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Abstract 
When we take a picture through transparent glass, the image we 

obtain is often a linear superposition of two images: The image 

of the scene beyond the glass plus the image of the scene 

reflected by the glass. In this paper, we deal with a problem of 

separating the effect of reflection from such images captured 

behind glass. The input consists of multiple polarized images 

captured from the same view point but with different polarizer 

angles. The output is the high quality separation of the reflection 

layer and the background layer from the images without any prior 

knowledge about the images. We formulate this problem as a 

constrained optimization problem and propose a framework that 

allows us to fully exploit the mutually exclusive image gradients 

in each of the filtered images to achieve high quality reflection 

separation results.  We test our approach on various images and 

found that our approach can generate good reflection separation 

results than the existing methods. 

 

Keywords: Gaussian Pyramid, Reflection Guide Map, 

Background and Reflection Mask Image. 

1. Introduction 

The issue of reflection separation arises naturally in our 

everyday life when a desired scene contains another scene 

reflected off a transparent or semi-reflective medium. 

Common examples include photographs of scenes taken 

through windows or photographs of objects which are 

placed inside glass showcases found in retail store and 

museum settings. Reflections and transparency are about as 

ubiquitous as images themselves. Many natural images will 

typically  contain  one  or  both,  i.e.,  contain  mixtures  of  

 

reflected and transmitted light. For example, any shiny or 

glass-like surface will create a reflected image of other 

surfaces in its immediate environment. Also, surfaces like 

glass and water are (at least partially) transparent, and 

hence will transmit the light from the surfaces behind it. 

Thus, many natural images are composed of reflected and 

transmitted images which are super-imposed on each other. 

As digital photography becomes more pervasive, there 

are increasing efforts that aim at solving this problem 

through post processing instead of simply discarding 

corrupted images with reflection. By separating the 

contribution of reflection, one can refine a captured image 

to better see the desired scene. The image with reflection 

can be described by a linear    superposition of two layers: 

the background layer from the scene beyond the glass and 

the reflection layer from the scene reflected by the glass. 

Decomposing the degraded input image into two layers is 

an ill-posed problem since there are an infinite number of 

ways to decompose an image. Fortunately, the reflection 

layer is a polarized image [Ref 1]. A common practice to 

reduce the effect of reflection is to place a polarizer in 

front of the camera lens to filter out the polarized light 

coming from reflection. However, the amount of 

polarization depends on the angle of incident light. In most 

cases, the reflected light is only partially polarized. 

Consequently, the reduced reflection layer may still remain 

in the filtered image. It is also common that when we 

change the rotation angle of the polarizer, reflection is 

reduced in certain parts of the image but remains in other 

parts. 
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We propose a method that uses multiple images filtered 

by a polarizer with different rotation angles for reflection 

separation. Our approach exploits the mutually exclusive 

image gradients in each of the filtered images to achieve 

high quality reflection separation results. We perform the 

operation of reflection separation by exploiting the effect 

of reflection under different rotation angles of a polarizer. 

Our study shows that for planar surface reflection, the 

region where the contribution of reflection is reduced to 

the maximum extent varies smoothly across an image as 

we slowly rotate the angle of the polarizer. Since the effect 

of reflection is additive, we would obtain a clear 

background layer with no reflection in an ideal case by 

combining the minimum intensity pixels of the filtered 

images [Ref 2].  

 

However, since the reflected light is only partially 

polarized, weak reflection still remains in the background 

layer. We therefore use a better algorithmic approach on 

top of the polarizer for reflection separation. To 

accomplish our goal, we make a simple assumption that the 

image gradients of the background layer and the reflection 

layer are mutually exclusive [Ref 3]. Under this 

assumption, we can classify the image gradients into 

background layer gradients and reflection layer gradients 

using the information from the multiple input images. We 

formulate this reflection separation problem as a 

constrained optimization problem where the reflection 

layer, the background layer and the “matte” that 

determines the mixing coefficients of the reflection layer to 

each of the input images are solved iteratively. 

 

     
       (a)                                          (b) 

 

     

       (c)                                          (d) 

 
Fig.1. (a) Image captured without a polarizer, (b)-(d) Images 

captured with a polarizer rotated at different angles. The polarizer 

can reduce the reflection, but it cannot completely remove the 

reflection. Note that the reduced reflection depends on the rotation 

angle of the polarizer and it is spatially varying. [Ref 8] 

2. Literature Survey 

We categorized our surveyed papers as polarization and 

non-polarization based approaches. 

2.1 Polarization Based Approaches 

2.1.1 Separating Real and Virtual Objects from their 
Overlapping Images 
 

Early work of the polarization-based approaches 

explored the reflection separation problem by simply 

collecting polarized pixel values. Ohnishi et al. [Ref 2] 

proposed to use the minimum intensity image over 

different polarizer angles as the background layer, and the 

image difference between the maximum intensity image 

and the minimum intensity image as the reflection layer. 

However, simply using a polarizer cannot fully separate 

reflection with partial polarization, and weak reflection 

may still remain in their recovered background image. The 

remaining reflection can be further reduced by analyzing 

the polarized images. 

2.1.2 Polarization Based Decor-relation of 
Transparent Layers The inclination Angle of an 
Invisible Surface 
 

Schechner [Ref 4] separated reflection based on 

physical analysis of polarization. Their method assumed 

some prior knowledge about the scene, such as an angle of 

incidence and a pair of polarizer angles that maximize and 

minimize reflection, which are hard to be measured 

directly in general. 

2.1.3 Separating Reflections from Images Using 
Independent Component Analysis 
 

Farid and Andelson [Ref 5] presented a method based 

on independent component analysis (ICA), which can 

separate reflection from two polarized images without 

using such prior knowledge. This paper describes how the 

statistical tool of independent components analysis can be 

used to separate some of these incidental components. 

2.1.4 Sparse ICA for blind separation of transmitted 

and reflected images 

Bronstein [Ref 6] generalized the ICA approach to 

allow multiple polarized images, while improving its 

accuracy and efficiency based on sparsity of large image 

gradients.  

All of these approaches assume the contribution of 

reflection in each of the source images is spatially 
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invariant, which is rarely satisfied for a real polarized 

image. On the other hand, our approach uses an alpha 

matte to model the spatially varying mixing coefficients of 

reflection for a polarized image, which is more physically 

accurate. This allows us to achieve reflection separation 

robustly without any physically-based prior knowledge 

about the objects in the scene. 

2.2 Non- Polarization Based Approaches 

2.2.1 User assisted separation of reflections from a 
single image using a sparsity prior 

This method also employs a constrained optimization 

method with a single image as input data .Levin and Weiss 

[Ref 3] incorporated user input into the sparsity prior of 

image gradients to separate reflection from a single image. 

Their method used a dense set of user provided gradients, 

where each gradient was coupled with the reflection or 

background layer. In this approach, it would be very hard 

and labor-intensive to manually label dense gradients over 

such an input image. 

 

2.2.2 Separating reflections from a single image 
using local features 

Levin [Ref 7] simultaneously proposed an automatic 

method to find the most-likely decomposition which 

minimizes the total number of edges and corners in the 

recovered layers by using a database of natural images. 

However, these approaches may not work well if an input 

image contains complex structures or textures, namely 

many intersections of edges from the reflection and 

background layers. This approach is very slow, and 

candidate decompositions found by their database search 

may not include the desired decomposition. On the other 

hand, our method can work well even for the scenes 

containing such complex structures or textures, by 

automatically classifying the gradients from multiple 

polarized images with selective user correction. 

3. Observations from Reflection Properties 

A simple observation is that the amount of polarization 

depends on the angle of incidence. Such a partial 

polarization property explains that reflection separation by 

a polarizer cannot be perfect in practical situations since 

Brewster’s angle (around 56∘ for glass reflection) is rarely 

set for image capture. Therefore, the polarizer cannot fully 

eliminate reflection at an angle of incidence away from 

Brewster’s angle. We also note that the reflectance that 

determines the intensity of R also varies spatially within an 

image according to the angle of incidence. However, since 

our input images are all captured from the same view 

point, R is approximately the same across the images, and 

thus the variation of R over the images can be ignored. But 

this should not be ignored when we use “misalignment” 

information for reflection separation.  

To estimate the mixing coefficients of reflection, we 

need to estimate the angle of incidence and the plane of 

incidence assuming that the refractive index of the 

reflection medium is available. However, it is difficult to 

directly measure such physical quantities from images 

without prior knowledge [Ref 4]. Such physical quantities 

could be indirectly estimated by incorporating them as 

unknown variables into an optimization formulation for 

reflection separation. However, this would make the 

optimization formulation overcomplicated. 

To address these issues, we instead introduce a 

reflection model which is based on a smooth alpha matte 

assumption. The reflectance of each orthogonal component 

smoothly varies with respect to a continuous change of the 

angle of incidence. If we assume a pinhole-like camera and 

an almost planar glass surface, the angle of incidence 

spatially varies continuously and smoothly on the surface 

observed from the camera. We can conclude that both the 

reflected light off the surface and the transmitted light 

through the polarizer have spatially smooth variations on 

an image. Accordingly, the alpha matte should be smooth 

over the image. Using the alpha matte, we address the issue 

of partial polarization for robust reflection separation. 

4. Module Descriptions and Assumptions 

4.1 Construction of Gaussian Pyramid 

 
The Gaussian pyramid consists of low-pass filtered, 

reduced density (i.e., down sampled) images of the 

preceding level of the pyramid, where the base level is 

defined as the original image. We adopt a multi-scale 

scheme based on a Gaussian pyramid with a scale factor 

equal to 2 in order to allow our reflection separation 

algorithm to converge to a solution close to the global 

minimum. Each input image Ii(x) is down-sampled to 

construct the Gaussian image pyramid. At each scale, the 

mask image and reflection guide map are built. This image 

is used as the base for the preceding operations. 

For each input image, we model the effect of reflection 

by the following equation for each of three color channels: 

Ii(x) = αi(x) R(x) + B(x), 

where Ii, R and B are the input image, reflection layer 

and background layer, respectively, x is pixel coordinates, 

i is an image index and αi is a matte that represents the 
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amount of reflection remaining in each of the polarized 

input images. 

Our first assumption is that the gradients of the 

reflection layer and those of the background layer are 

mutually exclusive. In other words, if the magnitude of a 

gradient in an input image is larger than some threshold, 

such gradient can only come from either the reflection 

layer or the background layer, but not both. Our second 

assumption is that spatial variation of αi within an image is 

smooth, that is, ∇αi(x) = 0. This assumption comes from 

the fact that we are targeting at planar (smooth) surface 

reflection for which varies smoothly with the variation of 

the angle of incidence and other physical quantities. 

4.2 Compute Reflection guide map and the Mask 
image 
 

The following formula is used for calculating the 

reflection guide map, 

∇Ii(x) = R(x) ∇αi(x) + αi(x) ∇R(x) + ∇B(x), 

where ∇ = (∂/∂x, ∂/∂y)
T
 is the gradient operator. 

Under our assumptions, we can re-write this equation 

as follows:  

∇Ii(x) =αi(x) ∇R(x) or ∇B(x), if maxj∣∇Ij(x)∣ ≥ t 

αi(x) ∇R(x) + ∇B(x), otherwise 

where maxj∣∇Ij (x)∣ is the maximum magnitude of the 

gradient among all ∇Ii(x) and t is the threshold for image 

gradients in the first assumption. The threshold is 

determined by selecting the top two percentage of pixels 

which have the largest gradient magnitudes among all 

pixels in the input images. Note that according to this 

Equation, the contribution of ∇B(x) to ∇Ii(x) is fixed for all 

input images, while that of ∇R(x) varies depending on the 

values of αi(x). Hence, if the variance of ∇Ii(x) over the 

input images is large, it is likely that the gradient ∇Ii(x) is 

from the reflection layer. Similarly, if the variance of ∇Ii(x) 

over the input images is small, it is likely that the gradient 

∇Ii(x) is from the background layer. Therefore, the large 

gradient pixels, that is, the pixels with maxj∣∇Ij (x)∣ ≥ t can 

be classified into two layers, depending on their gradient 

variances over the images. 

We construct a mask image M(x) which identifies the 

pixels with large gradients: M(x) = 1 if maxj∣∇Ij (x)∣ ≥ t, 

and M(x) = 0 otherwise. The mask image consists of two 

parts, MR(x) and MB(x), which indicates the large gradient 

pixels from the reflection layer and the background layer, 

respectively. We set MR(x) = 1 if M(x) = 1 and the pixel x 

has a large gradient variance over the input images, and 

MR(x) = 0 otherwise. Similarly, we set MB(x) = 1 if M(x) = 

1 and the pixel x has a small gradient variance over the 

input images, and MB(x) = 0 otherwise.  

Given the mask image M(x), we can compute αi(x), 

∇R(x) and ∇B(x) for each pixel x such that M(x) = 1. We 

first initialize the values of αi(x), ∇R(x) and ∇B(x) to 

zeros. If MR(x) = 1, then ∇Ii(x) = αi(x)∇R(x) since the 

gradient is from the reflection layer. 

The resulting values of αi(x), ∇R(x) and ∇B(x) are 

stored in the reflection guide map and referred to as α′i(x), 

∇R′(x) and ∇B′(x). These values are used as the guiding 

information for optimization. 

4.3 Optimization of Results 

The optimization problem is solved alternatingly for 

different sets of unknowns. At each scale other than the 

coarsest, the solutions for αi(x) at the previous scale are 

up-sampled together with R(x) and B(x). With αi(x) as 

initial guesses, the same solution method is applied to the 

optimization problem at this scale. While moving down the 

pyramid, the weights   λ i , λ R and λ B for regularization  

are adjusted:  Specifically, λi , λ R and λ B are spatially 

varying, and more weights are assigned to λi (x), λ R(x) and 

λ B(x) as the values  αi(x), ∇R′(x) and ∇B′(x) in the guide 

map approach to values of αi(x), ∇R(x) and ∇B(x), 

respectively, which have been up-sampled from the 

solutions at the previous scale [ref 8]. 

5. Algorithm 

 

Input: I1 to IN 

Output: α1 to αN, R, B 

Construct the Gaussian image pyramid. 

For each level, from coarse to fine, in the multi-scale 

pyramid, do: 

Compute the mask image and the reflection guide map. 

If the current scale is the coarsest scale, 

Initialize αi using Eq. (7). 

else: 

Up-sample the results of αi, R and B. 

Evaluate the regularization weights λαi , λR and λB. 

end if 

For a fixed number of iterations do: 

Estimate (R, B) with αi fixed. 

Estimate αi with (R, B) fixed. 

end for 

end for 
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6. Implementation 

In this section we simulate this project with suitable 

polarized inputs.  

6.1 Input Images 

Here these images shown in the Fig.2 are polarized 

one. However weak reflections still remain in the 

background layer. To accomplish our goal, we make a 

simple assumption that the image gradients of the 

background layer and the reflection layer are mutually 

exclusive [Ref 4]. Under this assumption, we can classify 

the image gradients into background layer gradients and 

reflection layer gradients using the information from the 

multiple input images. We formulate this reflection 

separation problem as a constrained optimization problem 

where the reflection layer, the background layer and the 

“matte” that determines the mixing coefficients of the 

reflection layer to each of the input images are solved 

iteratively. 

 

        
      

   (a)                                      (b) 

  

 

 

(c) 

 
Fig 2: Input Polarized Images for automatic Reflection Separation. 

6.2 Construction of Gaussian Pyramids 

We adopt a multi-scale scheme based on a Gaussian 

pyramid with a scale factor equal to 2 or 3 in order to 

allow our reflection separation algorithm to converge to a 

solution close to the global minimum. Each input image 

Ii(x) is down-sampled to construct the Gaussian image 

pyramid. At each scale, the mask image and reflection 

guide map are built. This image is used as the base for the 

preceding operations. 

         

  Scale1                     Scale 2 

 

 

Scale 3 

 
Fig.3: 3 levels of Gaussian Pyramid Construction 

 

3 scale factor construction of Gaussian pyramid for 

input image. During the construction of Gaussian 

pyramids, the image gets blurred to option the global 

minimum. 

6.3 Computation of Mask Images 

The mask images can be computed for each image 

using the formula mentioned in section (4.2). The 

generated mask images for background and reflection 

layers are shown in the following Fig.4. 

   

                    (a)                            (b) 
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       (c)                (d) 

   

         

       (e)                (f) 

 
Fig.4: (a)-(c) shows the mask images for background layer and Fig 

(d)-(f) shows the mask images for reflection layer. 

 

Given the mask image M(x), we can compute αi(x), 

∇R(x) and ∇B(x) for each pixel x such that M(x) = 1. We 

first initialize the values of αi(x), ∇R(x) and ∇B(x)to zeros. 

If MR(x) = 1, then ∇Ii(x) = αi(x)∇R(x) since the gradient is 

from the reflection layer. In order to separate αi(x) and 

∇R(x) from ∇Ii(x), we set ∇R(x) to the gradient with the 

maximum magnitude over the input images. That is, ∇R(x) 

= ∇I∗(x) such that ∣∇I∗(x)∣ = maxj∣∇Ij(x)∣. For each input 

image Ii(x), αi(x) is obtained by projecting ∇Ii(x) onto 

∇R(x): ∇Ii(x)⋅∇R(x) ∣∇R(x)∣2 . If MB(x) = 1, then ∇Ii(x) = 

∇B(x). In this case, we set ∇B(x) to the gradient with 

maxj∣∇Ij(x)∣. 

6.4 Computation of Reflection Guide Map 

The resulting values of αi(x), ∇R(x) and ∇B(x) are 

stored in the reflection guide map and referred to as α′i(x), 

∇R′(x) and ∇B′(x). These values are used as the guiding 

information for optimization. Based upon the threshold 

value, the reflection guide map will vary. On average, three 

or four images of size about 350×350 were used as input 

data per experiment. Our optimization procedure takes 

about one minute to obtain an automatic solution.  

 

After the reflection guide map computation, they are 

subjected to image smoothening and then the resultant 

background layer and reflection layer can be constructed 

using optimization process. 

 

Fig.5 (a): Reflection Guide Map for Reflection Layer 

 

Fig.5 (b): Reflection Guide Map for Background Layer 

7. Conclusions 

 In this work, we used an alpha matte to model the 

spatially varying mixing coefficients of reflection to 

separate the reflection layer and background layer 

separately from the polarized images based on some 

physical properties of reflections. 

We also embedded the image smoothening process 

during the computation of reflection guide map. Through 

various experiments we made, we found that our automatic 

reflection separation mechanism produces the better results 

compared to other existing methods. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 352

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

References 
 

[1]  H. Fujikake, K. Takizawa, T. Aida, T. Fujii, and M. 

Kawakita, “Electrically-controllable liquid crystal polarizing 

filter for eliminating reflected,” Optical Review, vol. 5, no. 

2, 1998,pp. 93–98. 

[2]  N. Ohnishi, K. Kumaki, T. Yamamura, and T. Tanaka, 

“Separating real and virtual objects from their overlapping 

images,” in Proc. European Conference on Computer 

Vision (ECCV), vol. 1065, 1996, pp. 636–646. 

[3]  A. Levin and Y. Weiss, “User assisted separation of 

reflections froma single image using a sparsity prior,” IEEE 

Transactions on Pattern Analysis and Machine Intelligence 

(PAMI), vol. 29, pp. 1647–1654, Sep.2007. 

[4]  Y. Y. Schechner, J. Shamir, and N. Kiryati, “Polarization-

based decorrelation of transparent layers: The inclination 

angle of an invisible surface,” in Proc. IEEE International 

Conference on Computer Vision (ICCV), 1999, pp. 814–

819. 

[5] H. Farid and E. Adelson, “Separating reflections from 

images by use of independent components analysis,” J. Opt. 

Soc. Am., vol. 16, pp. 2136–2145, 1999. 

[6] A. M. Bronstein,  M. M. Bronstein,  M. Zibulevsky, and  Y. 

Y. Zeevi, “Sparse ICA for blind separation of transmitted 

and reflected images,” Int. J. Imaging Systems and 

Technology, vol. 15, no. 1, pp. 84–91, 2005. 

[7] A. Levin, A. Zomet, and Y. Weiss, “Separating reflections 

from a single image using local features,” in Proc. IEEE 

Conf. on Computer Vision and Pattern Recognition 

(CVPR), 2004, pp. I: 306–313. 

[8]  Naejin Kong,Yu-Wing Tai, Sung Yong Shin, “High-quality 

Reflection Separation using Polarized Images” in Proc. 

IEEE transaction on Image Processing 2011, pp:3393 - 

3405 . 

 

 

 

 

  

AUTHORS 

 
 

 Mr. L. Dinesh born in Thanjavur 

district, TamilNadu, India. He received 

his M.Sc Degree [5 years Integrated] 

in Software Engineering from Anna 

University, TamilNadu, India and also 

Completed MBA in Human Resource 

and Finance. He is currently pursuing 

his M.E (Software Engineering) in 

Periyar Maniammai University, 

Thanjavur, TamilNadu, India. He has 

published an international Journal in 

IJCSI, November 2011 and presented several papers in 

international and national conferences. 

 

 

Mr. A.E. Narayanan born in the 

Kanyakumari district, India, currently 

working as an Assistant Professor at 

the Department of Information 

Technology, Periyar Maniammai 

University, TamilNadu, India. He 

completed his B.E in Electrical and 

Electronics Engineering from 

Government College of Technology, 

Coimbatore and M.Tech in 

Information Technology from 

Manonmaniam Sundaranar University, Tirunelveli. He is doing his 

PhD in Fault Tolerant Routing in MANET at Periyar Maniammai 

University. He organizes various National Conferences such as 

RITIDS in association with Ministry of Earth Sciences, Govt. of 

India New Delhi. He also conducted various National level 

Workshops in collaboration with IIT Bombay, ISTE and MHRD and 

guided various M.Tech students for their project and research 

work. His areas of research are Digital Image Processing, Smart 

grid and Fault Tolerant Routing in MANET. He is the Member of 

ISTE, CSI and IEI.  

 

 

 

 Ms. R. Devi born in Thanjavur District, 

TamilNadu, India. She received her 

B.Tech in Information Technology 

from SASTRA University, TamilNadu, 

India. She is currently pursuing her 

M.Tech (Software Engineering) in 

Periyar Maniammai University, 

Thanjavur, India. She has presented 

several papers in conferences. 

 

 

 

 

Mr. S. Nepoleon born in Thanjavur 

District, TamilNadu, India. He 

received his M.Sc Degree [5 years 

Integrated] in Software Engineering 

from Anna University, TamilNadu, 

India and also Completed MBA in 

Human Resource and Marketing. He 

is currently pursuing his M.E 

(Computer Science and Engineering) 

in Srinivasan Engineering College, 

Perambalur, TamilNadu, India. He has 

presented several papers in International and National 

Conferences. 

 

 

 

 

 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 353

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




