
Modify the µCS-51 with Vector Instructions

Assem Badr 1, Ph.D: Abdelmoneim M. Fouda 2, and Prof: Abdelsamie kodb 3

1 Computer Eng. Department, Modern Academy for Engineering & Technology
Cairo, Egypt

2 Computer Eng. Department, Modern Academy for Engineering & Technology
Cairo, Egypt

3 Electrical Eng. Department, Faculty of Engineering, Al-Azhar University
Cairo, Egypt

Abstract
Computer architects have always strived to increase the overall
speed of processing for the CPUs. utilizing a reserved unused
machine code "A5H", we can expands the tradition instruction
set architecture (ISA) for the µCs-51 family, in this paper we
introduce modification of internal architecture for the µCs-51
and their ISA to improve the overall µC performance,
specifically we will introduce two innovated vector
instructions for the µCs-51 family. The two vector instructions
exploiting the data manipulation. The first instruction is to
transfer a block of data from specific memory locations to any
other memory locations simultaneously, while the other vector
instruction is to obtain the minimum data byte value within a
block of data bytes. Also we will supply the modified µC with
pipeline technique for decreasing the total execution time.
Such development improves the total performance of the µC
including execution time, and storage ratio.
Keywords: µCS-51, ISA, Vector instruction, VHDL, pipeline,
Amdahl’s law, Iron law.

1. Introduction

Embedded applications are becoming ever more diverse
and complex; processors targeting such applications have
an increased tendency to attain a desirable performance
via highly specialized instructions tailored for the needs
of their targets[1, 2].
Recently, Parallelism is one of the best solutions to
achieve high speed of processing, and lowest power
consumption for overall speeding application. Parallel
processing reduces the execution time taken by any
program. The execution time taken by any program is
determined by three factors: First, the number of
instructions executed, second, number of clock cycles
needed to execute each instruction and the third is the
length of each clock cycle [3].
There are two forms of parallelism that can be exploited
by modern computing machinery to achieve higher
performance, the first form of parallelism is called
Thread Level Parallelism (TLP) is means the capability
to execute independent programs simultaneously using

different flows of execution, called threads. The second
form is Instructional Level Parallelism (ILP), it mean
that executes many instructions in same machine
cycle[2].
The conventional general purpose µCs are insufficient to
achieve the high performance/cost ratio for advanced
communication systems, control system, and digital
signal processing (DSP). To satisfy these requirements
instruction set design is one of the important issues at
which an instruction can be customized for specific
applications to make better performance. However the
limited encoding space doesn't allow for adding specific
complex instructions to the conventional ISA. So it is
required to develop the conventional µC in such a way to
satisfy a trade-off between reaching the specified
application and costs [4]. The developed µC would be
dedicated for the specific application, as data
manipulation or DSP handling. Therefore this work
presents a synthesizable VHDL µC core (and it can be
later on implemented on the FPGA chip) for data
manipulations.
All conventional µCs-51 family such as "AT89C52"
(from Atmel), and more than 1000 advanced µCs-51
such as "TAS3108" (from Texas Instruments, which
perform five simultaneous DSP operations per clock
cycle) using the traditional instruction set[5]. The
conventional µCs-51 executes their instructions in
between 12 clock pulses to 48 clock pulses, while the
advanced versions of µCs-51 executes their instructions
in between few clock pulses to one clock pulse.
From our researches in the advanced versions of µCs-51
family also in the soft-cores of µCs-51, we observed that
all corporations concentrated its modification in the
hardware architecture; they have been modified the
internal structure of µC-51 to improve and enhance the
µC enhancement. All modified versions of µCS-51 don't
consider or discuss any modification for its instruction
set architecture (ISA). This point will be highly
investigated in our paper.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 165

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

We developed and modified the internal architecture for
the µCS-51 family and their instruction set architecture
(ISA) by supplying it with vector instructions to improve
their overall performance.
The paper is organized as follows; the next section-2
describes the overall design steps of the developed µC,
including the ISA instruction set modification in section-
2-1, and the processor architecture modification in
section 2-2. While as section-3 discuss the simulation
results and processor performance. Finally, section 4
presents an overall conclusion.

2. Design Processor

To develop a novel µC based on a conventional one,
different modifications are required including instruction
set modification, and architecture modification. This
section introduces the necessary basic principles to
design modified VHDL code for the internal architecture
of the conventional µC-51. The developed VHDL code is
obtained by adding the so called "modified instruction
decoder" (MID) in addition to the conventional
instruction decoder (CID). We can alternate between
either MID or CID using the so called "selected
instruction decoder flag (SIDF)". Another modification is
obtained by inserting VHDL codes representing two
added functional units "FU-MBK" and "FU-GMn"
respectively. The first one is responsible for transferring
block of data bytes simultaneously; while the second on
is used to get the minimum byte value among block of
data bytes as will be explained in section 2.1. Finally the
organization and architecture for the conventional µC
must be modified to match these requirements as will be
explained in section 2.2.

2.1 Instruction set modification

This section is to modify processor's ISA, as a design
methodology, the ISA can be adapted or extended to
meet the modern application requirements [6]. ISA
modification is obtained by adding two vector
instructions, each one of them is a group of individual
conventional instructions; these two developed
instruction can be used in the field of data manipulations.
The two proposed instructions are associated with the
main memory RAM. The first instruction will transfer
the contents of 8 successive memory locations to anther 8
successive memory locations through 8 concurrent data
buses at same clock pulse. The second one will transfer
the contents of 8 successive memory locations to
comparator circuit through 8 concurrent data buses, the
logical comparator circuit will getting the minimum
value among the data bytes which delivered to it
simultaneously.

The Direct Memory Access (DMA) is a capability
provided by some computer bus architectures that allows
data to be sent directly from an attached device (such as a
disk drive) to the memory on the computer's
motherboard. The microprocessor is freed from
involvement with the data transfer, thus speeding up
overall computer operation [7]. Our modification similar
to the simple DMA architecture, but not completely, it
has 8 data channels among addressable locations, and it
has a single command to read/write for the main
memory, no error detect, parity check, handshaking,
…etc, just 8 parallel data bus to transfer 8 bytes
concurrently.
From literature survey, and guided with Intel µCS-51
family's data sheets and its manual of instructions set, it's
found that the machine code "A5H" is a reserved code
which is not used for any operations or tasks, as shown in
fig.1.

Fig.1 Partial of conventional µCS-51 instruction set.
Our trend is to utilize the reserved op-code (machine
code "A5h") to expand the number of µCS-51family's
ISA and adding sophisticated instructions customized for
specific multiple data applications. The suggested
assembly syntax code "InovConv" uses the reserved
machine code "A5H"; this code has toggle alternative
action (TAA). Namely, when the "InovConv" code is
written by the user it is compiled into "A5h", and
alternate as toggling action between either CID (when
SIDF = "0") or MID (when SIDF = "1") as shown in
fig.2.

Fig.2 Toggling stages of A5h.
The developed µC can be used in two states either in its
conventional mode of operation (256 instructions) or in
the modified mode of operation (255 instructions)
therefore the number of instructions for the conventional
µC-51 will be expanded from 255 to 511 instructions.
The modified instruction set includes in-order
instructions which execute during the original CPU
machine cycle (fetching-decoding-executing) according
to recommended operations.
A portion of traditional and modified instructions for µC-
51 is shown in fig.3; it is illustrates that the machine
codes share for both instruction modes. The SIDF
specify which decoder is activated. The modified
instruction "MOVBK Adr1, Adr2" is a vector instruction
which is executed in modified functional unit "FU-

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 166

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

MBK". It has double operands, the operand "Adr1"
(source operand), it points to the starting location of 8-
bytes data block in the RAM. The operand "Adr2"
(destination operand), it points to the first location of 8-
bytes data block in the RAM which will be receipt data
from "FU-MBK". After "MOVBK" has been executed, 8
data bytes transferred from 8 RAM locations which
addressed by "Adr1" to others 8 RAM locations which
addressed by "Adr2" simultaneously.
The modified instruction "GETMIN Adr1, Adr2" is also
a vector instruction which is executed in modified
functional unit "FU-GMn", it has double operands, the
operand "Adr1" (source operand) points to the starting
location of the block of data (8 bytes) in the RAM which
will be transfer to a logical comparator (in the "FU-
GMn"), the operand "Adr2" (destination operand), it
points to the a single memory location in the RAM which
receipt the obtained minimum data byte. All operations
of "GETMIN" performed simultaneously.

Fig.3 Partial of modified µCS-51 instruction set (ISA).

2.2 Processor's Architecture modification

Adapting the old architecture to a more flexible
implementation empowering further developing[2]. This
section is to modify the organization and architecture for
the conventional µC. Based on Harvard architecture,
program and data are accessed on separate buses, having
two separate memory spaces (one for instructions, the
other is for data), which offer big chance to improve and
extend the system architecture by adding more modified
blocks[4]. High-level design tools and field-
programmable gate arrays (FPGAs) significantly reduce
the effort, cost and risk of hardware implementation.
These technologies can be incorporated into a
manageable and affordable prototyping framework a
VLSI-scale “breadboard” for exploring and evaluating
new microprocessor designs [8,9]. For this reasons a new
architecture will be delivered to modify the conventional
µCs-51 by the VHDL over the FPGA technique. As
shown in fig.4 there are different modifications for the
basic µCs-51architecture, the shaded blocks represent the
conventional units while as the other un-shaded blocks
represent the added modified blocks. All design was

made from scratch using the block diagrams from data
sheets for µC-51 family[10].
The 1st modification is obtained by adding MID-unit and
modified instruction register (MIR-unit) beside
conventional instruction register (CIR-unit) and the CID-
unit, all of them is controlled by SIDF.
Initially the SIDF is set to '0', the CID is activated, so the
traditional µC-51 instruction set will be fetched, decode,
and then executed. When using the code "InovConv"
(denominated by user's program) the SIDF is set to '1',
the MID is activated and the modified 8051 instruction
set will be fetched, decode, and then executed.
Furthermore, when the "InovConv" code is written again
by user, it toggles the SIDF to logic '0' thus enabling for
CID again, and so on.

Fig.4 The Modified internal architecture for the µC-51

The 2nd modification is particular for the program
memory's interface; it is performed by increasing the
number of data bus associated with program memory
(from single bus to 6 data bus). The instructions of the
conventional µC-51 are represented by up to maximum 3
bytes in the program memory. Each byte is fetched one
by one through single bus. While the instructions of the
modified version fetches up to maximum 6 sequencing
bytes stored in the program memory as show in fig.4.
Such developed construction is capable for fetching all
adequate bytes simultaneously. The recommended
memory location fetched starting from the value stored in
the program counter (PC). The desired number of fetched
bytes specified by the modified unit designated as control
program counter (CPC). The increment in the program
counter related to the absolute values stored in the CID
or MID.
The 3rd modification is particular for the original RAM's
interface; by adding 256 output data buses for
transferring any adequate number of data bytes from any

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 167

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

successive memory locations to modified functional units
concurrently. Also by adding 256 input data buses for
transferring any adequate number of data bytes, it
transfer from modified functional units to any successive
memory locations concurrently.
Moreover the 4th modification supply the modified µC by
3-state pipeline to execute each modified instruction in
single clock pulse. The 1st step for fetching up to
maximum 6 bytes from the program memory, the 2nd step
specifies the recommended operation and transfers the
adequate operands to the proper functional unit, the 3rd

step for executing instruction.
The 5th modification includes the creation of so the called
"execute modified instruction EMI" which is responsible
for controlling the additional modified functional units
such as "FU-MBK" and "FU-GMn".
Furthermore 6th modification creates several functional
units to execute the modified instructions; each
functional unit is specified for a particular instruction to
eliminate the structure hazards. Each In-order functional
unit is designed to execute its instruction in only single
clock pulse. So each modified In-order instruction has
instruction cycle with 3 clock pulses. Thus the pipeline
stages will be overlapped the instructions to execute one
instruction per clock. Now we will describe first
functional unit "FU-MBK".

Fig.5 VHDL code represent the functional unit "FU-MBK"
The modified µC designed based on VHDL, the vector
instruction "MOVBK Adr1, Adr2" represented in the
VHDL as shown in fig.5. When the machine code "C5h"
(see fig.3) has been fetched, it decoded at line "621", the
two lines "623" and "624" represent the data bus
connected the RAM location which pointed by the 1st

operand "Genrl_Oprd_Byte_1" to the RAM location
which pointed by the 2nd operand "Genrl_Oprd_Byte_2".
Both pointers are added by "n", the FOR-LOOP in line
"622" increment "n" from 0 to 7, it means that 8 parallel
data buses connected between 8 successive memory
locations (start from initial value of 1st operand) and
others 8 memory locations (start from initial value of 2nd

operand).
The functional unit "FU-MBK" includes 8 Multiplexers
(256X1) and 8 Demultiplexers (1X256) as shown in
fig.6, the 8 MUXs connected with the 8 DEMUXs
through 8 parallel data buses, the 1st data bus connected
between "MUX0" and "DEMUX0", the 2nd data bus
connected between "MUX1" and "DEMUX1" and so on.
Each MUX has 256 inputs connected with the outputs of
the 256 RAM locations, the first operand "Adr1"
specifies the first source memory location "Rs", the

subsequent incremented for the operand "Adr1" specify
the 7 consequence RAM locations "Rs+1","Rs+2" up to
"Rs+7". Also each DEMUX has 256 output connected
with inputs of 256 RAM locations. The second operand
"Adr2" specifies the first destination memory location
"Rd", the subsequent incremented for the operand "Adr2"
specify 7 consequence RAM locations "Rs+1","Rs+2" up
to "Rs+7". If the "MOVBK" activated by using vector
instruction "MOVBK Adr1, Adr2", 8 data bytes will be
transferred from 8 successive memory locations to
others 8 successive memory locations through the 8
parallel data buses simultaneously.

Fig.6 The block diagram of functional unit "FU-MBK"
The second modified vector instruction "GETMIN Adr1,
Adr2" represented in the VHDL as shown in fig.7. When
the machine code "C9h" (see fig.3) has been fetched, it
decoded at line "664", the data buffer "V_Max_Min"
loaded initially by value "FFh", the two lines "667" and
"668" represent the data bus connected between the
RAM location which pointed by the 1st operand
"Genrl_Oprd_Byte_1" and a logical comparator, it
compare between the value in the data bus and the stored
value in the data buffer "V_Max_Min", if the value in the
data bus less than the stored instantaneous value in the
data buffer "V_Max_Min" then this value will be stored
in the data buffer again. The FOR-LOOP in the line
"666" increment "n" from 0 to 7, it means that 8 parallel
data buses connected between 8 successive memory
locations (start from initial value of 1st operand) and 8
comparators.
The comparators responsible for getting the minimum
data bytes among the values received from the 8 memory
locations. The line "671" transfer the lowest data byte to
the memory location which pointed by 2nd operand
"Genrl_Oprd_Byte_2".

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 168

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.7 VHDL code represent the functional unit "FU-GMn"
The functional unit "FU-GMn" includes 8 Multiplexers
(256X1), 8 Multiplexers (2X1), 8 comparators, data
buffer and Demultiplexer (1X256) as shown in fig.8. The
8 MUXs (256X1) is connected with the 8 comparator
through 8 parallel data buses, the 1st data bus is
connected between "MUX0" and "Comp0", the 2nd data
bus connected between "MUX1" and "Comp1" and so
on. Each MUX has 256 inputs connected with the
outputs of the 256 RAM locations. The first operand
"Adr1" specifies the first memory location "Rs". The
subsequent incremented for the operand "Adr1" specifies
the 7 consequence RAM locations "Rs+1", "Rs+2" up to
"Rs+7". Each comparator compare between the values
received from memory location and the instantaneous
value stored in the data buffer, if the received value from
memory less than the instantaneous value stored in the
data buffer it load into the data buffer. The second
operand "Adr2" specifies the destination memory
location "Rd", all operations in the "FU-GMn" performed
simultaneously.

Fig.8 The block diagram of functional unit "FU-GMn"

3. Simulation and analysis

A large number of simulators have been developed to
help investigate microprocessor design issues. These
simulators can be broadly grouped into functional and
performance simulators. A functional simulator provides
a virtual implementation such that the outward
functionality of a design is emulated. A performance
simulator models the inner workings of a design, in only
as much detail as necessary, to extract the desired
quantitative measures of some dynamic behavior[11].
The "Mentor-graphic Modelsim" simulator provides
possibility for advanced debugging and simulation of the
VHDL code[12].
In the last few years, the Modelsim package become the
more popular VHDL simulator, it has several different
parameterized performance simulations, it can simulate
parallel architecture, it has advanced signal timing
analyzer, and it can investigate the contents of a memory
locations instantaneously.
The processors are getting faster, yet application
performance not keeping pace. On large commercial
applications, average cycles-per-instruction (CPI) values
may be as high[13]. The conventional µCs-51 executes
their instructions in average from 1 to 4 cycles per
instruction, and the advanced µCs-51 executes the same
instructions only in one cycle per instruction.
Form the simulation point of view, it's required to
simulate the execution scenario of the two developed
command using a well known simulation package. The
"Mentor-graphic Modelsim SE 6.5" simulator provides
possibility for advanced debugging and simulation of the
VHDL code [14, 15].

3.1 Pipeline simulation

The conventional µCs-51 is non-pipeline architecture, it
executes its instructions in subsequent steps in its CPU,
the CPU architecture built with many modules, and each
module carries out single step. Recently this architecture
is inefficient in speed of processing because it carried out
its steps consequently, namely, just one module is
activated during the instruction cycle, while the other
modules are waiting it. By supplying the conventional
µCs-51 family with the pipeline technique, it provides
the capability of making those modules works together in
parallel to improve the overall program execution. Those
modules can't be worked in single instruction
concurrently, because each step depends on the others.
The pipeline include multiple of identical stages, each
stage treat a single instruction with different treatments
than the others. The pipelining doesn't completely
parallel execution because just one instruction has been
performed at a time.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 169

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Modified µC-51 with pipeline technique has only 3 main
steps (fetch-decode-execute). In fig.9 shows portion of
machine code program of the modified µC based on
VHDL. Line "59" represents the op-code "C5h" and its
associated operands "00h" and "20h".

Line 60 represents the op-code "C9h" and its associated
operands "20h" and "40h". In line "61" the op-code
"D5h" which has single operand "00h" and so on.

Fig.9 The machine code program in the VHDL.

Fig.10 The simulation of 3 states pipeline execute each instruction in single clock pulse

The fig.10 indicates the simulated 3 states pipeline using
"Modelsim", the trace line "Clk" represents the global
clock pulses for the modified µC, the line "CPU_state"
represents the current pipeline state which vary among
state_1, state_2 and state_3. At time "1,480 ns" the stage
"pipe_line_a" fetched the first op-code "C5h", after one
clock pulse (20 ns), at time "1,500 ns" the "pipe_line_a"
decoded the first op-code "C5h" during the fetched of 2nd

op-code "C9h" in the "pipe_line_b". After one clock
pulse, at time "1,520 ns" the "pipe_line_a" load the two
operands (00h and 20h) into the adequate functional unit
and executed the vector instruction "C5h" (as we will be
described later) during the decoding of op-code "C9h" in
the "pipe_line_b", and during fetching the op-code "D5"

in the "pipe_line_c". At time "1,540 ns" the
"pipe_line_a" fetched the 4th op-code "D8h" during the
"pipe_line_b" loaded the two operands (20h and 40h)
into the adequate functional unit and executing the vector
instruction "C9h" (as we will be described later) during
the decoded of op-code "D5h" in the "pipe_line_c".
From the above illustration it is clear that our modified
µC executes its modified instructions in 3 steps; each
step spent one clock pulse. By adding the µC with 3
states pipeline it can execute one in- order instruction per
one clock pulse.
Thus; the pipelining enhanced the speed of processing
for modified µC by a factor given as in equation (1)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 170

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

 
 

times
pulsclocknsinstructioofNum

pulsesclocknsinstructioofNum

timeninstructioAverage

timeninstructioAverage
SpeedupPipeline

pipelined

dunpipeline

3
1

3








 (1)

3.2 Vector instructions simulation

In this section we measure the performance of the
modified µC relative to both conventional µC (such as
AT89C52) and advanced µC (such as TAS3108).
Assume there are two specific tasks for data
manipulations to be achieved. The 1st task is transferring
block of data from 8 RAM locations to others 8 RAM
locations, the 2nd task is getting the minimum data byte
among block of data bytes. We will utilize the simulator
software package "Prog-Studio" to perform the two
mentioned tasks based on the conventional instruction
set, while the simulator "Modelsim" to perform the same
mentioned tasks for the modified instructions. The
performance parameters include two main parameters,
the 1st parameter is the number of machine cycles
required to perform each task, the 2nd parameter is the
number of stored machine code bytes (in the program
memory) required for each task.

Fig.11 Assembly codes to transfer block of data

With respect to the first task (transfer block of data),
assume the following scenario, it is required to transfer
the contents of 8 successive RAM locations starting from
register R0 to R7 into anther 8 successive RAM locations
starting from address "20h" to address "27h". The
conventional instructions to perform this task are shown
in fig.11. Each line in this code transfer individual bytes
from source RAM location to the corresponding
destination RAM location. For more illustration, the first
line code transfer contents of R0 to location "20h".
Similarly, the next lines of the code move the sequenced
RAM locations (R1, R2,…,R7) to another consequence
RAM locations (21h, 22h,…, 27h) respectively.

Fig.12 The machine bytes for transfer block of data.
Each conventional instruction occupied 3 bytes in the
program memory, and executed in 2 machine cycles, so
the overall conventional code for transferring 8 data
bytes occupied (3*8=24 bytes) as shown in fig.12, and
the mentioned conventional code needs totally (2*8=16
machine cycles) for execution.
The same task (transfer data block) performed by the
modified vector instruction "MOVBK", its machine code
illustrates in the line "59" in the VHDL code as shown in
fig.9, the "C5h" represents the op-code, the "00h"
represents the source operand, and the "20h" represents
the destination operand.
The execution of "MOVBK" illustrates in the RAM
forms of the simulator "Modelsim"; the fig.13a indicates
the initial values of the RAM locations, specifically the
highlighted different values from address "00h" to the
"07h", and the highlighted "00h" values from address
"20h" to "27h". After "MOVBK" has been executed the
data block which started at address "00h" copied into the
RAM locations which started at "20h" as shown in the
fig.13b.

Fig.13a Initial values for RAM form of the simulator "Modelsim"

Fig.13b RAM values after executed "MovBK"

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 171

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Fig.13c RAM values after executed "GETMIN"

Now we will calculate the time spent to perform the
mentioned task for the conventional µCs-51, advanced
µCs-51 and our modified µC-51. Firstly we will calculate
the duration time for each machine cycle. The suffix "C"
denoted for conventional µC, and the suffix "A" denoted
for advanced µC while the suffix "M" denoted for
modified µC.
From the conventional µCs-51 data sheets, the duration

time for one machine cycle CT is equal to 12 of clock

pulses (cpT) The maximum operating frequency for the

conventional µCs-51 is 33 MHz so the duration time for
one machine cycle as in equation (2).

s
f

TT
cp

cp µ0.3636
1033

1212
12

6C 


 (2)

Similar the newer advanced µCs-51 such as DS89C420,
DS89C430, DS89C440, DS89C450 from Dallas
Semiconductor and TAS3108 from Texas

Semiconductor, their machine cycle duration time AT are

equal to single clock pulse (cpT) as in equation (3)

s
f

TT
cp

cp µ0.0303
1033

11
6A 


 (3)

Similar our modified µC machine cycle duration time

MT include single clock pulse (cpT) as in equation (4),

we selected 50 MHz as the operating frequency for our
modified µC.

s
f

TT
cp

cp µ0.02
1050

11
6M 


 (4)

With aid of “Iron law” as in equation (5) we can
calculate the total duration time for each program
code[16, 17].

cycle

time

ninstructio

cyclesofNo

program

nsinstructioofNo

program

Time





..
 (5)

The mentioned first task (move 8 data bytes) has
assembly code with 8 similar conventional instructions

equivalent to instruction "MOVBK", each instruction
executed in 2 machine cycles. The conventional executed
time will deliver in equation (6)

 

sT

cycle

time
program

time
C

µ5.80.36361616

28

C 








 (6)

Similar the advanced executed time will deliver in
equation (7)

 

sT

cycle

time
program

time
A

µ0.48480.03031616

28

A 








 (7)

The instruction "MOVBK" executed in single machine
cycle which include one clock pulse, the executed time
of modified instruction is delivering in equation (8).

  sT
cycle

time
program

time
M

µ0.021 M 




 (8)

With aid of the Amdahl’s law we can calculate the
enhanced speeding up as shown in equation[16](9).

newexe
T

oldexe
T

enhanced
upSpeed

_

_ (9)

With aid of both Amdahl’s law and Iron law we will
determine the enhancement speeding ratio of the
modified instruction "MOVBK" relative to the traditional
instructions for conventional µCs-51 as in equation (10).

times290.9
µ0.02

µ5.8

_

_




















s

s

program
time

program
time

mexe
T

cexe
T

upSpeed

M

C

 (10)

Also we will determine the enhancement speeding ratio
of the modified instruction "MOVBK" relative to the
traditional instructions for advanced µCs-51 as in
equation (11).

times24.24
µ0.02

µ0.4848


















s

s

program
time

program
time

upSpeed

M

A

 (11)

The storage ratio is an another important factor for
evaluate the modified instructions, the instruction
"MOVBK" needs 3 bytes to store its op-code and
operands while the multiple traditional instructions
which designed for performing the same task need
(3*8=24) bytes as shown in fig.12, so the enhancement

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 172

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

of the storage ratio relative to conventional or advanced
µCs will be as in equation (12)

times8
3

24

















bytes

bytes

Modified
Storage

Advanced
Storage

enhanced
Storage

 (12)

Fig.14 Assembly codes to get minimum data byte
With respect to the second task (get max data byte),
assume the following scenario, it is required to obtain
the minimum value among the contents of 8 successive
RAM locations start from address "20h" to "27h" and
store it into the RAM location "40h". The conventional
instructions to perform this task are shown in fig.14.
Each IF-statement code check individual bytes with
RAM location "20h", for example the first line code
check the content of "21h" if it grater than the content of
location "20h" it will be transferred into location "21h".
And so on until the greatest value will be transferred to
RAM location "40h".

Fig.15 The machine bytes for get minimum data byte
Each conventional IF-statement occupied 14 bytes in the
program memory, and executed in 9 machine cycles.
The last conventional instruction occupied 3 bytes and
executed in 2 machine cycles. So the overall
conventional code for getting minimum data byte
occupied (7*14 + 3=101 bytes) as shown in fig.15.
The same task (get max data byte) performed by the
modified vector instruction "GETMIN", its machine
code illustrates in the line "60" in the VHDL code as
shown in fig.9, the "C9h" represents the op-code, the
"20h" represents the source operand, and the "40h"
represents the destination operand.
The execution of "GETMIN" illustrates in the memory
forms of the simulator "Modelsim"; the fig.13b indicates
the values of the RAM locations, specifically the
highlighted different values from address "20h" to the
"27h", and the highlighted address "40h". After
"GETMIN" has been determined the minimum data

bytes "04h" which has address "20h" copied into the
RAM locations which has address "40h" as shown in the
fig.13c.
The conventional executed time for the mentioned
second task will deliver in equation (13)

  

sT

cycle

time
program

time
C

µ23.640.36366565

297

C 








 (13)

Similar the advanced executed time will deliver in
equation (14)

 

sT

cycle

time
program

time
A

µ1.970.03036565

297

A 








 (14)

The instruction "GETMIN" executed in single machine
cycle which include one clock pulse, the executed time
of modified instruction is delivering in equation (15).

  sT
cycle

time
program

time
M

µ0.021 M 




 (15)

With aid of both Amdahl’s law and Iron law we will
determine the enhancement speeding ratio of the
modified instruction "GETMIN" relative to the
traditional instructions for conventional µCs-51 as in
equation (16).

times1181.8
µ0.02

µ23.64


















s

s

program
time

program
time

upSpeed

M

C

 (16)

Also we will determine the enhancement speeding ratio
of the modified instruction "GETMIN" relative to the
traditional instructions for advanced µCs-51 as in
equation (17).

times98.48
µ0.02

µ97.1


















s

s

program
time

program
time

upSpeed

M

A

 (17)

The storage ratio is an another important factor for
evaluate the modified instructions, the instruction
"GETMIN" needs 3 bytes to store its op-code and
operands while the multiple traditional instructions
which designed for performing the same task need 101
bytes as shown in fig.15, so the enhancement of the
storage ratio relative to conventional or advanced µCs
will be as in equation (18)

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 173

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

  
times29

3

312*7




















bytes

bytes

Modified
Storage

Advanced
Storage

enhanced
Storage

(18)

4. Conclusion

In this paper we introduced the idea to expand the ISA of
the famous µCs-51 family; we occupied only two
machine codes from the extended ISA, now the
framework is opened to fill up the new ISA with more
creative instructions. We introduced two innovated
vector instructions based on VHDL, the two modified
instructions able to meet widely application domains,
without any conflict with the main µC's ISA and its
characteristics. The first instruction "MOVBK Adr1,
Adr2" designed for transferring set of eight data bytes
from consequence memory locations pointed by "Adr1"
to others eight consequence memory locations pointed by
"Adr2", the second instruction "GETMIN Adr1, Adr2"
designed for getting the minimum data bytes for a set of
eight data bytes from µC's memory location pointed by
"Adr1" and store the minimum data bytes in memory
location which pointed by "Adr2". The two vector
instructions executed only in 3 clock pulses, while after
adding the pipeline they executed in single clock pulse.
Moreover the same tasks of the two vector instructions
can be performed using multiple of conventional
instructions, it executed in a great number of clock
pulses. Finally, we have been compared our two vector
instructions relative to their corresponding conventional
instructions.

References
[1] Jonghee M. Youn, Sechul Shin, "A New Addressing Mode
for the Encoding Space Problem on Embedded Processors",
7th Symposium on Application Specific Processors (SASP),
IEEE, 2009.
[2] Abdelmoneim M. Fouda, Assem Badr and Abdelsamie
kodb, "Modify the µCS-51 Architecture to SIMD, VLIW and
Superscalar µC ", IJCSI, Vol.9, issue 1, No 1, Jan 2012.
[3] M.Suaib, A.Palaty, K.Sambhav, "Architecture of SIMD
Type Vector Processor ", International Journal of Computer
Applications, Volume 20, April 2011.
[4] Elena Roxana Buhus, "A System-On-Chip Approach in
Designing a Dedicated RISC Microcontroller Unit Using the
Field-Programmable Gate Array", Fifth International
Conference on Systems, computer society IEEE, 2010.
[5] Web site, http://www.keil.com/dd/, last accessed on the
21st of April 2012, hour 15:14.
[6] Joseph Sharkey and Dmitry Ponomarev, " Balancing ILP
and TLP in SMT Architectures through Out-of-Order
Instruction Dispatch", 5th International Conference on parallel
processing, IEEE, 2006.

[7] Sajjan G.Shiva, “Computer Organization, Design and
Architecture”, Marcel Deker,NY, third edition, revised and
expanded, pp.181-450,2000
[8] Peter Ashenden and Jim lewis, "The designer's guide to
VHDL", Elsevier Inc., third edition, 2008.
[9] Joydeep Ray, "High-Level Modeling and FPGA
Prototyping of Microprocessors ", IEEE, 2003.
[10] Web site, www.Philips.com, "80C51 family
programmer’s guide and instruction set" last accessed on the
17th of Aug 2011, hour 02:03
[11] Joydeep Ray, "High-Level Modeling and FPGA
Prototyping of Microprocessors", IEEE, 2003.
[12] R.C Cofer and Ben Harding "Rapid System Prototyping
with FPGAs-Accelerating the Design Process", Burlington,
USA, pp.35-150, 2006.
[13] Jeffrey Dean and James Hicks, "Hardware Support for
Instruction-Level Profiling on Out-of-Order Processors",
IEEE, 1997
[14] Web site, http://www.xilinx.com, last accessed on the 19th
of Jan 2011, hour 20:00
[15] R.C Cofer and Ben Harding "Rapid System Prototyping
with FPGAs-Accelerating the Design Process", Burlington,
USA, pp.35-150, 2006
[16] A.R.Alameldeen, D.A.Wood, "IPC Considered Harmful
for Multiprocessor Workloads", computer society IEEE, Aug
2006.
[17] H. Weik Martin, "Fiber Optics Standard
Dictionary", Hall book, 3rd edition, 1997.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 174

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

