. Behavioral synthesis tools have
begun to emerge recently. These tools can create RTL
descriptions from a behavioral or algorithmic description
of the circuit..

Fig. 6 Flow chart of FPGA Design Flow

Formal verification is widely used to verify traditional
standard cell ASIC designs. The term timing analysis is
used to refer to two methods called Static Timing Analyses
(STA) and the timing simulation. By running formal
verification in conjunction with STA, it is confirmed that
the post-route net list is the same as the RTL design in
functionality. STA is one of the techniques available to
verify the timing of a digital design. The STA is static
since the analysis of the design is carried out statistically
and does not depend upon the data values being applied at
the input pins. An alternate approach used to verify the
timing is the timing simulation which can verify the
functionality as well as the timing of the design where a
stimulus is applied on input signals, resulting behavior is
observed and verified, then time is advanced with new
input stimulus applied, and the behavior is observed and
verified and so on. Thus, timing analysis simply refers to
the analysis of the design for timing issues. In power
analysis, power consumption of the implemented digital
circuit is calculated to satisfy the power requirement
specifications. After meeting all the specifications, the
PROM file is generated to download into FPGA/CPLD
using JTAG Cable. The Signal Integrity (SI) stage
addresses two concerns in the design aspects; they are
timing and the quality of the signal. The goal of signal
integrity analysis is to ensure reliable high-speed data
transmission. In a digital system, a signal is transmitted
from one component to another in the form of logic '1' or
'0', which is actually at certain reference voltage levels.
The receiving component needs to sample the data in order
to obtain the binary coded information. Any delay of the
data or distortion of the data will result in a failure of the
data transmission. The SI check plays an important role in
high speed FPGA design in order to satisfy the quality of
the signal at the far end of the board route, as well as the
propagation delay. Major FPGA vendors provide ISE
comprising simulator, synthesizer and implementation
tools and third party support is provided for simulation,
synthesis, power analysis depending on the design
requirement.

10. RESULTS & DISCUSSIONS

In this paper the internal modules such as adder, multiplexer
and shift and add multiplication is used as the basic
modules. First, the basic modules are simulated and the
results are presented. Then designed digital FIR filter is
simulated for different orders and frequencies and the
results are presented.

Design
specification

Formal

Behavioral
description

RTL description

Functional
verification and

Logic synthesis

Device
programming

 Place and route

Logical verification
and testing

Gate level net list

Board level

Power analysis

 Static timing

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 402

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 Fig. 7 Simulation Result of Adder

 Fig. 8 Simulation Result of Multiplexer

 Fig. 9 Simulation Result of Shift and Add multiplication

10.1Simulation results of digital FIR filter with
different orders

The simulated results of digital FIR filter of different
orders such as order 3, order 6 and order 15 are presented
below with their order, cut off frequencies and sampling
frequencies respectively. As the order of the filter
increases, the performance of the filter increases. The
magnitude of the output signal decreases when the
frequency of the input signal increases. The response of the

band stop filter is clearly visible when the order of the
filter increases

Fig. 10 FIR Filter output of Order3, cut off frequency 4MHZ, sampling rate

50MHZ

Fig 11 FIR Filter output of order 6, cutoff frequency 4MHz, sampling rate
50MHz

Fig. 12 FIR Filter output of order 15, cutoff frequency 4MHz, sampling
rate 50MHz

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 403

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

10.2 Synthesis Report

The FIR filter designed is synthesized using Xilinx 9.1i
and the device utilization report is presented for the order
3, 6 and 15 in Table 1 to Table 3 respectively.

Table 1: Synthesis report of FIR filter of order 3

Logic utilization Used Available

Utilization

Number of Slices 64 3584 1%

Number of Slice
Flip Flops

84 7168 1%

Number of 4 input
LUTs

67 7168 0%

Number of bonded
IOBs

27 141 19%

Number of GCLKs 1 8 12%

 Table 2: Synthesis report of FIR filter of order 6
Logic Utilization Used Available Utilization
Number of Slices 113 3584 3%
Number of Slice
Flip Flops

121 7168 1%

Number of 4 input
LUTs

125 7168 1%

Number of bonded
IOBs

29 141 20%

Table 3: Synthesis report of FIR filter of order 15
Logic Utilization Used Available Utilization
Number of Slices 219 3584 6%
Number of Slice
Flip Flops

198 7168 2%

Number of 4 input
LUTs

365 7168 5%

Number of 4 input
LUTs

30 141 21%

Number of
GCLKs

1 8 12%

11. Conclusion

A hybrid synchronous and asynchronous digital FIR filter
has been designed and Implemented in FPGA using
VHDL. The digital FIR filter of high throughput, low
latency operating at above 1.3 GHz has been designed. An
adaptive high capacity pipelined was introduced in the
hybrid synchronous asynchronous design of the filter. The
degree of the pipelining is dynamically variable depending
upon the input. Concurrent execution of software or
program can be achieved in FPGA through parallel
processing. The designed digital FIR filter is simulated

using ModelSim and synthesized using Xilinx. The
simulated results of digital FIR filter of different orders. As
the order of the filter increases, the performance of the
filter increases. The magnitude of the output signal
decreases when the frequency of the input signal increases.
The response of the band stop filter is clearly visible when
the order of the filter increases. The FIR filter designed is
synthesized in Xilinx 9.1i and the device utilization report is
presented for filter of order 3, 6 and 15 respectively.

12. References

[1]OppenheimA.V. and SchaferR. W., discrete-Time Signal processing.
Upper Saddle River, NJ: Prentice hall, 1989.
[2]Ching-Tang Chang, Kenneth Rose and Robert A. Walker, “High-Level
DSP Synthesis Using the COMET Design System” IEEE
Trans. On digital signal processing systems, vol. 8, no. 6, pp. 408-411,
2010.
[3]Douglas. L. Perry, VHDL: Programming by examples. New York:
McGraw-Hill, 2002.
[4]Guo Gaizhi, Zhang Pengju, Yu Zongzuo, Wang Hailong, “Design and
Implementation of FIR Digital Wave Filter Based on DSP”
IEEE Trans. on digital signal processing systems, vol.489-491, no. 978,
pp. 978-989, 2010.
[5] Odriguez-AndinaJ. J. R., MooreM. J., andValdesM. D., “Features,
design tools, and application domains of FPGAs” IEEE Trans.
Ind. Electron. vol. 54, no. 4, pp. 1810-1823, 2007.
[6] Tierno.J, Rylyakov.A.S, Rylov, Singh.S, Ampadu.P, Nowak’s,
Immediato.M, and Gowda.S, A 1.3 GSamples10 tap full rate
Variable latency self-timed FIR filter with clocked interfaces in Proc. Int.
Solid State Circuit Conference, San Francisco, CA, pp-444.
Feb. 2002
[7] Montek Singh, Jose Tierno.A, Alexander Rylyakov, Sergey Rylov,
and Steven Nowick .M, Fellow, IEEE. “An Adaptively Pipelined
Mixed Synchronous Asynchronous Digital FIR Filter Chip Operating At
1.3 GHz”. IEEE Transactions on very large scale integration
(VLSI) systems, vol. 1.8, no.7, July 2010.
[8]Singh.M, Tierno.J.A, Rylyakov.A, Rylov.S and Nowick.S.M, “An
adaptively- Pipelined mixed synchronous-asynchronous digital
FIR filters chip operating at 1.3GHz, in proc. IEEE Int. Symp.
Asynchronous Circuits and System, Manchester, U.K, pp.84-95,
pr.2002.
[9]Peter Ashenden.J, “VHDL Tutorial,” Ashenden Designs Pty. Ltd.,
Elsevier Science, USA, 2004.
[10] Ramesh Babu, “Digital Signal Processing”,-TATA McGraw Hill,
2007.
[11] Xilinx Corporation “Xilinx Spartan-3E FPGA family: Complete data
sheet,” 2007. [Online]. Available: http://www.xilinx.com.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 404

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

