

Object Communication Error Prediction in Constructor
Development

Abdul Majid Soomro1, and Bremananth R

2

1, 2

Sur University College (Affiliated to Bond University, Australia)
 Information Systems and Technology Department,

P.O. No. 440, PC. Code 411, Sur, Oman.

Abstract

In dynamic software development, organize the optimization of the
usage of resources in order to deliver the product within the finite
time is an essential and computational challenging task. Certain
robust methods are required to fulfill the requirement of the users to
prevent or repair the software faults especially object
communications when they are required to inherit in diverse natures.
In this paper, an approach for predicting the object creations’ run-
time errors in the multiple and multi-level of inheritance of objects
when larger amount of objects are required to communicate each
other. An object fault is concerned with an error due to inheritance
and violation of object constraints. A fault prediction model is
designed to separate the faulty classes in the field of software testing.
Classes are separated according to the inheritance fault encountered
in a specific class. Results show that this model can be utilized for
predicting software reliability.
Keywords: Class Inheritance, Fault finding, Object communication,
Software Engineering

1. Introduction

In Object oriented software development, prediction of defects
among object communications is an important and challenging
software engineering research topic [1]. This paper deals a
problem of dynamic software fault prediction of derived
classes in the object creation when n number of classes
involved in the rapid product development. In the state-of-art-
technology, quite number of prediction of software faults are
done based on the statistical approaches [2], [3], [4], capture-
recapture (CR) models [5], [6], [7], [8], and detection profile
methods (DPM) [9] [1]. These methods are utilized to predict
the quantity of defects remaining in software systems with
assessment of data and course of action of quality data that
involved in the software development. The object
communication prediction is an important measure for the
software developer [10]. It can be used to organize the
software process that is to decide whether to schedule further
scrutinizes are needed to pass the software artifacts to the next
development process or not. Based on the object
communications and inheritance property of constructors, a
quality of a software system is redelivered [11].

In another work, a set of association rule mining algorithms
was suggested from the data mining community to disclose
software defect associations [12]. Initially, seeking as many
related faults as possible to invoke the faults and consequently
make more effective error checking for the software. Based on
the literature, software components classified into two major
phenomena such as fault-dreary and no-fault-dreary. These
two factors can be based on two metrics of classifications, as
in state-of-art techniques which are listed out in software
engineering references [13]. A fault-proneness was estimated
based on the random forests in [14] and T. Menzies et al.
utilized data mining strategy based static code attributes to
learn the fault predictions in [15]. Certain novel findings in
classification models for software defect prediction
classification model were suggested by Lessmann [16]. A.
Porter et al. suggested a metric-based classification trees for
empirical driven software development [17]. K. Ganesan et al.
developed a case-based software quality prediction model
[18]. A neural network based software quality modeling of
larger telecommunications systems was proposed by
Khoshgoftaar et al. However, the time complexity for
estimation depends on number of objects which are required
for the communications in the practice environment [19].

However, ample of works had done for software prediction
and classifications. Regrettably, classification of prediction of
faulty classes remains a principally unsolved problem. In
addition to that, in object oriented paradigm, constructor
communication related object faulty functioning is still needed
for further research in order to address better solution based on
the product development. The erudition of providing solution
to these problems may lead to challenges in how the proposed
techniques will be configured and how will they validate
during the development life-cycle of the software engineering.
Shortened or improper validation can produce the result in
involuntarily ambiguous. This is one of the reason, we
contribute in this paper for a general framework for the object
communication and its validity.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 139

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

From these foundation works, we are motivated to contribute a
solution to solve the problem of object communication
prediction in constructor development of objected oriented
rapid software development. This paper makes the
contributions, estimating the run-time object faults during
compile-time in order to avoid the catastrophic failure occur in
the software running process. Catastrophic errors are
encountered when a cascading system failure appears on the
software environment. The preliminary work done in this
paper is to develop a yet another compiler to use the test
classes for the object metrics. The catastrophic faults of classes
are predicted based on their constructed behavior when
development process is going on the site. They are clustered
and output is displayed according to the cluster of the errors in
the tested classes. The remainder of this paper is organized as
follows: Section 2 described our proposed methodology.
Experimental results and analysis for error prediction is
depicted in Section 3. Concluding remarks and further
enhancements are given in Section 4.

2. Proposed Methodology

Testing object oriented software is a process of significantly
increasing reuse, quality, and productivity. There are certain
challenging issues in predicting object-oriented software faults
such as base class error, external code error, inheritance and
dynamic binding. In order to predict the communication fault
during object-oriented system development, our proposed
framework perform the sequence of steps as shown in Fig. 1.
In the first phase, a repository of knowledge base has been
formed based two phases such as acquisition of past object’s
faults, and refinement. Acquisition of source of faults must be
of the highest quality in the object communication, else the
intellectual of prediction produced downstream. Refinement is
the crucial source of value added.solution. It is involved
restructuring, relabeling, indexing, and integrating object
communication. In addition, refining also refers to cleaning up
or sanitizing content so as to ensure complete anonymity of
sources and key factor of objects which are involved for the
faults. Statistical analyses can be performed on fault content at
this stage to conduct a meta-analysis such as pattern found in a
collection of communication objects.

Fetch the object from the repository based on the certain pre-
fixed rules which are mainly required for extracting the fault
knowledge and utilizing them in the present situation of object
communication.

2.1 Pre-fixed rules
Object communication fault prediction is essentially involved
certain constructor rules which are followed by the traditional
object oriented software development. The following are the
pre-fixed rule for the prediction process.

• Constructor’s object can use any access modifiers.

• If the private constructor’s object wants to allow an
instance of the class to be used, then the class must
provide a static method or variable that allows access
to an instance created from within the class [11].

• The constructor object name must match the name of
the class.

• Constructor must not have a return type.
• Constructor with no argument is the default

constructor.
• If programmer doesn’t include constructor into the

class, then a default constructor will be automatically
generated by the compiler.

• Abstract classes may have constructors, and those
constructors are always referred when a concrete
subclass is instantiated.

• If software engineer uses private access modifier for
constructor, then we need to instantiate the object
within the class code itself.

• A call to super class can be either a no argument call
or can include arguments passed to the super
constructor.

• Software engineer cannot make a call to an instance
method, or access an instance variable, until after the
super class constructor runs.

Repository of
class

communication
faults

Fetch the objects based on
the pre-fixed rules

Is pre-fixed rule
optimum for present object

communication?

Do the Association rule for
matching present

communication and
append the new faults

No

Yes

Begins Learning for Objects
fault communications

Preparation of learning rules
and tested with the present

software objects

Documented for performance
evaluation in the real-life
object communications

Invoke the
predictor to

accomplish new
objects

Report the prediction rules
based on the present
objects in the software
development including
reverse engineering

Fig.1 Representation of sequence of operation involved in the object
communication prediction process.

2.2 Optimum constraint
Based on the object communication pre-fixed rule base, the
ongoing scenario of software development is checked for
optimum criterion. Let N objects are being involved for

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 140

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

communication in the development process, then their
optimum constraints are evaluated based on the optimum soft-
decision. Since, there is no specific criterion for constructor
derivation the log likelihood ratio (LLR) will be utilized for
the optimum condition checking. Based on the present
scenario, making the decision for present object
communication is crucial factor. LLR is described as














=

∑
∑

−

−

N

fy
N

fx

o
y

x

e

e
L

...1

)(/1
...1

)(/1

22

22

log
σ

σ

 (1)

where oL denotes an optimum log likelihood ratio (LLR),

N represents number of objects which are involved for the
communication. The parameters xfyx ,,,2σ and yf denote
variance of fault communication, index of fault knowledge
base units in x-direction, index of fault knowledge base units
for non-fault classes in y-direction, fault communication and
non-fault communication.

2.3 Association rule computation
Software errors, formal specification and design changes are

primarily causes of disproportionate cost and rescue of a
software project. Certain works were proposed for association
rule mining [20]. Amasaki et al. [21] suggested a set of
association rule mining with preconditions for software risk
assessments.

Let { }meeeE ,...,, 21= be a set of errors which are encoded in
the form of binary relationship as shown in Table I. In real-
time software development, there is possibility that an initiates
subsequent of errors. Especially object communications, if any
object in a constructor causes error, then subsequent
communication will lead the sequences of other sources of
errors. For example, we can represent that ηλβ ⇒∧ is
implication of errors β and λ initiate another error is
calledη . In general, a set E⊂η is called the subset of
existing repository of errors. Let an error repository
ϖ consists of multi-set of errors in E . Each invoking of error
communication ϖκ ∈ called an error-maneuver. The format
of the association rule is implied that ηβ ⇒ and

φηβ =∩ .

Table 1: Representation of errors, encoding and priority level of association
relationship.

Error
Encoding

Description of Errors Priority

0001 Constructors object is not
properly used for access
modifiers.

0

0010 The class might not provide
a static method or variable.

1

0011 The constructor object name
might not match the name of

2

the class.
0100 No argument constructor. 3
0101 Default constructor will be

automatically anonymously.
4

0110 Abstract classes may not
have constructors

5

0111 No instantiate the object
within the class code itself.

6

1000 A call to super class can be
no argument call.

7

1001 Cannot make a call to an
instance method.

8

Our method of computing association rules is a sequence of
binary relationships between the classes. For example, relation
between derived classes and test case classes will be
represented as { }ctd , . If consider the errors between d and

ct can be computed, then association of binary relationship will
be obtained. Perhaps, in a software development, if n classes
will be involved, then)1(* −nn error association rules are
obviously required to resolve the communication errors
between them. In addition, the inverse of error association
rules will be also included. However, the probability of errors
is involved in the software development that can be
represented using diverse metrics. First metrics is called
support that can be represented as)(ctds ⇒ . The probability

of)(ctds ⇒ will be ntdp c),(. It denotes the counts of
implications of error in communications. For example, assume
that the total number of errors in the software class
communications will be n = 32 for a software development.
The number of errors that includes),(ctds will be 8, and then

)(ctds ⇒ will be 0.25. The ratio of the number of errors in

communications that contain ctd ∪ to the number of errors

in d is referred as confidence. This is described as

)(/),()|()(dstdstdptdc ccc ==⇒ . (2)

Where)(ctdc ⇒ and)|(ctdp represent confidence metric
and probability of confidence metric, respectively. Support of
d is dented as)(ds . However this measure is not
symmetrical.

)(ctdI ⇒ is a metric to compute the correlation between

two error objects called d and ct . This is called interest. It

represents how many epochs more often object d and ct are
contained in a commit communication then anticipated if they
are statistically self-determining. However, this metric is
symmetrical.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 141

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

)(co tdc ⇒ denotes a metrics of conviction. It represents a

metrics of the implication that whenever object d is
committed error and object ct is also committed errors. This
described as

),(/)()()(ccco tdptpdptdc ¬¬=⇒ . (3)

The implementation of)(ctdI ⇒ and)(co tdc ⇒ are
described as

)()(/),()(ccc tsdsntdstdI =⇒ . (4)

),()(/)/))()(()(()(ccco tdsdsntsdsndstdc −−=⇒ . (5)

Based on these metrics, if the pre-fixed rule is optimum then
learning for object fault communication is begun in order to
prepare the learning rules to test with the present software
objects.

2.4 Learning for Object fault Communication
In the object fault learning process, the states of each object

communication is verified. This is a pre-process of preparation
of learning rules for software testing. During testing practices,
we categorize association learning rules according to the
errors, constructor code, test code and invocation of server and
client methods. Fig. 2 shows a transition diagram for the error
learning normally occurred in the class creation.

S 1 2 3 E
kw

kw

Ab

Ab

Bl Bl

Fig. 2 Representation of state transition for the learning of fault
communication.

In the aforesaid figure, transition State S starts from double
circle by invoking an object creation keyword wk and goes to
State 1 followed by alphabets for object names. This is
represented by the self-loop in State 1. A set of blank white
space is required in order to act as a delimiter for an object
name as denoted as State 2. Once super class keyword (for
example, extends in Java) is invoked perfectly then its
corresponding name existences will be learned. This name
space may be a part of software system package (for example,
Applet) or any user defined name based on the software
projects. However, learning of every objects and classes name
is necessary for entire software testing. Furthermore, a double
state self loop illustrated in Fig. 1 represents that certain object
communication has a multithreading or interface keywords.
However, it is not always the case for the software

development. Once multithreading or any number of interfaces
are invoked then sequences of name of its classes or interfaces
given by the software engineer. Systematic learning is an
important process based on which programming language will
be utilized for the software development. Fig. 3 shows a state
transition diagram for creation of constructor in the object
communication process. It has the labels of cA , mC , and

cC denote derived & super class name, main function object
and constructor creation.

S 1 2 3 E
kw

Cm

Ac Ab

Cc
kw

Ab

Fig. 3 State transition for the constructor creation.

State S is started with keyword wk and it goes to State 1. In
this State, an object of the class is created. Its self-loop depicts
object name symbolized by cA . By another keyword, it goes to
State 2. It has a self-loop of alphabets. From this state, main
function object mC is invoked by State 3 and it has self-looped

for the alphabets and ends with constructor creation cC .
Learning for object faults of each state has been performed
based on the wk is invoked. There is no wk is invoked, then
the system state is called to make an error transition. State 2
repeats by itself with alphabets until name is not completed
then make transition from State 2 to 3 when call main invoked.
After that it makes transition from State 3 to 4 with new
constructor and State 4 ends.

2.5 Object Communication Error Learner Construction
A learning scheme consists of a class error preprocessing, an

attribute selection, and a learning algorithm. Class error
preprocessing is a significant part of constructing a practical
learner. In this phase, the learning object fault communication
are preprocessed, such as removing unwanted blanks, handling
missing alphabets, and decoding errors based on the priority
level. Learning algorithm requires the best parameters for
learning the diverse error data. Even though all the parameters
are helpful for performing learning, a few of the parameters
may spin-off the error prediction process. Hence, selection of
optimal parameter for the learning algorithm plays vital role
for the error prediction process which performs learning
process on repository of data. In our proposed method, binding
parameter selection is employed for parameter selection. This
is a computationally expensive however it gives better result
for prediction of error. Binding parameter selection performs
annoyed-rationale in order to assess the prominence of
different parameter subsets. Once parameter selection is
completed, then preprocessed error data are abridged to the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 142

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

best parameter detachment. Thereafter, abridged error exercise
data and learning algorithm are utilized for constructing object
communication error learner (OCEL). OCEL is tested prior to
the new set of object errors preprocessed and its facet has been
abridged to the best detachment of parameters. The estimated
value of OCEL is put side by side with substantial value of
errors of the tested data, and then the recital of predictor is
evaluated. Its validation is obtained based on the statistical
behavior of the OCEL. Based on the prominence of the
learner, error predictor is invoked in order accomplish the
activity of new object communication.

2.6 Reporting prediction rule and Reverse Engineering
Once OCEL is chosen according to its testimony, then its

related prediction rules are named to the software engineer for
assisting their code amendment. Predictor is invoked by the
stricture such as precedent error objects in the repository, new
error object communication and OCEL. As stated previously,
learning will provide a present appropriate predictor and its
optimal parameters. An innovative set of parameters are
chosen based on the new set of error objects. These new
optimal parameters are utilized for the present appropriate
predictor for estimating the result of communication errors
among the objects. Furthermore, as a part of reverse
engineering, object are newly incorporated at the time of
system release due the factors of serious system fault, plate
form change, or competing with other software products.
These object communication errors will be predicted during
reverse engineering. This is a challenging process and certain
works has been done previously [23]. Reverse Engineering is
an entrenched practice in that there are fewer Computer aided
software engineering (CASE) tools available to identify
software release errors and convert reverse into a good quality
structural models. A frame work for predicting a possible error
during reverse engineering is described as shown in Fig. 4.

Released /
Repair

Software
System

Identification of
objects to be

reversed

Fetch the efficient
objects from the

respository

Encoding Binary
Error Contents

Association Rule
Computation

Choice of
Leaner based
on the error

Optimal
parameters

utilized to build
the predictor

Processing for
Re-engineered

System

Storing Reverse
Error objects in
the repository

Fig. 4. A framework for Object communication error prediction in reverse
software engineering process.

In the reverse process, final software will be revoked into a
design process. First, reversed objects are identified and the
respective efficient objects are fetched from the repository
based on the minimum matching rule. Once object is fetched,
then error encoding process will be carried out and its

association rules are computed. Prediction of errors in object
communication is based on the efficiently choosing the leaner.
The leaner is trained and tested with the reversed objects
before incorporated into structure model of the software
engineering. Optimal parameters are selected based on the
how they are useful for the error processing. Predictor is
designed for the reverse engineering error prediction based on
the chosen optimal parameters. Tested objects are validated
with predictor in order to estimate the errors before fixing into
the model. Upon successful of incorporating the objects the
experienced error scenario of objects’ communication will be
stored in the repository.

3. Experimental Results and Analysis

The performance of the proposed framework for object
communication error prediction is validated using 150
different kinds of object communication errors usually occur in
the software product development. The predictor is trained and
tested with the error data set. A common metric for predictor
quality evaluation called Receiver Operating Characteristics
(ROC) is utilized for checking the object data sets. For each
categories of error, a predictor is trained and its thresholds
across the hiatus between 0 and 1 are pertained to the results
of the predictor. For each threshold, two set of metrics are
computed such as True Positive Ratio (TPR, tψ) and False
positive Ratio (FPR). Object communication errors prediction
for TPR is computed using (6)

ϑκ
κψ
+

=t , (6)

where tψ , κ and ϑ denote true positive ratio, true positive
(TP) and false negative (FN), respectively.

Error prediction for False positive Ration (FPR, tρ) is
described as.

νυ
υρ
+

=t , (7)

where tρ , υ and ν represent false positive ratio, false
positive (FP) and true negative (TN), respectively.

Figure 5 shows the ROC for the proposed framework to
predict diverse errors possibly occurred in the object
communication errors. The training ROC is mainly for
evaluating the training behavior of the predictor as shown in
Fig. 5a. This shows EER that represents equal error rate
(EER). It is a performance measure that denotes a superlative
position where predictors recognize all the object
communication error without any further bugs. Furthermore a
higher probability of error prediction is represented by green
color legend and red color legend depicts lower probability of
no error prediction by the predictor. However the values in the
ROC between 0 and 1 are a superlative position where all the

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 143

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

predictors are performed well. In addition, EER should be
determined the best among a set of predictors and evaluating
its best validation performance its mean squared error (MSE)
is also included. As shown is Fig. 6, best validation
performance of a predictor is 0.15909 at the epoch of training
the leaner at 23. The validation of ROC is shown is Fig. 5b.
OCEL testing process of predictor is observed and plotted as
shown in Fig. 5c. In our experiment, we study that diverse
result for the same predictor can obtain when different
discrimination thresholds are utilized. In the representation of
ROC, for each threshold, when TPR is computed, the number
of prediction of the predictor is greater or equal to the
threshold and divided by the number of successful prediction
of errors. All predictors’ errors prediction and its ROC are
represented in Fig. 5d.

(a) (b)

(c) (d)

EER

Fig. 5 Representation of ROC (a) Training ROC (b) Validation ROC
(c) Testing ROC (d) Combination of all ROC.

Fig. 6 Mean Squared Error Computation for the Predictor.

In Fig. 5d, each value of ROC is mapped to the respective bias
thresholds. ROC at 0)(=tp ψ and 0)(=tp ρ denote that
the predictor delights all error object communication as non-
error and explicitly the corresponding threshold is one. At

value between 1)(=tp ψ and , 1)(=tp ρ , the predictor
delights all as error and explicitly the corresponding threshold
is zero. Thus, the ROC exemplifies the performance of the
predictor among the threshold variations. The gradient and
validation checks are studied for the predictor and value of
gradient was 0.0046306 at 29th epoch. This is shown in Fig. 7.

Fig. 7 Illustration of gradient.

4. Conclusions
This research paper proposes a frame work for the object
communication error prediction among constructor
implementation. It involves a sequence of steps such as fixing
rule for the prediction of constructor errors, optimum
constraint selection based on the likelihood ratio, association
rule computation and selection of leaner based on the
prediction. In our approach diverse leaning methods are
examined for the new object faults and the most optimal leaner
has been chosen based on the errors in the communication. In
addition parameters of the learner is estimated in order to
construct a predictor and tested with both existing repository
and new set of data. Another contribution of reverse
engineering based object error communication problems has
been addressed and a framework is proposed. The proposed
reverse engineered framework will be easily incorporated into
the existing software model. As these frameworks
progressively afford more intelligent prediction of errors
especially in the object communications, the proposed work
can be predicted objects efficiently and portend for object
oriented society.

We have done experiments to scrutinize the behavior of the
prediction process of software models. The performance
evaluation is performed based on the ROC and MSE.
Association rule computation was evaluated using metrics such
as support, confidence and correlation. The results of training,
validation, tested new set of data represented that the proposed
scheme of prediction and parameter selection provide good
nature of fault prediction for the object oriented paradigms of
software development. Furthermore, reverse engineering
object faults communications are also predicted using the
proposed framework. In near future, a human computer
interaction based interactive model will be suggested to
enhance the prediction process of diverse area of fault
prediction especially critical system software development.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 144

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Acknowledgments
Authors would like to thank the Chairman, Dean and The
Management, Sur University College to provide financial
assistant to do this research a successful manner.

References
[1] Qinbao Song, Zihan Jia, Martin Shepperd, Shi Ying, and Jin Liu, “A

General Software Defect-Proneness Prediction Framework,” IEEE
Trans. On Soft. Eng. vol 37, No. 3, May/June 2011.

[2] B. T. Compton and C. Withrow, “Prediction and Control of ADA
Software Defects,” J. Systems and Software, vol. 12, no. 3, pp. 199-207,
1990.

[3] J. Munson and T. M. Khoshgoftaar, “Regression Modelling of Software
Quality: Empirical Investigation,” J. Electronic Materials, vol. 19, no. 6,
pp. 106-114, 1990.

[4] N. B. Ebrahimi, “On the Statistical Analysis of the Number of Errors
Remaining in a Software Design Document After Inspection,” IEEE
Trans. Software Eng., vol. 23, no. 8, pp. 529-532, Aug. 1997.

[5] S. Vander Wiel and L. Votta, “Assessing Software Designs Using
Capture-Recapture Methods,” IEEE Trans. Software Eng., vol. 19, no.
11, pp. 1045-1054, Nov. 1993.

[6] P. Runeson and C. Wohlin, “An Experimental Evaluation of an
Experience-Based Capture-Recapture Method in Software Code
Inspections,” Empirical Software Eng., vol. 3, no. 4, pp. 381-406, 1998.

[7] L. C. Briand, K. El Emam, B.G. Freimut, and O. Laitenberger, “A
Comprehensive Evaluation of Capture-Recapture Models for Estimating
Software Defect Content,” IEEE Trans. Software Eng., vol. 26, no. 6,
pp. 518-540, June 2000.

[8] K. El Emam and O. Laitenberger, “Evaluating Capture-Recapture
Models with Two Inspectors,” IEEE Trans. Software Eng., vol. 27, no.
9, pp. 851-864, Sept. 2001.

[9] C. Wohlin and P. Runeson, “Defect Content Estimations from Review
Data,” Proc. 20th Int’l Conf. Software Eng., pp. 400-409, 1998.

[10] G. Q. Kenney, “Estimating Defects in Commercial Software during
Operational Use,” IEEE Trans. Reliability, vol. 42, no. 1, pp. 107-115,
Mar. 1993.

[11] F. Padberg, T. Ragg, and R. Schoknecht, “Using Machine Learning for
Estimating the Defect Content After an Inspection,” IEEE Trans.
Software Eng., vol. 30, no. 1, pp. 17-28, Jan. 2004.

[12] N. E. Fenton and M. Neil, “A Critique of Software Defect Prediction
Models,” IEEE Trans. Software Eng., vol. 25, no. 5, pp. 675-689,
Sept./Oct. 1999.

[13] Q. Song, M. Shepperd, M. Cartwright, and C. Mair, “Software Defect
Association Mining and Defect Correction Effort Prediction,” IEEE
Trans. Software Eng., vol. 32, no. 2, pp. 69-82, Feb. 2006.

[14] L. Guo, Y. Ma, B. Cukic, and H. Singh, “Robust Prediction of Fault-
Proneness by Random Forests,” Proc. 15th Int’l Symp. Software
Reliability Eng., pp. 417-428, 2004.

[15] T. Menzies, J. Greenwald, and A. Frank, “Data Mining Static Code
Attributes to Learn Defect Predictors,” IEEE Trans. Software Eng., vol.
33, no. 1, pp. 2-13, Jan. 2007.

[16] S. Lessmann, B. Baesens, C. Mues, and S. Pietsch, “Benchmarking
Classification Models for Software Defect Prediction: A Proposed
Framework and Novel Findings,” IEEE Trans. Software Eng., vol. 34,
no. 4, pp. 485-496, July/Aug. 2008.

[17] A. Porter and R. Selby, “Empirically Guided Software Development
Using Metric-Based Classification Trees,” IEEE Software, vol. 7, no. 2,
pp. 46-54, Mar. 1990.

[18] K. Ganesan, T. M. Khoshgoftaar, and E. Allen, “Case-Based Software
Quality Prediction,” Int’l J. Software Eng. and Knowledge Eng., vol. 10,
no. 2, pp. 139-152, 2000.

[19] T. M. Khoshgoftaar, E.B. Allen, J. P. Hudepohl, and S.J. Aud,
“Application of Neural Networks to Software Quality Modeling of a
Very Large Telecommunications System,” IEEE Trans. Neural
Networks, vol. 8, no. 4, pp. 902-909, July 1997.

[20] Agrawal R., Imielinski T., Swami A.,”Mining Association Rules
between Sets of Items in Large Databases,” In Proceedings of ACM
SIGMOD Conference on Management of Data, pp. 207-216, 1993.

[21] Amasaki S., Hamano Y. , Mizuno O. , and Kikuno T. ,“Characterization
of Runaway Software Projects Using Association Rule Mining,” In
Proceedings of 7th

 International Conference on Product Focused
Software Process Improvement, pp.402-407, 2006.

[22] Bremananth R, Thushara R, “Fault Predictions in Object Oriented
Software,” International Journal of Computer Science and Engineering,
vol.1 no.2, pp. 81-88, 2009.

[23] Jahnke J.H, Walenstein A., “Reverse Engineering tools as Media for
Imperfect Knowledge,” Proc. Of IEEE, Working Conference in Reverse
Engineering, 2000, pp. 22 – 32, 2000.

Abdul Majid Soomro received the M.Sc. degrees in
Computer Science from Bahu Din Zakriya University
Multan Pakistan in 1998 he has completed his Becholer
degree in Science from Bahu Din Zakrya University
Multan in 1995, Pakistan.

He worked as Senior Lecturer in Preston University, Pak
Lawrence institute, Scholar Group of colleges in Pakistan.

He also worked as Senior Lecturer with Pakistan School/College Salalah
Oman. Currently, he is working as Faculty member of Information Systems
and Technology Department at Sur University College (SUC), Oman.

Bremananth R received the B.Sc and M.Sc. degrees in
Computer Science from Madurai Kamaraj and
Bharathidsan University in 1991 and 1993, respectively.
He obtained M.Phil. degree in Computer Science and
Engineering from Government College of Technology,
Bharathiar University, in 2002. He received his Ph.D.
degree in 2008 from Department of Computer Science
and Engineering, PSG College of Technology, Anna

University, Chennai, India. He has completed his Post-doctoral Research
Fellowship (PDF) from the School ofElectrical and Electronic Engineering,
Information Engineering (Div.) at Nanyang Technological University (NTU),
Singapore, 2011. Before joining NTU, Singapore, he was a Professor and
Head, Department of Computer Science and Application, in India. He has
18+ years of experience in teaching, research and software development at
various Institutions. Currently, He is an Assistant Professor for Information
Technology at Information Systems and Technology Department, Sur
University College, Sur, Oman, affiliated to Bond University Australia. He is
an associate editor of various International Journals in USA and He is an
active reviewer of various IEEE International conferences/Journals. His fields
of research are Acoustic holography, Acoustic imaging, Pattern recognition,
Computer vision, Image processing, Biometrics, Multimedia, Computer
network, Software engineering, Soft computing and Microprocessors.

Dr. Bremananth received the M N Saha Memorial award for the
BestApplication Oriented paper in the year 2006 by Institute of Electronics
and Telecommunication Engineers (IETE). His continuous contribution of
research was recognised by Who’s who in the world, USA and his biography
was published in the year 2006. He is a member of Indian society of
Technical Education (ISTE), Advanced Computing Society (ACS),
International Association of Computer Science and Information Technology
(IACIT) and Institute of Electrical and Telecommunication Engineers (IETE).

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 145

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

