
 

Simulated Annealing Clustering for Optimum GPS 
Satellite Selection 

 
M. Ranjbar1 and M. R. Mosavi2 

 
 1 Department of Computer Engineering, Iran University of Science and Technology 

Narmak, Tehran 16846-13114, Iran 
 

2 Department of Electrical Engineering, Iran University of Science and Technology 
Narmak, Tehran, 16846-13114, Iran 

Corresponding Author 
 

 
Abstract 

This paper utilizes a clustering approach based on Simulated 
Annealing (SA) method to select optimum satellite subsets from 
the visible satellites. Geometric Dilution of Precision (GDOP) is 
used as criteria of optimality. The lower the values of the GDOP 
number, the better the geometric strength, and vice versa. Not 
needing to calculate the inverse matrix, which is time-consuming 
process, is a dramatically important advantage of using this 
method, so a great reduction in computational cost is achieved. 
SA is a powerful technique to obtain a close approximation to the 
global optimum for a given problem. The evaluation of the 
performance of the proposed method is done by validation 
measures. The external validation measures, entropy and purity, 
are used to measure the extent to which cluster labels affirm with 
the externally given class labels. The overall purity and entropy 
is 0.9015 and 0.3993, respectively which is an excellent result. 
Keywords: GPS, GDOP, Clustering, Simulated Annealing. 

1. Introduction 

The Global Positioning System (GPS) is a satellite-based 
navigation system that was developed by the U.S. 
Department of Defence (DOD) in the early 1970s [1]. GPS 
consists of constellation of at least 24 operational 
satellites. There are always at least four satellites visible, 
so four satellites are enough to provide positioning or 
location information. 
The Geometric Dilution of Precision (GDOP) is a number 
which is a measure of the quality you might expect from a 
position measurement of the GPS system based solely on 
the geometric arrangement of the satellites and the receiver 
being used for the measurement [2]. Because of GDOP 
provides a simple interpretation of how much positioning 
precision can be diluted by a unit of measurement error, it 
is desirable to choose the combination of satellites in a 
satellite constellation with GDOP as small as possible. 
Several methods based on GDOP have been proposed to 
improve the GPS positioning accuracy [3]. Most, if not all, 
of those methods need matrix inversion to calculate 
GDOP. Though they can guarantee to achieve the optimal 
subset, the computational complexity is usually too 
intensive to be practical. 

 
Instead of directly solving the GDOP equations and 
avoiding the time-consuming process of matrix inversion, 
rephrasing the GDOP calculation as approximation 
problems and employing NNs to solve such problems 
proposed in references [4-6]. However, solving 
classification and approximation problems using NN 
usually suffer from the long training time and difficulty in 
determining the NN architecture. The method employed in 
this paper is a solution to all of these problems. 
Simulated Annealing (SA) is an optimization algorithm 
obtained from the physical process of cooling molten 
material down to the solid state [7]. It searches for the 
minimum energy state of the objective function without 
considering the shape of the function and can escape from 
local minima with hill-climbing [8]. Due to these features, 
SA has been widely used for different combinatorial and 
other optimization problems [9]. SA was applied in the 
proposed model. 
The remainder of the paper is organized as follows. In 
section II, a brief review of GDOP computation is 
discussed. In section III, we discussed the clustering 
analysis problems. This is followed by introducing SA 
method, which is employed in this paper for clustering, in 
section IV. Section V shows the results of computer 
simulation. The paper is ended with the conclusions of our 
study in section VI. 

2. Geometric Dilution of Precision 

In GPS applications the GDOP is often used to select a 
subset of satellites from all visible ones. In order to 
determine the position of a receiver, pseudo-ranges from 

4≥n  satellites must be used at the same time. By 
linearizing the pseudo-range equation with Taylor’s series 
expansion at the approximate (or nominal) receiver 
position, the relationship between pseudo-range difference 

)( iρ∆  and positioning difference )( ix∆  can be 
summarized as follows [10]:  
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which is written in a compact form as:  
vHxz +=         (2) 

The 4×n  matrix H  is formed with direction cosines 1ie , 

2ie  and 3ie  from the receiver to the thi  satellite and v  
denotes a random noise with an expected value of zero. 
The difference between the estimated and true receiver 
positions is given by:  

vHHHx TT 1)(~ −=        (3) 

Where TH  denotes the transpose of H  and HHM T= , 
called the measurement matrix, is a 44 ×  matrix no matter 
how large n  is. It can be shown that the measurement 
matrix is symmetric and non-negative and thus it has four 
non-negative eigenvalues. Assuming IvvE T 2}{ σ= , then 

1)(}~~{ −= TT HHxxE                      (4) 
The GDOP factor is defined as the square root of the trace 
of the inverse measurement matrix: 

)det(
)]([)( 1

M
MadjtraceMtraceGDOP == −                    (5) 

Because of GDOP provides a simple interpretation of how 
much positioning precision can be diluted by a unit of 
measurement error, it is desirable to choose the 
combination of satellites in a satellite constellation with 
GDOP as small as possible. Table 1 shows DOP ratings. 

Table 1: DOP ratings 
Class Number DOP Value Rating 

Class 1 1-2 Excellent 
Class 2 2-5 Good 
Class 3 5-10 Moderate 
Class 4 10-20 Fair 
Class 5 >20 Poor 

 
M  is a 44 ×  matrix so it has four eigenvalues, 

).4,3,2,1( =iiλ  It is known that the four eigenvalues of 
1−M  is .1−

iλ  we know that the trace of a matrix is the sum 
of its eigenvalues [5]. So equation (5) can be represented 
as: 

1
4

1
3

1
2

1
1

−−−− +++= λλλλGDOP                     (6) 
By defining the four variables the mapping is performed as 
follows:  

)()( 43211 Mtracef =+++= λλλλλ
r

                   (7) 

)()( 22
4

2
3

2
2

2
12 Mtracef =+++= λλλλλ

r
                   (8) 

)()( 33
4

3
3

3
2

3
13 Mtracef =+++= λλλλλ

r
                   (9) 

)det()( 43214 Mf == λλλλλ
r

                               (10) 

GDOP can be considered as a functional 14 RR →  
mapping from f

r
 to GDOP with the inputs 4321  , , , ffff  

and output GDOP. Because of the non-linearity of 
mapping from f

r
 to GDOP, it is not possible to determine 

it analytically. So clustering algorithm is a good 
alternative.  

3. The Clustering Problem 

Clustering is the art of finding natural groupings or 
clusters in data based on some similarity measures. Let 

},...,{ 1 nooO =  be a set of n patterns and let dnA ×  be the 
pattern matrix with n  rows and d  columns. Each thi  
pattern is characterized by a real value d  dimensional 
profile vector ),...,1( nia i = , where each element ija  

corresponds to the thj  real value feature ),...,1( dj =  of 
the thi  pattern ),...,1( ni = . 
Let ),...,1;,...,1]([ kgniwW ig ===  be the kn ×  cluster 
membership matrix where: 





=
o.w.;0

gcluster   toassigned is pattern  if;1 i
wig   

Let ),...,1;,...,1]([ djkgzZ gj ===
 
be a dk ×  matrix of 

cluster centers where:
 

∑

∑

=

== n

i
ig

n

i
ijig

gj

w

aw
z

1

1                                                              (11) 

Given dnA ×  the goal of a partitional clustering algorithm 
is to determine a partition },...,,{ 21 kzzzZ =  

) ; ,z ; ,z .,.( k
1ggg Ozhgzgei gh =∪≠∀Φ=∩∀Φ≠ =  such 

that patterns which belong to the same cluster are as 
similar to each other as possible, while patterns which 
belong to different clusters are as dissimilar as possible. 
The sum of squared Euclidean distance [11] is the most 
popular objective function for continuous features which 
should be minimized: 

∑∑
= =

=
n

i

k

g
igig dwZWJ

1 1

2),(                    (12) 

where igd  denotes the Euclidean distance between pattern 
i  and center of cluster g . In this study we will also use 
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this as a distance metric. It has been shown that when the 
number of clusters exceeds three, the clustering problem is 
NP-hard [12].            

4. Application of Simulated Annealing 

4.1 Overview of simulated annealing 

The procedure of SA utilizes methods originating from 
statistical mechanics to find global minima of a given 
bounded objective function with large degrees of freedom 
[13]. 

 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 

Fig. 1: Flow chart of the SA algorithm  

The annealing process can start from any initial state in the 
domain of interest. According to the selected objective 
function, the energy of the current state, 0E , is calculated. 
Then a constraint-based new state is generated from the 
current one, with energy of 1E . Let E∆  be the energy 
change of state, 01 EEE −=∆ . The next state is decided 
according to the Metropolis criterion [14]. If the new state 
is better than the current one ( 0≤∆E ), it is accepted 
unconditionally and becomes the next current state. 
Otherwise ( 0>∆E ), the new state is not rejected outright 
but accepted with a certain probability. For instance, if 

)/exp( TE∆−  is greater than a random number uniformly 
distributed in )1,0( , the new state is accepted, where T  is 
the control factor ‘temperature’. This acceptance of a 

worse state causes the SA algorithm to escape from local 
minima. At the beginning the temperature is high to avoid 
local optima, and thus the probability of acceptance of a 
worse state remains high. At each T , a series of random 
new states are generated for selection. Then, an annealing 
scheme is applied by decreasing T  according to some 
predefined schedule, which lowers the probability of 
acceptance of a worse state. After some point, a new state 
is no longer accepted unless it is better than the current 
one. Fig. 1 outlines the flow chart of the SA algorithm. 

4.2 Proposed model using simulated annealing 

In this work, a novel model is presented for optimum GPS 
satellite selection. The SA algorithm is employed in the 
model to adopt the best answer. The clustering is carried 
out in the following steps: 

 
Step 1: Set initial parameter values. Let iT  and fT  be the 
initial and final temperature respectively, µ  the cooling 
rate, N  the desired Metropolis iteration number, count  
the counting number of Metropolis iteration and i  the 
counting number of a pattern in the pattern set. The initial 
values of these parameters are as follows: 

0i0,count4n,N0.9,0.7,9910fT ,10iT ===≈=−== µ

 
Step 2: Randomly assign an initial class label to all of n  
patterns in k  classes and then calculate the objective 
function J . Let both the optimal objective function value 

bJ  and the current objective function value cJ  be J , the 
corresponding cluster membership matrix of all patterns be 

bW . bT  is the temperature corresponding to the optimal 
objective function bJ . cW  and cT  are the cluster 
membership matrix and temperature corresponding to the 
current objective function cJ , respectively. Let 

.,, bcibic WWTTTT ===  
 

Step 3: While the counting number of Metropolis 
sampling step Ncount < , go to step 4, otherwise, go to 
step 7. 

 
Step 4: Let falseflag =  and let p  be the probability 
threshold and if ,2Ncount ≤  ,80.0=p  else, .95.0=p  
A trial assignment matrix tW  can be obtained from the 
current assignment cW  by the following method. 
If ,ni > then let ,nii −= else let 1+= ii take pattern 
i from the pattern set, initial class assignment )( igW  of 

this pattern is expressed by f  (where f  belongs to 

arbitrary class of k  classes), i.e. igwf = . Then draw a 

No 

No 
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random number u  ( ,randu =  where rand  is a random 
number of uniform distribution in the interval ]1.0[ ). If 

,pu >  generate a random number r  in the range ],,1[ k  
here ,fr ≠  put pattern i  from class f  to class ,r  let 

,rwig =  let .trueflag =  Otherwise take another pattern, 

repeat the above process until .trueflag =   
 
Step 5: Let corresponding trial assignment after above 
perturbation be .tW  Calculate the objective function value 

tJ  of the assignment. If ,ct JJ ≤  let ,tc WW =  .tc JJ =  If 
,bt JJ <  then, .0,, === countWWJJ tbtb   

 
Step 6: Produce a random number y . If 

),)(exp( cct TJJy −−<  then ,tc WW =  tJcJ =  . 

Otherwise ,1+= countcount  go to step 3.  
 

Step 7: Let ,cc TT µ=  ,0=count  ,bc JJ =  .bc WW =  If 

fc TT <  or ,10 10−<bc TT  then stop; otherwise, back to 
step 3. 

5. Results and Discussion 

To evaluate the proposed method, computer simulation is 
performed. The implementation is done in JAVA. The 
performance of the proposed algorithm depends on its 
parameters. A preliminary search was performed to obtain 
the best parameter combination. µ  is the cooling rate 
which plays a very important role on the performance of 
SA algorithm. Since SA has stochastic nature, it is 
possible to have a different result in each implementation 
of the algorithm. Therefore the algorithm is executed 10 
times for each different value of µ  in order to find its 
optimum value and the average result is shown in Fig. 2. 
In this work, 937 satellite subsets are used as input to be 
clustered. The minimum objective function, which means 
minimum clustering error, is 11.9628 which obtained in 
cooling rate 0.7. 
To measure the quality of anything an index is required. 
As shown in Table 2, we use purity and entropy as 
external measures of cluster validity [15]. For each cluster 
the class distribution of each object is calculated first, i.e. 
for cluster j  we compute ,ijp  the probability that a 
member of cluster j  belongs to class i  as follows: 

,jijij mmp =  where jm  is the number of values in 

cluster j  and ijm  is the number of values of class i  in 
cluster .j  

 

 
Fig. 2:  Objective function according to the cooling rate  

Then using this class distribution, the entropy of each 
cluster j  is calculated using the standard formula 

,
1

2log ij

L

i
ijj ppe ∑

=

−=  where the L  is the number of 

classes. The total entropy for a set of clusters is calculated 
as the weighted sum of the entropies of each cluster, i.e., 

,
1

∑
=

=
K

i
j

j e
m

m
e  where jm  is the size of cluster ,j  K  is 

the number of clusters, and m  is the total number of data 
points. 
Using the terminology derived for entropy, the purity of 
cluster ,j  is given by ijj ppurity max=  and the overall 

purity of a clustering by .
1

j

K

i

j purity
m
m

purity ∑
=

=  The last 

two columns in Table 2 show entropy and purity, 
respectively. 
Bad clusterings have purity values close to 0, a perfect 
clustering has purity of 1. We observe that cluster 2, which 
contains mainly good GDOP, is a much better (or purer) 
cluster than the other four. The overall purity is also 
0.9015 which is an excellent result. Entropy measures the 
purity of the clusters with respect to the given class labels. 
Thus, if every cluster consists of objects with only a single 
class label, the entropy is 0. Smaller entropy values 
indicate better clustering solutions. The entropy of cluster 
2 is zero and the overall entropy is 0.3993. 
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Table 2: SA clustering results for GPS GDOP 
Cluster Excellent Good Moderate Fair Poor Entropy Purity 

1 206 2 0 0 0 0.0782 0.9903 
2 0 134 0 0 0 0 1 
3 0 12 120 0 0 0.4395 0.9090 
4 0 0 34 122 0 0.7563 0.7820 
5 0 0 0 44 263 0.5929 0.8566 

Total 206 136 154 166 263 0.3993 0.9015 
 

 
6. Conclusion 

This paper proposes a novel method for optimum GPS 
satellite selection. A SA clustering algorithm is employed 
to minimize the objective function in order to obtain the 
best subset whose geometry is most similar to optimal 
subset among all the visible satellites. The disadvantage of 
NN-based algorithms is that they require training in 
advance. So the performance of such algorithms is affected 
by the location that training data are collected and the 
position of receivers. But this is not the case for the 
proposed method because the there is no training step. SA 
clustering also reduces the computational burden because 
it does not need to use matrix inversion for classifying 
GPS satellite subsets. 
Two indices are used for evaluating the method, purity and 
entropy. The greater the value of purity indicates good 
clustering. The entropy is negative measure, the lower the 
entropy the better clustering it is. The experimental results 
show that the SA clustering for GPS subset selection has 
high value of purity and low value of entropy. This 
indicates good clustering.  
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