

Aggregate Function Based Enhanced Apriori Algorithm for
Mining Association Rules

Medhat H A Awadalla1,and Sara G El-Far2

 1 Communication, Electronics and Computers Department, Helwan University ,
Cairo, State ZIP/Zone, Egypt

2 Communication, Electronics and Computers Department, Helwan University ,
Cairo, State ZIP/Zone, Egypt

Abstract
Association rule analysis is the task of discovering
association rules that occur frequently in a given
transaction data set. Its task is to find certain relationships
among a set of data (itemset) in the database. It has two
measurements: Support and confidence values.
Confidence value is a measure of rule’s strength, while
support value corresponds to statistical significance.
Traditional association rule mining techniques employ
predefined support and confidence values. However,
specifying minimum support value of the mined rules in
advance often leads to either too many or too few rules,
which negatively impacts the performance of the overall
system. In this paper, it is proposed to replace the
Apriori’s user-defined minimum support threshold with a
more meaningful aggregate function based on Central
Limit Theorem (CLT). The paper also proposes a new
function, MinAbsSup with bit mapping, which calculates a
custom minimum support for each item set based on the
probability of collision chance of its items. Furthermore, a
modification for Apriori algorithm to accommodate this
function is proposed. Experiments on large set of data
bases have been conducted to validate the proposed
framework. The achieved results show that there is a
remarkable improvement in the overall performance of the
system in terms of run time, the number of generated rules,
and number of frequent items used.
Keywords: Data Mining, Association Rule Mining,
Apriori algorithm, minimum support, minimum
confidence.

1. Introduction

Association rule mining is interested in finding frequent
rules that define relations between unrelated frequent
items in databases, and it has two main measurements:
support and confidence values. The frequent itemset is

defined as the itemset that have support value greater than
or equal to a minimum threshold support value, and
frequent rules as the rules that have confidence value
greater than or equal to minimum threshold confidence
value. These threshold values are traditionally assumed to
be available for mining frequent itemsets. Association
Rule Mining is all about finding all rules whose support
and confidence exceed the threshold, minimum support
and minimum confidence values.

Association rule mining proceeds on two main
steps. The first step is to find all itemsets with adequate
supports and the second step is to generate association
rules by combining these frequent (or) large itemsets [1-
3].

In the traditional association rules mining [4-5], minimum
support threshold and minimum confidence threshold
values are assumed to be available for mining frequent
itemsets, which is hard to be set without specific
knowledge; users have difficulties in setting the support
threshold to obtain their required results. Setting the
support threshold too large, would produce only a small
number of rules or even no rules to conclude. In that case,
a smaller threshold value should be guessed (imposed) to
do the mining again, which may or may not give a better
result, as by setting the threshold too small, too many
results would be produced for the users, too many results
would require not only very long time for computation but
also for screening these rules. That would explain the
need to develop an algorithm to generate a minimum
support, and minimum confidence values depending on
the datasets in the databases.
To use association rule mining without support threshold
[6-9], another constraint such as similarity or confidence
pruning is usually introduced. However, the coincidental
itemset problem had not been directly considered by any
of these researches. There are some researches that are
relevant to the coincidental itemset problem, and proposed

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 277

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

an additional measure [10] in order to improve the
support-confidence framework.

Initially, association rules mining was proposed for market
basket analysis. Given a set of transactions D, association
rule mining finds the complete set of association rules
whose support is greater than a user-defined minimum
support threshold (min-sup) and confidence greater than a
user-defined minimum confidence threshold (min-conf).
The following is a formal statement of association rule
mining for transaction databases. Let I = {i1, i2. . . im} be
the universe of items. A set X,I of items is called an
itemset. A transaction t = (TID, X) is a tuple where TID is
a unique transaction ID and X is an itemset.
A transaction database D is a set of transactions. The
count of an itemset X in D, denoted by count(X), is the
number of transactions in D containing X. The support of
an itemset X in D, denoted by supp(X), is the proportion of
transactions in D that contain X. The rule X → Y holds in
the transaction set D with confidence c where c = conf(X
→ Y) and conf(X → Y) = supp (X υ Y) / supp(X). The
dominant theme in traditional association mining is the
discovery of positive association rules in frequently
occurring itemsets.

The continuation of this paper is as follows: section 2
presents the most related work to the theme of this paper.
Section 3 introduces the Apriori algorithm. Section 4
presents Apriori inverse algorithm. Section 5 presents the
enhanced Apriori algorithm. Sections 6 and 7 demonstrate
the conducted experiments and discussions. Section 8
concludes the paper.

2. Background

A lot of association rule algorithms have been developed
in the last decades [11-13], which can be classified into
two categories: (1) breadth-first search (BFS) or
candidate-generation-and-test approach such as Apriori
[14], (2) depth-first search (DFS) or pattern-growth
approach [15- 18]. With BFS the support values of all (k -
1) itemsets are determined before counting the support
values of the k-itemsets. In contrast, DFS recursively
descends following the tree structure defined above.

Each of the algorithms is characterized by its strategy to a)
traverse the search space and b) determine the support
values of the itemsets as shown in figure 1. In addition an
algorithm may employ specific optimizations for further
speeding up. The most popular algorithm of this type is
Apriori [16, 19] where the downward closure property of
itemset support was introduced. Apriori makes an
additional use of this property by pruning those candidates
that have an infrequent subset before counting their

supports. This optimization issue becomes possible
because BFS ensures that the support values of all subsets
of a candidate are known in advance. Apriori counts all
candidates of a cardinality k together in one scan over the
database. The critical part is to look for the candidates in
each of the transactions. For this purpose, the work in [16]
introduces a so called hash-tree structure. The items in
each transaction are used to descend in the hash-tree.
Whenever they reach one of its leaves, they find a set of
candidates having a common prefix that is contained in the
transaction. Then these candidates are searched in the
transaction that has been encoded as a bitmap [16]. In the
case of success, the counter of the candidate in the tree is
incremented.

Figure 1: Systematization of the Algorithms

Apriori Tid [16] is an extension of the basic Apriori
approach. Instead of relying on the raw database, Apriori
Tid internally represents each transaction by the current
candidates it contains. The Apriori Tid algorithm has the
additional property that the database is not used at all for
counting the support of candidate itemsets after the first
pass. Rather, an encoding of the candidate itemsets used in
the previous pass is employed for this purpose. In later
passes, the size of this encoding itemsets can become
much smaller than the database, thus saving much reading
effort.

SETM algorithm [17] was motivated by the desire to use
SQL to compute large itemsets, the candidate itemsets are
generated on-the-fly during the pass as data is being read.
Specially, after reading a transaction, it is determined
which of the itemsets found large in the previous pass are
present in the transaction. New candidate itemsets are
generated by extending these large itemsets with other
items in the transaction. However, the disadvantage is that
this results in unnecessarily generating and counting too
many candidate itemsets that turn out to be small.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 278

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

DIC is a further variation of the Apriori-Algorithm
[18, 19]. DIC softens the strict separation between
counting and generating candidates. Whenever a candidate
reaches min-supp; that is even when this candidate has not
yet "seen" all transactions, DIC starts generating
additional candidates based on it. For that purpose a
prefix-tree is employed. In contrast to the hash-tree, each
node - leaf node or inner node - of the prefix-tree is
assigned to exactly one candidate respectively frequent
itemset. In contrast to the usage of a hash-tree that means
whenever we reach a node we can be sure that the itemset
associated with this node is contained in the transaction.
Furthermore interlocking support determination and
candidate generation decreases the number of database
scans.

The Partition-Algorithm [20, 21] uses set intersections to
determine support values. As mentioned above Apriori
determines the support values of all (k - 1) candidates
before counting the k-candidates. The problem is that
partition of course wants to use the Tid-lists of the
frequent (k - 1) itemsets to generate the Tid-lists of the k-
candidates. Obviously the size of those intermediate
results easily grows beyond the physical memory
limitations of common machines. To overcome this
Partition, it splits the database into several chunks that are
treated independently. The size of each chunk is chosen in
such a way that all intermediate Tid-lists fit into main
memory. After determining the frequent itemsets for each
database chunk, an extra scan is necessary to ensure that
the locally frequent itemsets are also globally frequent.

Counting occurrences assumes candidate sets of a
reasonable size. For each of those candidate sets, a
database scan is performed. Apriori that relies on BFS
scans the database once for every candidate size k. When
using DFS the candidate sets consist only of the itemsets
of one of the nodes of the tree. Obviously, scanning the
database for every node would results in tremendous
overhead. The simple combination of DFS with counting
occurrences is therefore of no practical relevance.

In [22] a fundamentally new approach called FP- growth
was introduced. In a preprocessing step, FP- growth
derives a highly condensed representation of the
transaction data, so called FP- tree. The generation of the
FP- tree is done by counting occurrences and DFS. In
contrast to former DFS - approaches, FP-growth does not
follow the nodes of the tree, but directly descends to some
part of the itemsets in the search space. In a second step
FP- growth uses the FP-tree to derive the support values of
all frequent itemsets.

In [23] the algorithm ECLAT is introduced, that combines
DFS with Tid-list intersections. When using DFS it
suffices to keep the Tid-lists on the path from the root
down to the class currently investigated in memory. That
is, splitting the database as done by Partition is no longer
needed. ECLAT employs an optimization called "fast
intersections". Whenever two Tid-lists are intersected then
the only interest is in the resulting Tid-list if its cardinality
reaches min-supp. In other words, each intersection should
be broken off as soon as it is sure that it will not achieve
this threshold. ECLAT originally generates only frequent
itemsets of size > 3. ECLAT had been modified to mine
also the frequent 1 and 2 itemsets by calling it on the class
that contains the 1 itemsets together with their Tid-lists as
mentioned in [23].

In addition, in [23] algorithms that mine only the maximal
frequent itemsets are introduced, e.g. Max-ECLAT. An
itemset X is maximal frequent if for every frequent itemset

Y X Y Y = X holds. These algorithms were not
considered because although it is straight forward to
derive the set of all frequent itemsets from the maximal
frequent itemsets, this does not hold for the corresponding
support values. Without those, it is not able to derive rule
confidences and therefore not generating association rules.
In the following sections, Apriori and Apriori Inverse
algorithms will be focused for qualitative comparative
study.

3. Apriori Algorithm

The most influential algorithm Apriori [7, 15, 16, 19],
generates the k-candidate by combining two frequent (k-1)
itemsets. The Apriori algorithm employs a bottom-up,
breadth-first searching that generates all frequent itemsets,
which is feasible with sparse datasets such as market-
basket data, where the frequent patterns are very short.

However, the performance of these algorithms degrades
incredibly in some application domains such as genome
data where there are many, long frequent patterns, because
they perform as many passes over the database as the
length of the longest frequent pattern. This incurs high I/O
overload for iteratively scanning large database.
The Apriori algorithm needs scanning the whole data set
and examine the itemsets multiple of times, which is very
time consuming process.

The algorithm Apriori
L1= {large1- itemset};
For (k=2; Lk -1 ≠ φ; k + +)
{
Ck=Apriori (Lk-1);
For all transactions t ϵ D

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 279

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

{
Ct=subset (Ck,t);
For all candidates c ϵ Ct

c.count++;
Lk = {c ϵ Ck | c.count >= minsup}
}
Return (Uk Lk)

}

Lk: Set of large k-itemsets (those with minimum support).
Each member of this set has two fields: (1) itemset, and
(2) support count. Ck: Set of candidate k-itemsets
(potential large itemsets). Each member of this set has two
fields: (1) itemset and (2) support count.

The Apriori-gen function takes as an argument Lk-1, the set
of all large (k-1) itemsets. It returns a superset of the set of
all large k-itemsets. First, in the join step, Lk-1 joins with
Lk-1 to obtain a superset of the final set of candidates Ck.
The union p U q of itemset p, q U Lk-1 is inserted in Ck if
they share k-2 first items.
For a transaction set {1: A, C, D; 2: B, C, E; 3: A, B, C, E;
4: B, E}, itemsets and its corresponding support count will
be as follows:
{A: 2; B: 3; C: 3; D: 1; E: 3}. Assume Minimum support =
50% which equivalent to support count =2. By pruning the
infrequent then frequent itemsets and their corresponding
support count are {A: 2; B: 3; C: 3; E: 3}.

4. Apriori Inverse

The Apriori-Inverse algorithm [24] is based on a level-
wise search. On the first pass through the database, an
inverted index is built using the unique items as keys and
the transaction IDs as data. At this point, the support of
each unique item (1- itemsets) in the database is available
as the length of each data chain.

To generate k-itemsets under max-sup, the (k – 1) itemsets
are extended in precisely the same manner as Apriori to
generate candidate k- itemsets. That is, a (k – 1) itemset i1
is turned into a k itemset by finding another
(k – 1) itemset i2 that has a matching prefix of size (k – 2),
and attaching the last item of i1 to i2. For example, the 3 -
itemsets {1, 3, 4} and {1, 3, 6} can be extended to form
the 4 - itemset {1, 3, 4, 6}, but {1, 3, 4} and {1, 2, 5} will
not produce a 4 - itemset due to their prefixes failing to
match at the second item.

These candidates then are checked against the inverted
index to ensure that they at least meet a minimum absolute
support requirement and are pruned if they do not, (the
length of the intersection of a data chain in the inverted

index provides support for a k-itemset with k larger than
1).
The process continues until no candidate itemsets can be
generated, and then association rules are formed in the
usual way.
It should be clear that Apriori-Inverse finds all perfectly
sporadic rules, since we have simply inverted the
downward-closure principle of the Apriori algorithm;
rather than all subsets of rules being over min-sup, all
subsets are under max-sup. Since making a candidate
itemset longer cannot increase its support, all extensions
are viable except those that fall under the minimum
absolute support requirement. Those exceptions are
pruned out and are not used to extend itemsets in the next
round. For example, let D be {{1, 2, 3, 4}, {1, 3, 5}, {1, 3,
5, 7}, {1, 6, 8}, {2, 3, 4, 6}, {3, 6, 7, 8},{3, 6, 8}, {6, 9}}.
The Idx from D where {item:[tid-list]} is {{1:[1, 2, 3, 4]},
{2: [1, 5]}, {3:[1, 2, 3, 5, 6, 7]}, {4: [1, 5]}, {5: [2, 3]},
{6: [4, 6, 7, 8]}, {7:[3, 6]}, {8:[4, 6, 7]}, {9:[8]}}. Given a
maximum support of 25% and supposing that the
minimum absolute support value is 2, S1 will be
 {2, 4, 5, 7}. Items below the minimum absolute support
value would not be considered for extension. Thus, item 9,
which had the support of 1, was pruned out. The itemsets
then are extended to {{2, 4}, {2, 5}, {2, 7}, {4, 5}, {4, 7},
{5, 7}}, but S2 only contains itemset {2, 4}, because the
other itemsets have support below the minimum absolute
support value and so are pruned out.

Because we are dealing with candidate itemsets with low
support, the chance that an itemset appears due to noise or
just by coincidence is higher than for candidate itemsets
with higher support. Itemsets that occur within the
database due to coincidence do not add any meaningful
information and, therefore, should not be considered when
we are searching for rare itemsets using Apriori-Inverse.
The minimum absolute support value is used to filter out
these candidate items. The value varies for different
candidates; the minimum absolute support value for items
that have a higher support is generally higher. The
minimum absolute support value is dependent solely on
the support of the individual items.

4.1 Minimum Absolute Support Value

When searching for rare itemsets, two circumstances are
considered: occurrences of itemsets due to some non-
random process that is generating them or occurrences of
itemsets by coincidence. It is important to determine this,
as itemsets that have a low support but high confidence
that seem interesting may be occurring by chance and
should be considered as noise.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 280

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Clearly, it makes sense only to consider candidate itemsets
that appear together more often than coincidence.
Coincidence is defined in this manner: for N transactions
in which antecedent A occurs in a transactions and
consequent B occurs in b transactions, the probability that
A and B will occur together exactly c times by chance can
be calculated. It is referred to this as probability of
collision chance Pcc. It can be calculated using equation
(1). The probability that A and B will occur together
exactly c times is:

 (1)

This equation is the usual calculation for exact probability
of a 2×2 contingency table. Now, we want the least
number of collisions above which Pcc is smaller than
some small value p (usually 0.001). This is:

 (2)
This formula amounts to invert the usual sense of Fisher’s
exact test [25]. Usually a 2×2 contingency table is
provided and a p-value calculated; however, here we are
providing two of the four values and a p-value and
calculating the minimum value to complete the table.

5. Enhanced Apriori Algorithm

Here we developed an algorithm that converts the database
into array of zeros and ones, bitmap. Calculate the support
value for each element, and then the minimum support
(min-supp) value. Minimum support value is calculated
based on aggregation functions, Simple Mean, Mean
Square Error, and Standard Deviation. Infrequent items
are the items that have low support value that lies on the
extra small region defined by Standard Deviation
parameter.
After pruning elements (non-frequent items) which have
support value below the min-supp value, we use frequent
items to generate rules, and then calculate the confidence
value for each rule, and the minimum confidence (min-
conf) value. Minimum confidence value is calculated
based on Simple Mean, Mean Square Error, and Standard
Deviation. Prune rules which have confidence below the
min-conf. (pruning non-frequent rules). Again, generate
next pass rules, combining frequent rules with frequent
items. The algorithm is illustrated in the flowchart shown
in Figure2; Figure 3 illustrates calculating elements

support count for every single item in the database, while
Figure 4 illustrates the function that calculates minimum
support threshold value.

Figure2. The proposed enhanced Apriori Algorithm

Deterministic-function pruning based enhanced
Apriori algorithm
Input: Transaction database D
Output: Non-coincidental frequent itemsets
For all transactions t ϵ D
{
Ct=subset (C1, t);
For all candidates c ϵ Ct

c.count++
}
L1= Min_sup(C1);
For (k=2; Lk -1 ≠ φ;k + +)
{
Ck=Apriori (Lk-1);
For all transactions t ϵ D
{
Ct=subset (Ck,t);
For all candidates c ϵ Ct

c.count++
Lk = {MinSup(Ck)}

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 281

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

}
Return (Uk Lk)
}

Figure3. Calculating Element Support Count

Figure4. Calculating Minimum Support Threshold Value

6. Experiments and Discussion
For an example of a basket market database of 9
transactions shown in Table 1 [8] is repeated for the sake
of qualitative comparison.

Table 1: Basket Market Dataset

Turning it into an array of zeros and ones would
produce Table 2.

Tid Items
1 Book- CD - Video
2 CD – Game
3 CD- DVD
4 Book – CD – Game
5 Book – DVD
6 CD- DVD
7 Book – DVD
8 Book – CD – DVD
9 Book – CD – Video – DVD

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 282

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Table 2: Bit Map

Applying the Algorithm on the previous bitmap would
give the results shown in Table 3.

Table 3: Illustrative Example Result

Tid book CD Video Game DVD
1 1 1 1 0 0
2 0 1 0 1 0
3 0 1 0 0 1
4 1 1 0 1 0
5 1 0 0 0 1
6 0 1 0 0 1
7 1 0 0 0 1
8 1 1 1 0 1
9 1 1 0 0 1

1 1 1 0 0
0 1 0 1 0
0 1 0 0 1
1 1 0 1 0
1 0 0 0 1
0 1 0 0 1
1 0 0 0 1
1 1 1 0 1
1 1 0 0 1

Sup count 6 7 2 2 6
Min support 2.191681084

Status frequ
ent

frequ
ent

Non
freque

nt

Non
frequ
ent

Frequ
ent

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 283

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

By pruning non frequent itemsets:
After pruning non frequent items as shown in Table 4,
then combining frequent elements to produce 2-itemset on
the first iteration, and then find out Min-confidence to
determine frequent/Non-frequent rules.

Table 4: Frequent Bit Itemsets

Combining frequent Itemsets to generate rules as follow
and shown in Table 5.

Table 5: Rules Generation of frequent Items

We can conclude three rules of the 1st iteration which are:

- Rule#1: 66.667% of transactions that contains
Book also contains CD.

- Rule#2: 66.667% of transactions that contains
Book also contains DVD.

- Rule#3: 57% of transactions that contains CD
also contain DVD.

On the 2nd iteration:

 A single rule produced that 50% of transactions
that contain Book-CD also contain DVD

Based on the achieved results as shown in Table 6, the
developed algorithm is faster than Apriori as it reduced the
number of frequent itemsets, number of rules to be
checked by iteration, and number of iterations.

Table 6: Comparative study between the developed and Apriori
algorithms

Apriori

(min supp = 0,
Min conf= 50%)

Developed
Algorithm

No of frequent
items 5 3

No of rules to
be checked 1st

iteration
10 3

No of
successful
rules on the
1st iteration

4
(video>>DVD ‘
Week Rule’)

3

No of rules to
be checked 2nd

iteration
7 1

(Conf = 50%)

No of
successful

rules on the 2nd

iteration

3
(2 week rules

’book-
CD>video’)

--

No of rules to
be checked 3rd

iteration
3 --

No of
successful
rules on the
3rd iteration

1
(book-CD-

video>>DVD)
conf100%

--

Total rule no. 8 4

Also, an Apriori may produce huge number of rules which
are redundant rules and considered to be week rules; in
our illustrated example the Apriori produced rules such as:

 Video >> DVD (conf 50%)
 Book-video >> DVD (conf 50%)
 CD-Video >> DVD (conf 50%)

Which are week, uninteresting rules.

7. Discretizing continuous valued attributes based on
probability of collision:

Tid book CD DVD
1 1 1 0
2 0 1 0
3 0 1 1
4 1 0 0
5 1 1 1
6 0 1 1
7 1 0 1
8 1 1 1
9 1 1 1

Book –
CD

DVD -
Book

CD –
DVD

1 0 0
0 0 0
0 0 1
1 0 0
0 1 0
0 0 1
0 1 0
1 1 1
1 1 1

Rule
Confidenc

e
0.67 0.67 0.57

Min
Confidenc

e
0.57

Status Frequent frequent Frequent

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 284

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Furthermore, we compared the performance of the
proposed MinAbsSup function, Probability of collision,
and the standard Apriori algorithm with bitmapping
technique and probability of collision on dataset from the
UCI Machine Learning Repository [25].
Lenses database: Database for fitting contact lenses, with
multivariate characteristics, and categorical attributes. It
has four attributes (Age, Prescription, Astigmatic, and
Tear Production Rate) with no missing data, and 24
instant. The data set is shown below in Table 7.

Table 7: Lenses Data Base

T‐ID Age Prescription Astegmatic Tear Rate Lenses

1 Young Myope No Reduced No Lense

2 Young Myope No Normal Soft Lense

3 Young Myope Yes Reduced No Lense

4 Young Myope Yes Normal Hard Lense

5 Young hypermetrope No Reduced No Lense

6 Young hypermetrope No Normal Soft Lense

7 Young hypermetrope Yes Reduced No Lense

8 Young hypermetrope Yes Normal Hard Lense

9 pre-presbyopic Myope No Reduced No Lense

10 pre-presbyopic Myope No Normal Soft Lense

11 pre-presbyopic Myope Yes Reduced No Lense

12 pre-presbyopic Myope Yes Normal Hard Lense

13 pre-presbyopic hypermetrope No Reduced No Lense

14 pre-presbyopic hypermetrope No Normal Soft Lense

15 pre-presbyopic hypermetrope Yes Reduced No Lense

16 pre-presbyopic hypermetrope Yes Normal No Lense

17 presbyopic Myope No Reduced No Lense

18 presbyopic Myope No Normal No Lense

19 presbyopic Myope Yes Reduced No Lense

20 presbyopic Myope Yes Normal Hard Lense

21 presbyopic hypermetrope No Reduced No Lense

22 presbyopic hypermetrope No Normal Soft Lense

23 presbyopic hypermetrope Yes Reduced No Lense

24 presbyopic hypermetrope Yes Normal No Lense

Coding the four attributes has been done as follows:

1. Age of the patient: (1) young, (2) pre-presbyopic,
(3) presbyopic
2. Spectacle prescription: (1) myope, (2)
hypermetrope
3. Astigmatic: (1) no, (2) yes
4. Tear production rate: (1) reduced, (2) normal

Table 8: Lenses Database Bitmapping

1 2 3 1 2 1 2 1 2 1 2 3

1 1 0 0 1 0 1 0 1 0 0 0 1

2 1 0 0 1 0 1 0 0 1 0 1 0

3 1 0 0 1 0 0 1 1 0 0 0 1

4 1 0 0 1 0 0 1 0 1 1 0 0

5 1 0 0 0 1 1 0 1 0 0 0 1

6 1 0 0 0 1 1 0 0 1 0 1 0

7 1 0 0 0 1 0 1 1 0 0 0 1

8 1 0 0 0 1 0 1 0 1 1 0 0

9 0 1 0 1 0 1 0 1 0 0 0 1

10 0 1 0 1 0 1 0 0 1 0 1 0

11 0 1 0 1 0 0 1 1 0 0 0 1

12 0 1 0 1 0 0 1 0 1 1 0 0

13 0 1 0 0 1 1 0 1 0 0 0 1

14 0 1 0 0 1 1 0 0 1 0 1 0

15 0 1 0 0 1 0 1 1 0 0 0 1

16 0 1 0 0 1 0 1 0 1 0 0 1

17 0 0 1 1 0 1 0 1 0 0 0 1

18 0 0 1 1 0 1 0 0 1 0 0 1

19 0 0 1 1 0 0 1 1 0 0 0 1

20 0 0 1 1 0 0 1 0 1 1 0 0

21 0 0 1 0 1 1 0 1 0 0 0 1

22 0 0 1 0 1 1 0 0 1 0 1 0

23 0 0 1 0 1 0 1 1 0 0 0 1

24 0 0 1 0 1 0 1 0 1 0 0 1

Lenses
T‐ID

Age Prescription Astegmatic Tear Rate

And: Lenses fitting
1: the patient should be fitted with hard contact lenses,
2: the patient should be fitted with soft contact lenses,
3: the patient should not be fitted with contact lenses.

Data set can be discretized and converted to simpler form
to increase the speed of data processing by bitmapping as
shown in Table 8.
When Apriori with MinAbsSup is compared against
Apriori, the reduction in the number of rules (with all
possible consequent lengths) generated is drastic. The
reduction ranges from a factor of 15 to 60809, depending
on the particular dataset. By setting the arbitrary threshold
too low, we may be flooded with many trivial rules. We
would need wade through the rules to find those that may
be of some interest. However setting the support too high,
we may miss out useful rules. To take the Lenses dataset
as an example, normal Apriori finds 83 rules. The list
below shows a subset of the rules found using normal
Apriori with its summation of probabilities of collision,
and the Absolute Minimum Support value. We concentrate
on this particular subset because they contain a similar
consequent. The rest of the rules in the subset were not
found as the itemsets could not be differentiated from
noise.

Based on bitmap and probability of collision,
where N is the total number of transaction (N= 24), c is
the number of particular times items A, and B occur
together in the database, a is the number of times item A
appears in the database (a = sup(A)), and b is the number
of times item B appears in the database (b = sup(B)). Pcc –
refer to Equation (1) - represents the probability that A,
and B occur together exactly c times.
Addressing all different cases would produce sets of
successful itemsets combination are produced supported
by the summation of probabilities of collision, and the
Absolute Minimum Support value.
The achieved rules are listed below:

{Age = 1} → {Perception = 1} 0.998, 7
{Age = 1} → {Perception = 2} 0.998, 7
{Age = 2} → {Perception = 1} 0.998, 7
{Age = 2} → {Perception = 2} 0.998, 7
{Age = 3} → {Perception = 1} 0.998, 7
{Age = 3} → {Perception = 2} 0.998, 7
{Age = 1} → {Astigmatic = 1} 0.998, 7
{Age = 1} → {Astigmatic = 2} 0.998, 7
{Age = 2} → {Astigmatic = 1} 0.998, 7
{Age = 2} → {Astigmatic = 2} 0.998, 7
{Age = 3} → {Astigmatic = 1} 0.998, 7
{Age = 3} → {Astigmatic = 2} 0.998, 7
{Age = 1} → {Tear Production Rate = 1} 0.998, 7
{Age = 1} → {Tear Production Rate = 2} 0.998, 7
{Age = 2} → {Tear Production Rate = 1} 0.998, 7
{Age = 2} → {Tear Production Rate = 2} 0.998, 7
{Age = 3} → {Tear Production Rate = 1} 0.998, 7
{Age = 3} → {Tear Production Rate = 2} 0.998, 7
{Spectacle prescription = 1} → {Astigmatic = 1} 0.998, 9
{Spectacle prescription = 1} → {Astigmatic = 2} 0.998, 9

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 285

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

{Spectacle prescription = 2} → {Astigmatic = 1} 0.998, 9
{Spectacle prescription = 2} → {Astigmatic = 2} 0.998, 9
{Spectacle prescription = 2} → {tear production rate = 3}
0.998, 9
{Spectacle prescription = 2} → {tear production rate = 3}
0.998, 9
{Spectacle prescription = 2} → {tear production rate = 3}
0.998, 9
{Spectacle prescription = 2} → {tear production rate = 3}
0.998, 9
{Astigmatic = 1} → {tear production rate = 3} 0.998, 9
{Astigmatic = 1} → {tear production rate = 3} 0.998, 9
{Astigmatic = 1} → {tear production rate = 3}0.998, 9
{Astigmatic = 1} → {tear production rate = 3} 0.998, 9
{Spectacle prescription = 1} → {Lenses = 3} 0.9957, 10
{Spectacle prescription = 2} → {Lenses = 3} 0.9957, 10
{Astigmatic = 1} → {Lenses = 3} 0.9957, 10
{Astigmatic = 2} → {Lenses = 3} 0.9957, 10
{Tear production rate = 1} → {Lenses = 3} 0.9957, 10
{Tear production rate = 2} → {Lenses = 3} 0.9957, 10

By applying these rules with its significant
MinAbsSup Value, we can prune all unnecessary and
unsuccessful rules and obtain a few successful rules that
really present valuable information in the database. From
this particular grouping Apriori with MinAbsSup, it finds
that [{ tear production rate = 1} → {Lenses = 3} 0.9957,
10] is a successful Rule.

8. Conclusions

In this paper, we developed a function model which
replaces user defined minimum support threshold value of
standard Apriori. This function calculates a custom
minimum support for each itemset based on the itemset’s
statistics, CLT, preventing coincidental rules from being
generated. The achieved simulated results showed that the
proposed function efficiently finds minimum number of
rules which are non-coincidental without using arbitrary
support thresholds.
Furthermore, on another approach this paper applied
bitmapping technique into a statistical probability of
collision algorithm proposed on Apriori-Inverse.
The rules generated by normal Apriori should not be
considered as the most compact set of rules. In order to
obtain a compact set of rules, some forms of post-pruning
method to eliminate trivial and redundant rules have been
presented. The achieved results show that MinAbsSup
applied with bitmapping reduces the time and space
requirements.
A custom minimum support for each itemset has been
calculated based on the itemset’s probability of chance
collision, preventing coincidental rules from being
generated. MinAbsSup associated with bitmapping

efficiently finds non-redundant rules which are non-
coincidental by setting a suitable threshold without using
arbitrary support thresholds.

References:

[1] H. Mahgoub,”Mining association rules from unstructured

documents” in Proc. 3rd Int. Conf. on Knowledge Mining,
ICKM, Prague, Czech Republic, Aug. 25- 27, 2006, pp.
167-172.

[2] S. Kannan, and R. Bhaskaran “Association rule pruning
based on interestingness measures with clustering”.
International Journal of Computer Science Issues, IJCSI,
6(1), 2009, pp. 35-43.

[3] M. Ashrafi, D. Taniar, and K. Smith “A New Approach of
Eliminating Redundant Association Rules”. Lecture Notes
in Computer Science, Volume 3180, 2004, pp. 465 – 474.

[4] P. Tang, M. Turkia “Parallelizing frequent itemset mining
with FP-trees”. Technical Report
titus.compsci.ualr.edu/~ptang/papers/par-fi.pdf, Department
of Computer Science, University of Arkansas at Little Rock,
2005.

[5] M. Ashrafi, D. Taniar, and K. Smith “Redundant Association
Rules Reduction Techniques”. Lecture Notes in Computer
Science, Volume 3809, 2005, pp. 254 -263.

[6] M. Dimitrijevic, and Z. Bosnjak “Discovering interesting
association rules in the web log usage data”.
Interdisciplinary Journal of Information, Knowledge, and
Management, 5, 2010, pp.191-207.

[7] R. Agrawal, H. Mannila, R. Srikant, H. Toivonen, and A. I.
Verkamo.: Fast discovery of association rules- In Advances
in Knowledge Discovery and Data Mining (1996).

[8] Z. HONG-ZHEN, C. DIAN-HUI, and, Z. DE-CHEN
“Association Rule Algorithm Based on Bitmap and
Granular Computing”. AIML Journal, Volume (5), Issue
(3), September, 2005.

[9] K. Yun Sing “Mining Non-coincidental Rules without a User
Defined Support Threshold”. 2009.

[10] C. Yin-Ling and F. Ada Wai-Chee “Mining Frequent
Itemsets without Support Threshold: With and without Item
Constraints”. 2004.

[11] S. Brin, R. Motwani, and C. Silverstein “Beyond market
baskets: generalizing association rules to correlations”.
SIGMOD Rec. 26(2), 1997, Pp. 265–276.

[12] R. Meo, R “Theory of dependence values”. ACM Trans.
Database Syst. 25(3), Pp. 380–406, 2000.

[13] X. Wu, C. Zhang, and S. Zhang “Efficient mining of both
positive and negative association rules”. ACM Trans. Inf.
Syst. 22(3), Pp. 381– 405, 2004.

[14] J. Han, J. Pei, and Y. Yin.: “Mining Frequent Patterns
without Candidate Generation”. 2000.

[15] R. Agrawal, T. Imielinski, and A. Swami, ªMining
Association Rules Between Sets of Items in Large
Databases,º Proc. 1993 ACM SIGMOD Int'l Conf.
Management of Data, pp. 207- 216, Washington, D.C., May
1993.

[16] R. Agrawal and R. Srikant, ªFast Algorithms for Mining
Association Rules,º Proc. 1994 Int'l Conf. Very Large Data
Bases, pp. 487-499, Santiago, Chile, Sept. 1994.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 286

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

[17] Pramod S., O.P. Vyas: Survey on Frequent Item set Mining
Algorithms. International journal of computer applications,
2010, pp. 86-91.

[18] Sergey Brin, Rajeev Motwani: Dynamic itemset counting
and implication rules for market basket data 1997

[19] R. Agrawal, Heikki Mannila Fast Discovery for Mining
Association Rules
[20] J. Hipp, U. Güntzer, and U. Grimmer.: Algorithms for

Association Rule Mining: General Survey 2001.
[21] Ashok Savasere. Edward Omiecinski. Shamkant Navathe.

An Efficient Algorithm for Mining Association Rules in
Large Database. 21th International Conference on Very
Large Data Bases. Morgan Kaufmann Publishers Inc. San
Francisco, CA, USA, 1995.

[22] Zaki M.,et al, New Algorithms For Fast Discovery of
Association Rules, In KDD97. Technical report, University
of Rochester Rochester, NY, USA, 1997.

[23] HONG-ZHEN ZHENG, DIAN-HUI CHU, DE-CHEN
ZHAN : Association Rule Algorithm Based on Bitmap and
Granular Computing. AIML Journal, Volume (5), Issue (3),
September, 2005, pp. 51-54.

[24] Yun Sing Koh, Nathan Rountree, Richard O’Keefe: Finding
Non-Coincidental Sporadic Rules Using Apriori-Inverse.
International Journal of Data Warehousing & Mining, 2(2),
38-54, 2006.

 [25] Weisstein, E. (2005). Fisher’s exact test. MathWorld — A
Wolfram Web Resource. Retrieved October 5, 2005.

Medhat Awadalla is an assistant professor at Electrical and
Computer Engineering Department, Sultan Qaboos University. He
obtained his PhD from university of Cardiff, UK. Msc and Bsc from
Helwan university, Egypt. His research interest includes cloud
computing, sensor networks, high performance computing and real
time systems.

Sara Elfar is an research student at college of Engineering,
Helwan University. She had obtained her BSc in computer science
and engineering from university of Helwan, Egypt. Her research
interest includes Data Mining, high performance computing, and
embedded systems.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 287

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

