

A Variant of FPZL Algorithm

Komal Bhalotiya1, Dr. D. V. Padole2 and Prof. Radhakrishna Naik3

 1 Computer science and Engineering, Nagpur University, G. H. Raisoni College of Engineering

Nagpur, Maharashtra, India

2 Electronics Engineering, Nagpur University, G. H. Raisoni College of Engineering

Nagpur, Maharashtra, India

3 University of Pune, G. H. Raisoni College of Engineering

Nagpur, Maharashtra, India

Abstract
Fixed priority until Zero Laxity (FPZL) algorithm is the

minimally dynamic scheduling algorithm. In FPZL, fixed

priorities are assigned to the jobs and are scheduled accordingly

until the state of zero laxity is reached and it does not follow any

priority order. FPZL concentrates on scheduling more jobs as far

as possible. The algorithm which is proposed in this paper is the

variant of FPZL which employs the priority order. Instead of

giving up processing of some tasks completely, this algorithm

completes some portion of the tasks and at the same time if any

zero laxity task arrives it takes that task also into consideration

and schedules accordingly. In this way, this algorithm tries to

process more jobs as compared to the FPZL algorithm and

increases the CPU Utilization.

Keywords: Real Time Operating System, Multi-Processor,

Scheduling Algorithm.

1. Introduction

Real time Multiprocessor systems are now common place.

For scheduling tasks on the Multiprocessors there have

been two approaches, partitioning and global scheduling.

In global scheduling the tasks are stored on a single

priority ordered queue; The global scheduler selects for

execution the highest priority tasks from this queue. In

partitioning, each task is assigned to a single processor on

which each of its job will execute and processors are

scheduled independently of each other. There is one more

approach which is considered earlier as a “middle”

approach in addition to the above approaches. In this

approach each job is assigned to a single processor while a

task is allowed to migrate. You can consider it as inter-

processor task migration is allowed but at job boundaries.

One taxonomy is presented earlier in which two

dimensions were given for ranking the scheduling schemes.

One dimension is the complexity of the priority scheme

and other is the degree of migration allowed. Along with

first dimension the scheduling algorithms are classified

according their task priorities which can be static,

dynamic, and fully dynamic. In static one the priorities will

be fixed. In dynamic the priorities dynamic but fixed

within a job and other one is fully dynamic where tasks

will be having fully dynamic priorities without any job

boundaries. Dynamic scheduling can be preemptive or

Non-preemptive. The second dimension is degree of

migration allowed. Again this dimension is categorized as

no migration, migration allowed but only at job boundaries

and third one is unrestricted migration. In unrestricted

migration jobs are also allowed to migrate [9].

In aggregation, the following are the performance

parameters on which basis algorithms can be compared.

 CPU Utilization

 Task Migration

 Number of pre-emptions

 Success Ratio

 High Throughput

 Resource utilization

 Effectiveness

Parallelism and Urgency (Deadline Satisfaction) are the

two factors which were taken into consideration while

designing scheduling algorithms for Real time

Multiprocessor system. Being a Real time Multiprocessor

system, sole focus on either deadline satisfaction or

parallelism is not sufficient. Hence, One of the simple but

effective ways to consider both urgency and parallelism is

to assign the highest priority to any zero-laxity task, where

laxity of a task at any time is defined as remaining time to

deadline minus the amount of remaining execution. We

denote this policy as the ZL (Zero Laxity) policy [12].So,

there is need for such an algorithm which considers both

the factors.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 381

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

In 2011, Robert Davis and Alan Burn has presented one

algorithm named “Fixed Priority until Zero Laxity

(FPZL)”. FPZL is a minimally dynamic global scheduling

algorithm. Under minimally dynamic also it follows pre-

emptive scheduling. FPZL algorithm does not follow any

priority order. The aim behind FPZL algorithm was to

schedule as many tasks as far as possible.

In this paper, we present a dynamic global scheduling

algorithm which is the variant of FPZL algorithm. This

algorithm also follows the pre-emptive scheduling scheme.

In this algorithm we have employed the assignment of

priorities. In addition to the employment of assigning

priorities we have added the concept of processing some

portions of task rather than giving up tasks completely

unscheduled. This is because; there are many situations

where some portions of tasks are very important which is

to be scheduled on a priority basis than the other portions

of the task. In the year this concept was proposed where

the task is logically divided into two subtasks, mandatory

and optional. Using this concept the mandatory portion of

every task will be executed first and later on the optional

portions will be executed.

This paper shows the comparison between the modeled

Fixed Priority until Zero Laxity algorithm and its Variant

which employs the Dynamic priorities with the zero Laxity

concepts in terms of the CPU Utilization, taskset

schedulability, and context switches. With reference to the

performance parameters presented above we can consider

the taskset schedulability as a success Ratio also. As

Success ratio measures the Number of tasks successfully

scheduled to the Total Number of tasks arrived at the

scheduler.

The remainder of the paper is organized as follows:

Section II describes the Review of Literature. Section III

describes the proposed framework. Section IV shows the

Results Analysis. Section V describes the Conclusion and

Future Work.

2. Literature Survey

Jinkyu Lee, Arvind easwaran, and Insik Shin[12] presented

the First ZL schedulability test for any work conserving

scheduling algorithm that employs this policy. In this paper

the authors have investigated the ZL policy and then

investigated the characteristics of LLF scheduling which

also employs the ZL policy and then they have derived

some LLF specific schedulability tests on Multiprocessors.

For conducting this schedulability test they have assumed

that the system comprised of m identical unit capacity

processors which has restricted the system utilization.

Robert Davis and Alan Burn [3] has presented another

zero laxity based scheduling algorithm in which the

priority of a job can change at most once during its

execution and hence bounding the number of pre-

emptions. The key idea behind FPZL is that the jobs are

scheduled according to the fixed priorities assigned until a

zero laxity state is reached. Zero Laxity state is the state

where remaining execution time of a job is equal to the

time to its deadline. This kind of Zero Laxity job will be

missing its deadline unless it executes continually until

completion. In FPZL such zero laxity jobs gets the higher

priority. As the priority of a job changes at most once

during its execution this algorithm is considered as a

minimally dynamic scheduling algorithm and hence it does

not follow any priority order.

3. Proposed Framework

For designing this algorithm, we have taken the FPZL

Algorithm as a basic source. We have modeled this

algorithm first and then implemented the proposed

algorithm. After that we have compared the performance

of the modeled algorithm with proposed one in terms of 3

performance parameters namely CPU Utilization, Context

switches and the taskset schedulability.

In the modeled FPZL algorithm, sometimes it happens that

some task sets are not schedulable. In many situations it

may happen that the tasks which were not scheduled in the

modeled algorithm might have some critical portion which

should be executed. Hence, for this reason, the modeled

algorithm is altered to schedule as many tasks as possible.

For that purpose in this algorithm the concept of

mandatory and optional task is included. It means that the

tasks will be logically divided into two subparts:

Mandatory and optional. By including the concept of

Mandatory and optional tasks we can complete execution

of some portions of every task rather than completely

giving up the processing of some tasks [4].

3.1 Basic Assumptions of the system

1. All tasks are assumed as Independent tasks. It means

that tasks can only be blocked when there is contention of

processors.

2. All tasks are considered as sporadic tasks where each

job of a task may arrive at any time once a period has

elapsed.

3. There will be interference by only other zero laxity tasks.

4. Tasksets are considered with constrained deadlines.

Constrained deadlines means deadline will be either less

than or equal to its period.

5. Whenever a task starts to execute, it will not voluntarily

suspend itself.

6. All processors are assumed as homogeneous Processors.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 382

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

7. Period of the task is equal to its Deadline.

9. CPU Utilization of a task is computed using following

formula:

 Utilization of a task = Computation time of that task /

Period of that task

3.2 Algorithm

Step-1: a) Take input of tasks containing computation time,

mandatory portion (in %), Optional portion (in %),

deadline, period.

 b) Input processor parameters including Number

of processors, period and capacity.

Step-2: Priorities are assigned to all the tasks including

mandatory and optional tasks according to the Utilization.

The task which will utilize the system more is assigned

highest priority and accordingly the priorities are assigned.

Schedule tasks according to these assigned priorities.

Step-3:The mandatory tasks will be executed first and then

the optional tasks will be executed.

Step-4: While executing mandatory tasks if any zero laxity

task arrives, then give that zero laxity task a higher priority

than the task which was currently executing and add that

pre-empted task to the ready queue and allocate the

processor to the zero laxity tasks till it completely gets

executed.

Step-5: Repeat step 3,4 for optional tasks also.

Step-6: Schedule tasks from ready queue.

Step-7: Follow steps 3, 4, 5, 6.

4. Result Analysis

The following result shows the case studies of both the

algorithms and then a comparative study including some

performance parameters.

Fig. 1 Initial screen when the application starts

Abbreviations used:

Ui = CPU Utilization

Ci = Computation time of a task

Pi = Period of a task

Di = Deadline

CASE STUDY 1:

Table 1: Initial Task set

Ti Ci Pi Di Mandatory

(%)

Optional

(%)

T1 4 10 10 50 50

T2 6 15 15 40 60

T3 5 12 12 60 40

T4 8 20 20 70 30

Table 1 shows the initial taskset. The complete set is

applicable for the proposed algorithm which is the variant

of FPZL scheduling algorithm. Mandatory and optional

fields are not applicable for the Modelled FPZL algorithm.

Table 2 shows the Input parameters of the processors.

Input parameters include the number of Processors,

capacity of processor and the period of processor. Capacity

and period of processor will be same for all the processors,

as all processors are considered as homogeneous

processors.

Table 2: Input parameters of the processors

Input Parameter Value

Capacity 3

Period 25

Number of processors 2

Now the priority will be assigned to the entire Mandatory

first and then the optional tasks. In a similar way the

mandatory tasks will be executed first and then the

optional one.

In the modelled FPZL algorithm, the mandatory and

optional portions are not taken into consideration. So, the

complete tasks will be taken here for scheduling. Here the

task which will utilize the system more is assigned highest

priority and accordingly the priorities are assigned and all

the tasks are scheduled according to their unique assigned

priority.

While execution the task T2 reaches to the state of zero

laxity. Hence the highest priority is assigned to it and this

task is executed completely. As per the provided processor

capacity and period, large portion of tasks T3, T4 and

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 383

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

small portion of task T1 remained un-schedulable. To

schedule this remaining portions of tasks the extra

processor time is required which is in this case comes to 14.

Hence CPU utilized in this case is 100% and context

switches are 7.

When above tasks are scheduled using the Modified

version of FPZL algorithm, Mandatory and optional fields

are taken into consideration. From the percentage given in

these fields first of all the time of mandatory and optional

tasks are computed. Then according to the utilization,

under mandatory tasks the task which will utilize the

system more is assigned highest priority and so on. The

same will happen in case of optional tasks also.

Let’s see how the tasks are selected for scheduling. In case

of Mandatory tasks, Task T4 is having highest Utilization

hence it will be selected first for scheduling. After that

Task T3 is having next highest priority hence it will be

selected next for execution. Then T2 will be selected next

and lastly Task T1 in mandatory case will be selected for

scheduling.

In case of Mandatory tasks, T2 is having highest

utilization. So, it will be selected first for execution. Then

T4 is having next highest Utilization so, it will be selected

next for execution. Among T1 and T3, T3 is having

highest utilization, so it will be selected next for execution.

Lastly optional portion of task T1 will be executing.

In modelled FPZL algorithm large portions of tasks T3,

T4 and small portion of task T1 were remained un-

schedulable. But when scheduled with the modified

version of FPZL it is noted that more tasks are executed. In

this algorithm Mandatory tasks T2 and T4 are completely

scheduled. In a similar way optional portions of tasks T2

and T4 are completely get scheduled. small portion of

taskT1 and large portion of task T3 remained un-

schedulable. In addition, a small portion of optional tasks

remains un-schedulable. The following table shows the

comparison of above case study between these two

algorithms.

Table 3: Comparative study between proposed two algorithms

Algorithm/P

arameter

Schedu

lability

Succe

ss

Ratio

CPU

Utilization

(%)

Context

switches

Modelled

FPZL

Algorithm

Averag

e
0.25 100% 7

Modified

FPZL

Algorithm

High 0.50 100% 13

From the above comparative study between the proposed

algorithms, it is clear that the proposed algorithm is good

in terms of schedulability, Success Ratio, and CPU

Utilization. But the context switching rate is very high in

comparison with the modelled one.

 CASE STUDY 2:

Consider the following taskset with 5 tasks and 3

processors. The following table shows the initial taskset for

both the algorithms.

Table 4: Initial Task set

Ti Ci Pi Di Mandatory

(%)

Optional

(%)

T1 3 8 8 30 70

T2 5 12 12 50 50

T3 7 10 10 60 40

T4 9 20 20 80 20

T5 11 14 14 65 35

The following table shows the input parameters of the

processors.

Table 5: Input parameters of the processors

Input Parameter Value

Capacity 3

Period 21

Number of processors 3

 In the above case, if scheduled with modelled FPZL

algorithm then all the tasks were completely scheduled

except task T2. For processing task T2 more processor

capacity is required or there is need to increase the

processor.

If this taskset is scheduled with the proposed algorithm

then all the tasks completely get scheduled.

 The following is the comparative result of the

above case study.

Table 6: Comparative study between proposed two algorithms

Algorith

m/Param

eter

Schedul-

ability

Success

Ratio

CPU

Utilization

(%)

Context

switches

Modelled

FPZL

Algorithm

Average 0.8 100% 15

Modified

FPZL

Algorithm

High 1.0 100% 29

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 384

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

CASE STUDY 3:

Consider one more case where the taskset is same which

we have considered in case study 2. Only the processor

parameters are changed which is given in following table.

Table 7: Input parameters of the processors

Input Parameter Value

Capacity 3

Period 25

Number of processors 4

In the above case, if tasks are scheduled using FPZL

algorithm then it will process all the tasks completely. It

will give better results in terms of schedulability context

switches and success ratio. But in this case, the modeled

FPZL algorithm the CPU Utilization is not efficient. Here

the processors are underutilized.

As the algorithm is proposed for Multiprocessor system,

the processors must be efficiently utilized. So, when the

tasksets are scheduled using the proposed algorithm then it

is noted that a very small portion of a task remain un-

schedulable. But, in this case the CPU is utilized

completely. This is shown in following table.

Table 8: Comparative study between proposed two algorithms

Algorithm/Para

meter

Success

Ratio

CPU

Utilization

(%)

Context

switches

Modelled FPZL

Algorithm

1.0 58% 20

Modified FPZL

Algorithm

0.98 100% 38

5. Conclusion

In this paper, two algorithms are proposed. First algorithm

is the modelled algorithm which was proposed earlier. This

algorithm was proposed to schedule more tasks as far as

possible. But in modelled one, many times due to the

provided processor capacity and its period some tasks

remains un-schedulable. In many situations, there may be a

condition where from that un-schedulable task some

portion of a task is important to process. For this reason,

instead of giving up task completely, important portion of

that task is processed. This concept is already proposed by

logically dividing the task into mandatory and optional

portions and processing mandatory tasks before optional

tasks. But in this paper, this concept is implemented with

the concept of zero laxity which is currently the topic of

research. As compared to the modelled FPZL algorithm

this proposed algorithm processes more tasks and as a

result it increases the Success ratio of the algorithm. It also

increases the efficiency of the CPU Utilization. This

algorithm increases the context switching parameter which

may be a disadvantage. In future, context switches can be

targeted to reduce.

References
[1] K. Ramamritham, J.A. Stankovic, and P. F. Shiah, "Efficient

Scheduling Algorithms for Real-Time Multiprocessor Systems,"

IEEE Trans. Parallel and Distributed Systems, vol. 1, no. 2, pp.

184194, Apr.

1990.

[2] Apurva shah,ketan Kotecha,“Adaptive Scheduling Algorithm

for real time multiprocessor System”,IEEE Advance computing

Conference,2009.

[3] Robart Devis,”FPZL Schedulability Analysis”, IEEE Real

time and embedded Technology and Application

Symposium,2011.

[4] Radhakrishna Naik, Vivek Joshi , R.R. Manthalkar,” IUF

Scheduling Algorithm for improving schedulability,predictability

and sustainability of the real time system”, Second International

Conference on Emerging Trends in Engineering and Technology,

ICETET-2009.

[4]Radhakrishna Naik, R.R. Manthalkar, Mukta Dhopeshwarkar”

Modified IUF Scheduling Algorithm for Real time Systems”,

Third International Conference on Emerging Trends in

Engineering and Technology,2010 .

[5]Annie s. Wu,han yu,kuo chi lin.”An incremental Genetic

Algorithm Approach to multiprocessor Scheduling”,IEEE

Transaction on Parallel and Distributed System,2004.

[6] S. R. Vijayalakshmi,Dr. G. Padmavathi,”A Performance

study of GA and LSH in multiprocessor Job

Scheduling,International Journal Of Computer Science,2010

[7] Geoffery Black,Ronald Dreslinski,Trevor Mudge,”A Survey

of Multicore Processors”,2009.

[8] K. Ramamritham, J.A. Stankovic, and P. F. Shiah, "Efficient

Scheduling Algorithms for Real-Time Multiprocessor Systems,"

IEEE Trans. Parallel and Distributed Systems, vol. 1, no. 2, pp.

184194,Apr.1990.

[9] J. Carpenter, S. Funk, et al. A categorization of real-time

multiprocessor scheduling problems and algorithms. In J. Y.

Leung, editor, Handbook on Scheduling Algorithms, Methods,

and Models, page 30.130.19 , 2004.

[10] K. Lakshmanan, Rajkumar,“Scheduling Parallel Real time

Tasks on Multicore Processors”, Real Time System

Symposium,IEEE 2010.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 385

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[11] Fanxin Kong,yang yi,qingxu deng,”Energy Efficient

Scheduling of Real time tasks on Cluster based

Multicores”,2011.

[12] Jinkyu lin,Insik Shin,“LLF Schedulability Analysis on

multiprocessor System”,Real time system symposium,2010.

[13] Geoffrey Blake, Ronald G. Dreslinski, and Trevor

Mudge,”A survey of multicore Processors”,November 2009.

[14] Mostafa R. Mohamed, Medhat H. A. Awadalla,”Hybrid

Algorithm for Multiprocessor task scheduling”, IJCSI

International Journal of Computer Science Issues, Vol. 8, Issue

3, No. 2, May 2011.

[15]Oscar H. Ibarra and Chul E. Kim,” Heuristic Algorithms for

scheduling Independnt tasks on non-identical processors”,

Journal of association for computing machinery,vol 24,no 2,

April 1977,pp 280-289.

[16] Dan McNulty, Lena Olson, Markus Peloquin,”A

comparision of scheduling algorithms for multiprocessors”,

December 2010.

[17] Sanjoy K. Baruah, Member, IEEE, and Joe¨ l Goossens,”

Rate-Monotonic Scheduling on Uniform Multiprocessors”, IEEE

Transactions on Computers, VOL. 52, NO. 7, JULY 2003.

[18] Jia Xu,” Multiprocessor Scheduling of Processes with

Release Times, Deadlines, Precedence, and Exclusion Relations”

IEEE Transactions on Software Engineering, VOL. 19, NO. 2,

FEBRUARY 1993 .

[19]Krithi Ramamritham,John A. Stankovic,and perng-fei

Shiah,”Efficient scheduling algorithms for Real time

Multiprocessor Systems”,IEEE transactions on parallel and

distributed systems, VOL 1,NO 2,APRIL 1990.

[20] Marko Bertogna,Michele Cirinei, and Giuseppe,Lipari,

”Schedulability Analysis of Global Scheduling Algorithms on

Multiprocessor Platforms”, IEEE Transactions on parallel and

Distributed Systems, VOL 20 , no 4, April 2009

[21] Theodore P. Baker,” Multiprocessor EDF and Deadline

Monotonic Schedulability Analysis”, Proceedings of the 24th

IEEE International Real-Time Systems Symposium, 2003

Komal Bhalotiya is a Research student, pursuing M.E degree
from G. H. Raisoni College of Engineering, Nagpur. And has done
B.E from Shri Ramdeobaba Kamla Nehru Engineering
College,Nagpur.

Dr. D. V. Padole completed his graduation in 2001 as an
Electronics Engineer, Post-Graduation in 2003 & awarded as
Doctorate from RTM Nagpur University, Nagpur (India) in year
2011. He is member of various professional societies like IEEE,
ISTE and CSI. He is having more than 9 years of experience in
teaching profession. Currently he is working as a Professor in
Department of Electronics Engineering, G.H. Raisoni College of
Engineering, Nagpur (India). His research interest includes

Multiprocessor /Multicore systems, Embedded System Design,
and Digital Signal Processing. Several research publications &
Book Chapter contribution in the International Book are on his
account. He worked as reviewer & Chaired technical sessions for
several International conferences at India and abroad.

Radhakrishna Naik is a research scholar and pursuing Ph.D.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 386

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

