
Using Aspect Oriented Techniques to Build-in Software Quality

Obeten O. Ekabua
Department of Computer Science

North-West University Private Bag X2046
Mmabatho 2735, South Africa.

Abstract - Today’s software systems are growing
rapidly in number, size, complexity, amount of
distribution and number of users with the evolving
technologies being geared towards improving their
quality. Aspect oriented software development is a new
paradigm that claims to improve the quality of software
using separation of concerns. In this paper we show
how the aspect oriented paradigm has evolved from the
object oriented paradigm, giving definitions of key
aspect oriented terms to aid comprehension and
clarification. We then show how techniques involved
in aspect oriented design can help to improve software
quality.

Keywords: Aspect, Weavers, Crosscutting, Object Oriented

Paradigm, Point_Cuts, Advice

1. Introduction

Programming languages and systems evolutions from the
crude assembly and machine codes of the earliest
computers, through concepts such as formulae
translation, procedural, structured, functional, logic
programming and programming with abstract data types
has been experienced in computer Science. These steps in
programming technology has helped to achieve clear
separation of concerns at the source code level and
introduce some form of quality to the next level of
programming. In recent times, the focus has been on
object-oriented programming: where software systems
are built by decomposing a problem into objects. A clever
idea, but with limitations which affect quality
measurement [1].

One of the latest concepts in programming today is
Aspect-Oriented Programming (AOP) which is used
primarily in academia and research and development
organisations, but making waves into mainstream
development. Its use is an evolutionary way of
developing software that improves upon object-oriented
programming (OOP), in the same way that OOP
improved upon procedural programming. OOP
introduced the concepts of encapsulation, inheritance, and
polymorphism for creating a hierarchy of objects that
model a common set of behaviors. Although OOP has
become so relevant today, yet it has failed in handling
common behaviours that extends across unrelated
objects. That means OOP enhances a vertical
relationships but not horizontal relationships. As an
example, logging code is often scattered horizontally
across object hierarchies but has nothing to do with core
functions of the objects that it is scattered across. The
same is true for other types of code such as security and

exception handling. This scattered and unrelated code is
known as crosscutting code and is the reason for AOP’s
existence: a typical quality issue, implying that AOP
intends to introduce some form of quality to OOP
concepts. AOP provides a solution for abstracting
crosscutting code that spans object hierarchies without
functional relevance to the code it spans. AOP is a tool
that allows you to abstract the crosscutting code into a
separate module known as an aspect, rather than
embedding crosscutting code in classes and then apply
the code dynamically where it is needed. Applying the
crosscutting code dynamically is achieved by defining
specific places, known as pointcuts in the object model
where crosscutting code should be applied. Depending on
the intended AOP framework, crosscutting code is
injected at the specified pointcuts at runtime, or compile
time. Ideally, AOP introduces a very powerful concept
which allows the introduction of new functionality into
objects without the objects needing to have any
knowledge of that introduction. [2]. One of the basic truth
that we must accept while considering AOP as an option
is the fact that, whenever the original source code of a
programmer is modified, his intent and assumptions
degrade [3].
Defects and deterioration of software are cause by
changes in source code and a lot of these changes cannot
be avoided, but can be minimized. When changes are
made to software, in most cases, the entire program is
reengineered [4].

Today’s software developers are greatly attracted to the
idea of AOP and have recognized the concept of
crosscutting concerns and problems associated with the
implementation of such concerns. They also have been
pondering on how to adopt AOP into their development
processes. They have shown interest in knowing how
aspects can be applied in an existing code and what kind
of benefits applying this aspect would yield? They have
also been interested in knowing how the performance
slope for AOP would look like. Answers to these interest
is express in AspectJ which is a general-purpose
extension of Java [5]. The most interesting concern here
is that, AOP technology makes it easier to write and
change certain concerns [6].

In this paper, section 1.0 briefly introduced the basic
idea of AOP as it relates to software development and
quality while section 2.0 explains the key terminology
used in AOP concept. This is followed by section 3.0
which discusses various design approaches that are
used by AOP to differentiate it from its OOP
counterpart. Section 4.0 explains how AOP can be used
to build quality into software by improving its

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 250

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

modularity and points out problems associated with
scattered code. The section also explains how AOP
introduces a new module called aspect to handle this
code. Finally, section 5.0 concludes by saying that
AOP promises to be a powerful tool with tangible
benefits and also say where further work is expected.

2. AOP key Terminologies

Understanding AOP terminology is essential to
appreciating the ideas behind AOP. The fundamental
concepts are described and explained in this section

Aspects – an aspect is defined as a special kind of
concern or non-functional element of code arising from a
post object implementation. An aspect is a concern whose
functionality is triggered by other concerns usually in
multiple forms. It packages advice and pointcuts into
functional units in much the same way that OOP uses
classes to package fields and methods into cohesive units.
A concern is any code related to a goal, feature, concept,
or “kind” of functionality. For instance, there may be a
logging aspect that contains advice and pointcuts for
applying logging code to all setter and getter methods on
objects. Aspects are not just a neat trick or careful
technique for adding logging or synchronization or other
simple functionality [7] to source code. Aspects are a
natural evolution of the object-oriented paradigm which
provides a solution to some difficulties encountered while
modularizing object-oriented code. In most cases,
functionality does not work, and the same lines of source
code are repeated in many different object-oriented
classes because those classes each need that functionality.
It cannot easily be wrapped up in a single place. Instances
of this kind of code are found in audit trails, transaction
handling, and concurrency management, such code can
now be modularized using aspects.

Pointcuts: - Point_cuts typically define the points in a
model where advice will be applied. For example,
point_cuts define where in a class, code should be
introduced or which methods should be intercepted
before they are executed [7]. Point_cuts are also known
as join_points. A method call join point is the point in the
flow when a method is called, and when that method call
returns. Each method that calls itself is a join_point. The
lifetime of the join_point is the entire time from when the
call begins to when it returns (normally or abruptly), but
execution is at the join_point only at the moment the call
begins and the moment it returns. A pointcut therefore
describes a point in the execution of a program where
crosscutting behaviour is required [8].

Advice: - Advice is code that crosscuts or is applied to
the existing model and is commonly referred to as a mix-
in. Advice code [7] modifies the behaviour or properties
of an existing object. In AspectJ, advice is the
implementation of behaviour that crosscuts the set of
execution points defined by the poincut. This makes
advice an obvious construct to use to implement the
sequence of behaviors defined in sequence diagrams in
the crosscutting themes [7]. Advice can be defined to
execute before, after, or around the execution points

defined by pointcuts. It is possible for the programmer to
decide to add advice before a join_point runs or after it
finishes running, and can also force advice to run instead
of the join_point. Whenever the point at which an aspect
adds a behaviour is defined, the behaviour to be added
must also be defined [9].

Weavers:- The aspect weaver accepts the component and
aspect programs as input, and emits in some cases, a C
program as output. The weavers job is integration, rather
than inspiration [10]. Aspect weavers work by generating
a join_point representation of the component program,
and then executing (or compiling) the aspect programs
with respect to it.

3. Aspect Oriented Quality Design
Approaches

Aspect Oriented Quality Design approaches is
requirement engineering techniques that recognise the
importance of addressing both functional and non-
functional crosscutting concerns and the non-crosscutting
ones. The need for the development of a new technology,
composition and traceability prompted the emergence of
this approaches. Therefore, AO quality design approaches
focus on systematically and modularly treating, reasoning
about, composing and subsequently tracing crosscutting
functional and non-functional concerns via suitable
abstraction, representation and composition mechanisms
tailored to the requirements engineering domain.[11].
There are different kinds of approaches that are used in
aspect oriented design which are intended to bring out the
salient differences of AOP and OOP and to explain
quality design approach in building AO software.
Amongst these approaches [12] are:

Aspect-Oriented Design Modelling- AODM extends
standard UML with aspect oriented concepts. For AspectJ
implementation language, AODM-UML extention is
originally defined to support aspect oriented concepts.
However, AODM has evolved to become more generic
and now supports other asymmetric AO Programming
approaches (such as composition filters and ad aptive
programming).Symmetric and asymmetric approaches
are levels of concern separation supported by existing
AOD approach. In general, the distinction relates to
whether an approach includes a means to separate all
kinds of concerns, both crosscutting and non-crosscutting
(symmetric) or includes a means to just separate
crosscutting concerns from the rest of the system
(asymmetric) [11]. Yet, symmetric AO implementation
techniques are not naturally supported by AODM. This
AODM has various artefacts such as:

AOD Language – which was originally designed to
model AspectJ-style AOP, its design elements are still
heavily related to AspectJ. When discussing design
methods that target various AOP platforms, AspectJ
terminology is a major interest.

Aspects Specification – This represents aspects as
classes with the <<aspect>> stereotype and was adopted

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 251

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

because of the structural similarities between aspects and
classes. Like classes, aspect act as containers and
namespaces for attributes, operations, pointcuts, advice
and intertype declarations. Aspects can also engage in the
same association and generalization relationships as
classes. Aspects differ from classes in their instantiation
and inheritance mechanisms. In AspectJ, aspect
declaration can contain instantiation clauses that specify
the way in which the aspect should be instantiated. Child
aspects inherit all features from their parents’ aspects but
only abstract pointcuts and java operations can be
overridden. This stereotype augments the Meta class with
some additional meta-attributes to hold the instantiation
clause, and a boolean expression which specify whether
the aspect is privileged or not [11].

Crosscutting Specification – Aspect Oriented Design
Method supports the specification of behavioural and
structural crosscutting. Crosscutting structure is
expressed in class diagrams within a parameterized
template diagrams and captured in a parameterized class
and partial sequence diagrams. Parameterisation is used
to represent crosscutting. The type(s) to be crosscut are
represented as parameter(s) to the template. The
crosscutting structure is applied to this parameter. The
concrete structural elements to be crosscut are applied to
the template as arguments. Class and sequence diagrams
dictate the manner in which integration occurs [11].

Integration Specification – Aspect Oriented Design
Methods support the specification of structural and
behavioural integration through integration of
crosscutting design models.The type structure of a given
design model is affected by structural crosscutting and
these can occur at some location in a target class
hierarchy. Behavioural crosscutting affects the model’s
behavioural specifications and occurs at some joinpoint
in the execution specification [11].

Composition Semantics – Due to the close ties of
composition semantics with AspectJ, details are not
provided and it can be inferred that, the composition
semantics followed by AODM are very similar to
AspectJ.

Themes/UML Approaches Theme defined:
Theme is an approach used to support the separation of
concerns during the analysis and design phases of
software lifecycle and provides a UML based AOD
language called Theme/UML which extends the UML
meta-model. The Theme approach expresses concerns in
conceptual and design constructs called themes which are
more general than aspects and more closely encompass
concerns with relation to the symmetric separation. Any
concern, whether crosscutting or not, may be
encapsulated in a theme. The theme approach involves
identifying and designing separate themes, which are then
combined to make a whole system. Themes can be
thought of as analogous to features or concerns. So, in a
sense, the Theme approach lets you design each feature
of your system separately, and then offers a way to
combine them. Themes are useful in Analysis, Design
and Composition. Themes retangled after composition

and they “look” different as you move from requirements
to design [7]. Themes are participant and actions
described in a set of requirement and are fairly abstract.
This part is more concrete at the design level and consists
of classes, methods and the relationship between them
and is both structural and behavioural: the “thing” and
“actions” that work together to provide a feature of your
system.

Relationship between Themes
Understanding the idea of themes in building quality
software would be more useful if the relationship that
exist between themes are clearly explained.
Themes are two-way related: by sharing concepts and by
crosscutting. At the same time and in rare cases, it is
possible for themes to be independent – that means
relating in no way to the system.

Sharing Concepts: - Different themes may have design
elements that represent the same core concepts in the
domain. A design element might be a particular class,
method, or attribute and a concept relates to something
from the domain. Considering the banking system for
example, the core concept might be a bank account and
the concept of a bank account can be described by classes
of varying names, such as Account, or BankAccount.
Each theme contains specifications for those same
concepts designed from the perspective of the theme.
Another way of looking at concept sharing is to think of
it, at some level, as “structure” sharing. Strictly speaking,
though, we don’t consider that themes actually “share”
structure because each team will have its own version as
appropriate to the feature under design. Encapsulation in
this manner has the benefit of locality, where only and all
relevant functionality for a concern is present in a theme.
Take, for example, the transfer funds, apply charges,
and apply interest features in a banking system. Each of
these three features works with Account and all three
work with Checking and Savings account, while two of
them also work with Loan accounts [7].

Figure 1: Themes related by concept sharing Source: Aspect
Oriented Analysis and Design [7]

Crosscutting: - This type of relationship is called
asymmetrical crosscutting- where behaviour in one theme
can be triggered by behaviours in other themes. Here
there are base themes, crosscutting themes and aspect
themes. The last two are used synonymously and are
always themes that have their behaviours triggered in
tandem with behaviours in other themes. Aspects in the
Theme approach are the same as in the asymmetric
separation approach. Base Themes are those that trigger

Theme Theme

Class Class

Attributes Attributes

Operations Operations

Concept

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 252

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

aspect themes. They might be themes that share concepts
with other themes, and they might be aspects themselves
and have their own base [7]. Sometimes there is a base
theme which is the result of the composition of other
themes to which an aspect can be applied (fig 2):

Figure 2: Themes related by crosscutting: The base theme
triggers the aspect themes. Source: Aspect Oriented Analysis
and Design [7]

4. Using Aspect Oriented Programming
to Build in Quality

Software engineers are interested in looking for ways to
improve modularity in software and these makes software
easier to develop and maintain as it improves its overall
quality. Recently, aspect-oriented programming emerged
as a new technique with the idea to cleanly separate the
implementation of crosscutting concerns (requirements
and design elements that affect multiple modules). AOP
is an evolutionary step that improves the
implementation’s comprehensibility and simplifies
incorporating new requirements as well as changes to
existing ones. This systematic approach promises direct
mapping of requirements and design intentions to the
implementation. Such a mapping, traces the reasoning
behind a piece of code’s existence. Efficiently
implementing crosscutting concerns also has an important
indirect benefit: It frees resources to concentrate on the
quality of the core implementation. All these factors
combine to improve software quality [13].

4.1 AOP’s direct applications to quality
improvement

AOP’s idea goes beyond just modularizing crosscutting
concerns from the design and implementation
perspectives, but also enhances software quality through
the following methods:

General system policy enforcement. This is achieved by
creating reusable aspects that would help to enforce
different contracts and provide guidance in following
“best” practice [14]. As an example, the enterprise
JavaBeans specification contains 600 pages long and
specifies many restrictions for programmers to comply.
The required enforcement level cannot be achieved with
diligence.

Enabling logging functionality. A better QA process can
be enabled while the QA person can augment the bug
report with the associated log thereby giving developers a
better chance of reproducing the behaviour. Being able to
reproduce a bug is a major frustration for many software
engineers and the understanding of system behaviour,
nonintrusive logging and tracing functionality serves as a
useful tool. Systematic implementation rarely occurs
since the conventional implementation of the equivalent
functionality is cumbersome that [13].

The use of virtual mock objects. Virtual mock objects
are interesting useful for testing software quality.
Complex scenarios are not always tested due the amount
of effort required. If mock objects are combined with
AOP, it serves as an interesting act to introduce the mock
objects without making any changes to the core system.
Fault injection into the system becomes an easy task to
check the response of the system. Such testing is made
easy and practical without compromising the core design
for the testability. [13]

Consideration of conditional decision. Deciding on
whether functionality is necessary or not is a time and
space trade-off which depends on running the pooling
and catching optimization. AOP provides a nonintrusive
way to perform such analysis without worrying about
accidental changes to core behaviour [13].

The deployed systems don’t require the use of AOP as
it is enough to use an AOP-enabled system during
development and testing. The features can be removed
by excluding them from the build system. It has
become very important to know that AOP has come as
a systematic approach to handle the presence of
crosscutting concerns and their negative implications
for software quality in traditional implementations.
While maximising its benefit, more insights in the
practice and design patterns of AOP are being gained
as a common technique for modularizing crosscutting
concerns. However, AOP cannot solve all software
quality issues and therefore, traditional quality-
management techniques would continue to be useful.
AOP is seen as a powerful tool which has tangible
benefits with regards to implementing crosscutting
concerns. Within the nearest future, the implications of
using AOP would be realized since it has such great
benefits than its potential risks [13].

4.2 Quality Characteristic of Aspect-
Oriented Programming

Aspect-Oriented Programming [15] is an improved
programming paradigm from procedural programming
and Object Oriented Programming. OOP allows an object
to implements part of system’s functionality by
interacting with each other via messages (or method
calls) to achieve the system’s goal. Although procedural
and object-oriented languages are extremely useful,
modularizing crosscutting concerns such as logging and
synchronization becomes a major problem. Why program
code scatter among objects is because, concerns are

Theme Theme

Theme

Aspect

Triggered
 by

Triggered
 by

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 253

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

implemented as an interaction of related objects. The
scattered code would normally cause the following
problems:

 As a specification of a crosscutting concern is
changed, programmers must modify all related
objects and this issue can occur recursively.

 Difficulties are encountered in reusing an object
independently since objects are connected to
each other with a crosscutting concern.

 Difficulties are encountered while reusing
implementation of a concern independently of
objects. If objects interact in the same way, the
concern must be re-implemented by the
programmers

The encapsulation of a crosscutting concern by a new
module unit named ‘aspect’ is a fresh idea of AOP. This
is to mean that, one concern can be written in a single
aspect. An aspect consist of some advices and an advice
is a method-like unit consisting of a procedure and a
condition used to execute the procedure. A condition to
execute an advice is specified by a pointcut. A pointcut is
defined by a subset of join points, which are well-defined
events during program execution, such as method calls
and field accesses. Using join points, a programmer can
separate crosscutting concerns from objects [15].
Modularized crosscutting concerns have good
maintainability and reusability.
Some join points examples are:

 A method call to an object,
 A method execution of an object after dynamic

binding,
 A field access of an object, and
 Exception handling.

Advices are linked to objects by three types of forms:
before (immediately before join points), after
(immediately after), and around (replacement of join
points). Advices can access runtime context information,
for example, a called object, a caller object, and
parameters of a method call.

A sample code of aspects is shown in figure 3 below:

Class someclass {
 Public void doSomething (int x) { … }
 }
Aspect loggingAspect {
 before (): call (void
SomeClass.doSomething (…)) {
 } }
 Aspect ParameterValidationAspect {
 before (int x)
args (x) && call (void *.doSomething (…)) {
if ((x < 0) || (x >
constants.x_MAX_FOR_SOMETHING)) {
 throw new RuntimeException (“invalid
parameter!”) ;
} } }

Figure 3: Aspect examples: Logging and parameter checking

Source: Debugging Support for AOP based on
Program Slicing and Call Graph [15]

Considering a sample code of aspect in figure 3,
LoggingAspect logs a method call to
SomeClass.doSomething. Whenever the method name is
doSomething, ParameterValidationAspect would validate
all method calls and if the validation fails it throws an
exception. For this particular example, whenever the
specification of the parameter validation is changed,
programmers would change only the aspect instead of all
callers of doSomething. Also, both aspects are executed
when SomeClass.doSomething is called. During such a
case, a compiler (or an interpreter) serializes the advices
being executed. For AspectJ, programmers normally
write the precedence of aspects to adjust the execution
sequence of advices.
Different AOP applications are in use. For OOP, design
patterns are design components which describe the
interaction of objects. [16]. Interaction of objects is said
to be a kind of crosscutting concern; therefore
programmers can afford to write a pattern as an aspect.
Aspects which implement design patterns are reusable
components [17]. More so, it is useful for applications to
support debugging and to write crosscutting concerns in a
distributed software environment [18, 19].

5. Conclusion and Further Work

Presented in this paper is how to build quality in software
systems using Aspect Oriented Programming techniques.
The question of what are aspects and how they can be
useful in separation of concerns is answered by this new
technology. AOP is an evolutionary move for building
more reliable software and encapsulate all sorts of
robustness features that were previously difficult to
handle. A revolution in quality is needed and now is the
time to start the battle. The tool and technique to manage
quality is now within grasp as offered by AOP.
To ease clear understanding, this research paper has
defined key terminology of AOP and explained quality
design approaches of aspect oriented programming.
Not only modularizing crosscutting concern from the
design and implementation perspectives as discussed by
the paper, but it also identifies specific applications that
improve software quality and gives a sample code that
shows the characteristics of aspect oriented
programming.
For future work, more is expected in the area of impact
analysis, security, ripple effect computation, testing and
the reusability of aspects.

6. References

1 Elrad T, Filman R, and Bader A: Aspect Oriented

Programming. Communication of the ACM, pp.29-
32, October 2001/vol.44, No 10

2. Holmes J: “Taking Abstraction a step further”.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 254

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

3 Alexander, R.: The Real Cost of Aspect Oriented
Programming. IEEE Software Society, pp 91,93.
Nov/Dec. 2003

4. Fayad M and Adam A.: An Introduction to Software
Stability. Communications of the ACM, pp 95-98,
Sept. 2001/Vol44, No 9.

5. Gregor K, Erik H, Jim H, Mik K, Jeffrey P and
William G.: Getting Started With AspectJ.
Communications of the ACM, pp59-65, October
2001/Vol. 44, No. 10.

6. Andres Diaz Pace J and Marcelo R.: Analysing the
Role of Aspects in Software Design. Communications
of the ACM, October 2001/Vol. 44, No. 10.

7. Clark S and Baniassad E: Aspect-Oriented Analysis
and Design – The Theme Approach. Addison-Wesley,
march, 2005.

8. Karl L, Doug O. and Johan O.: Aspect Oriented
Programming with Adaptive Methods.
Communications of the ACM, October 2001/Vol. 44,
No. 10

9. John V. and Jeffrey V.: Can Aspect Oriented
Programming Lead to More Reliable Software?. IEEE
Software Society, pp 19-21, Nov/Dec 2000.

 10. Henry S and Kafura D: Software Structure Metrics
Based on Information flow in IEEE Transaction on
Software Engineering, Vol. SE-7: pp509-518, 1981.

11. Soares S, Laureano E and Borba P: Implementing
Distribution and Persistence Aspects with AspectJ. In
Proc. of OOPSLA 2002, pp.174-190, November
2002.

12. Stein D, Hanenberg S and Unland R: “A UML-based
Aspect Oriented Design Notation for AspectJ”,
AOSD 2002, Erischede, The Netherlands, 2002.

13 Ramnivas L: Aspect-Oriented Programming will
Improve Quality. IEEE software computer society,
pp. 90,92 2003.

14. Laddad R: AspectJ in Action-Practical Aspect-
Oriented Programming, Manning Publications, 2003.

15. Ishio T, Kusumoto S and Inoue K: “Debugging
Support for Aspect-Oriented Program Based on
Program Slicing and Call Graph”, Proceedings of the
20th IEEE International Conference on Software
Maintenance ICSM 2004.

16. Gamma E, Helm R, Johnson R and Vlissides J:
“Design Patterns: Elements of Reusable Object-
Oriented Software, Addison Wesley 1995.

17. Hannermann J and Kiczales G: Design Pattern
Implementation in Java and AspectJ.
 In Proc. of OOPSLA 2002, pp. 161-173, November
2002.

18. Ishio T, Kusumoto S and Inoue K: Program slicing
Tool for Effective Software Evolution Using Aspect
Oriented Technique. In Proc. of IWPSE 2003, pp. 3-
12, September 2003.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 4, No 1, July 2012
ISSN (Online): 1694-0814
www.IJCSI.org 255

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

