

A Model Mapping Approach for storing XML documents in

Relational databases

Dr. Mrs. Pushpa Suri1, Divyesh Sharma2

1 Department of Computer Science & Applications, Kurukshetra University,

Kurukshetra, Haryana, India

2 Department of Computer Science & Applications, Kurukshetra University,

Kurukshetra, Haryana, India

Abstract

The Extensible Markup Language (XML) is used for

representing data over the web. Storing XML documents in

relational databases uses two kinds of approaches: Model

mapping and Structured mapping. This paper explores a model

mapping approach for storing XML data in relational database

which use two tables in it: Node table and Data table. Node table

stores all node id’s along with node names. Data table stores

corresponding node values in it. We also propose an algorithm

that shows how the nodes of the XML document are stored in

terms of tables in database.

Keywords Extensible markup language, Document type

descriptor, Relational database, Structured mapping approach,

Model mapping approach.

1. Introduction

XML (Extensible Markup Language) is emerging as a

standard format for data and documents in the internet.

Storing and managing XML documents using relational

databases are an attractive area of research for the

researchers since relational data bases are mature and

handle XML queries efficiently. Two types of strategies

arise when we want to store and query XML documents

into relational data bases:-

Structured Mapping Storage: When the structure i.e. DTD(

Document Type Descriptors) or XML schema is given

with the document and used to translate XML to database

schema. Many approaches in [1][2][3] uses DTD

information to generate database schema from available

XML schema. Several inlining techniques like basic,

shared and hybrid in [1] comes which solves complex

DTD associated with the XML document by simplification

rules. After simplification of DTD, inlined DTD graph is

drawn and then generate database schema according to the

inlined DTD graph. In [2],[3] different inlining algorithms

proposed to generate database schema.

Model Mapping Storage: When no DTD or no XML

schema is associated with the XML document In

[4],[5],[6][8][9][10] several Model mapping schemes are

used to store and query XML documents. These

approaches does not dependant on the complexity of the

XML schemas or its structure.

This paper explores a model mapping schema which is

DTD independent and requires two tables to store XML

document in database. First XML document is

decomposed in to tree and then the nodes of the tree are

mapped to the relational schema in the form of the tables in

relational database.

2. Related Work

Many researchers proposed different model mapping

schemes

Edge[4],XRel[5],XLight[8],XRecursive[9],X[PEV][6],LN

V[10] .In Edge [4] approach XML document is srored as

edges in database and has the following structure: Edge

(source, ordinal, target, flag). Source stores the OID’s of

the elements, ordinal stores the order of the attribute and

flag stores the inter object reference or object values.

Values of the nodes can be stored in separate tables.

X[Rel] [5]approach used four tables to store XML

documents in relational database. The schema is as

follows:-

Attribute(doc id, path id, start, end, value)

Text (doc id, path id ,start, end, value)

Path(path id, pathexpr)

Element(doc id, path id, start, end, index, reindex)

The concept of region was given by this approach. Element

table associates each path with a region (Start, end). There

was no edge information explicitly maintained in this

schema. A region is specified by start and end points of a

node. Attribute table represents s attributes values, Text

table stores text values, Table Path stores the distinct

paths, Element table stores start and end values of a node.

This approach requires large number of join operations in

query processing of XML documents.

X[PEV] [6] approach used three tables.

Path(path id, pathexpr)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 495

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Edge(path id, doc id, source ,target, label, order, flag)

Value(path id ,doc id, source, target, label, order, value)

Path table is same as in X[Rel][4].Edge table stores the

parent child relationship among the nodes. Value table

stores the values of elements attributes and the leaf. This

scheme stores the edges explicitly.

We don’t use path concept. Instead of storing the distinct

paths, we store parent node id along with every node id to

maintain parent child relationships of the nodes. Firstly we

assign a unique identifier to each node and then the

corresponding node values along with each node id are

stored in relational table.

3. XML Data Model

A well defined database system is based as a well defined

data model. XML data model is often simplified to a

labeled tree or a directed graph including elements with

their character data and attributes with their values [7].

There are different data models like X path 1.0,DOM

model are there to transform XML document as a tree.

The X query 1.0 and X path 2.0 data models XML

documents as are ordered graph using 7 types of nodes [4].

The description of these models are found in [7].

In this paper we consider four types of nodes i.e. root,

element, text, attributes. Fig.2. is an example of an XML

data graph which is used to represent the XML document

as a tree. In this all the round nodes are element nodes. All

the triangle nodes are attribute nodes. All the rectangles

are the text values. Every node is represented by a unique

identifier here.

<Customer id=1>

<Name>

 <first name>Sam </first name>

 <last name>Smith</last name>

</Name>

<Date>October 15,2001</date>

<Orders>

<Item>

 <Product>Tomato</Product>

 <Number>8</Number>

 <Price>$1.25</Price>

</Item>

<Item>

 <Product>Potato</Product>

 <Number>7</Number>

 <Price>$11.50</Price>

</Item>

</Order>

</Customer>

Fig. 1: An example XML document

Fig. 2 : XML Data Graph of XML document in fig. 1.

3.1 Proposed approach

We describe a model mapping approach that does not

require DTD or XML schema. The structure of this

approach is as follows:-

Node (Node id, Node name)

Data (Doc id, Node id, Parent id, Node value, Node type,

Node pos)

Table Node stores all node id’s with their names in it. We

assign a unique id to each node of the XML document.

Node name attribute represents the name of the node. In

data table , Doc id attribute specify the id of the particular

XML document in this case say this is 10 i.e. doc id = 10,

Node value attribute represents the value of the node i.e. it

stores text values in it . Parent id is the id of the parent

node of a node. Node type attribute is used to indicate

whether the node is an element or an attribute or a text.

Node Pos attribute is a position of the node among its

siblings in the XML data graph. For Example in the case of

the node ‘date’ its type is a text element and its position

among its siblings is (1, 2) i.e. the position of the parent

node which is the root and its position among its siblings.

The Algorithm is as follows:-

// Transform XML document in to tree and tree is

traversed according to the algorithm//

Algorithm 1.1.Begin

2. Read the XML document

3.Assign a unique id to the XML document say 10 here i.e.

doc id = 10.

4.Create new object of the NODE table say node .

5. Create new object of DATA table say data.

6. While XML document is not null Repeat step 7 to 12.

7.Identify the root element of the XML document

 (i) Node id=1

 (ii) Node type=Element

 (iii) Node pos =1

 (iv) Parent id=null.

 (v) Node name=root node name

8. Store Node id, Node name to NODE.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 496

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

9. Store Node id , Parent id, Node type, Node pos to

DATA.

10. Traverse the whole XML tree in the depth first manner

from node to node.

11. If the node is an element

 (i) Node id = Node id + 1.

 (ii)Node type=element

 (iii)Node pos= (parent Node pos, child Node pos)

 (iv) Node name=node name

 (v) Store Node id, Node name to NODE.

 (vi) Store Node id , Node type , Node pos to DATA .

12. If the node is an attribute

 (i) Node id = Node id + 1.

 (ii). Node type = attribute.

 (iii) Node pos= (parent Node pos, child Node pos).

 (iv) Node value = text value.

 (v) Node name=node name

 (vi) Store Node id, Node name to NODE.

 (vii) Store Node id, Node type, Node pos, Node value to

DATA.

12. If the node element has a text value.

 (i) Node id = Node id + 1.

 (ii) Node type = text.

 (iii) Node pos=(parent Node pos, child Node pos)

 (iv) Node value = text value

 (v) Node name=node name

 (vi) Store Node id with Node Name to NODE.

 (vii) Store Node id, Node type , Node pos , Node value to

DATA.

13. End.

 Table 1 : Node

 Table 2 : Data

Doc

Id

Node

Id

Parent

Id

Node

Value

Node

Type

Node

Pos

10 1 Null Null Element 1

10 2 1 1 Attribute 1,1

10 3 1 Null Element 1,2

0 4 3 Sam Text 1,2,1

10 5 3 Smith Text 1,2,2

10 6 1 Oct

15,2001

Text 1,3

10 7 1 Null Element 1,4

10 8 7 Null Element 1,4,1

10 9 8 Tomato Text 1,4,1,1

10 10 8 8 Text 1,4,1,2

10 11 8 $1.25 Text 1,4,1,3

10 12 7 Null Element 1,4,2

10 13 12 Potato Text 1,4,2,1

10 14 12 6 Text 1,4,2,2

10 15 12 $11.25 Text 1,4,2,3

3.2 Example Of Query Processing

The Example SQL query is as follows:-

For example the query is “ find out the name of the node

where Node pos =(1,2)”.The corresponding SQL query is:-

Select N. Nodename from Node N, Data D where N.node

id= D.node id AND D.Node pos like % 1,2%.

This query will join both Node and Data tables and

retrieve name of the node from node table.

4. Performance Evaluation

We compare this approach with [4],[5] with respect to

database size . After storing XML document in relational

database the data base size of our approach is much less

than X [REL] and X[PEV] .

 Table 3 : Comparison Table

0

200

400

600

800

1000

1200

XREL XPEV Our

M ethod

XREL

PEV

Our Method

 Fig. 3 : Comparison Graph

Node ID Node Name

1 Customer

2 Id

3 Name

4 First Name

5 Last Name

6 Date

7 Order

8 Item

9 Product

10 Number

11 Price

12 Item

13 Product

14 Number

15 Price

Method Database Size

(In Bytes)

XREL 1065

XPEV 979

Our Method 615

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 497

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

5. Conclusion

This approach stores nodes with its values, type, name and

node position in a single table. So it represents a compact

structure for storing the whole information of an XML

document in relational databases and it requires less

memory space for storage. In query processing it requires

less number of join operations as compared to other

approaches..

References
[1] J.Shanmugasundaram, K. Tufte, C. Zhang, G.He, D.

Dewitt,J.Naughton, “Relational Databases for Querying

XML Documents:Limitations and opportunities,”VLDB

1999 ,pp : 302-314.

[2] M. Atay, A Chebotko, D. L iu, S. Lu, F. Fotoubi , “Efficient

schema based XML to relational data mapping”, Information

systems ,Elesevier 2005.

[3] S.Lu,Y. Sun, M.Atay,F. Fotouhi, “ A New inlining algorithim

for mapping XML DTDS to relational schema” In

Proceedings of the First International Work-shop on XML

Schema and Data Management , in conjuction with the 22nd

ACM International Conference on Conceptual Modeling ,

Chicago, IL, October 2003.

[4]M. YoshiKawa.,T.Amagasa,T.Shtimura, “XREL: A path

based approach to storage and retrieval of XML documents

using relational databases”.ACM Transactions on Internet

Technology,1(1) ,pp:110-141, August 2001.

[5] J. Qin, S.Zhao, S. Yang, W. Dau, “ XPEV : A Storage

Approch for Well-Formed XML Documents”, FKSD ,LNAI

3613,2005 pp.360-369.

[6] D.Florescu, D.Kossman, “ A Performance Evauation of

Alternative Mapping Schemes for storing XML Data in a

Relational Database”,Rapport de Recherche No. 3680

INRIA,Rocquencourt, France,1999.

[7] A.Salminen,F.Wm, “Requirements for XML Document

Database Systems. First ACM Symposium on Document

Engineering”, Atlanta.2001 pp:85-94.

[8] H. Zafari, K. Hasami, M.Ebrahim Shiri, “ Xlight,an Efficient

relational schema to store and query XML data”, In the

proceedings of the IEEE International conference in Data

Store and Data Engineering 2011, pp:254-257.

[9] M.Ibrahim Fakharaldien, J.Mohamed Zain, N. Sulaiman,

“XRecursive: An efficient method to store and query XML

documents”,Australian Journal of basic and Applied

Sciences,5(12) 2011 pp: 2910-2916.

[10] M.Sharkawi, N. Tazi, “ LNV : Relational database Storage

structure for XML documents”, The 3rd ACS/IEEE

International Conference On Copmputer Systems And

Applications, 2005, PP:49-56.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 498

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

