
 

Point to point processing of digital images using parallel 
computing 

Eric Olmedo, Jorge de la Calleja, Antonio Benitez, and Ma. Auxilio Medina 
 

Laboratorio de Percepción por Computadora 
Universidad Politécnica de Puebla 

Puebla, 72640, México 
 

 
Abstract 

This paper presents an approach the point to point processing of 
digital images using parallel computing, particularly for 
grayscale, brightening, darkening, thresholding and contrast 
change. The point to point technique applies a transformation to 
each pixel on image concurrently rather than sequentially. This 
approach used CUDA as parallel programming tool on a GPU in 
order to take advantage of all available cores. Preliminary results 
show that CUDA obtains better results in most of the used filters. 
Except in the negative filter with lower resolutions images 
OpenCV obtained better ones, but using images in high 
resolutions CUDA performance is better. 
Keywords: Digital image processing, parallel computing, 
CUDA. 

1. Introduction 

Digital image processing has become an applied research 
area that goes from professional photography to several 
different fields such as astronomy, meteorology, computer 
vision, medical imaging, among others. The aim of digital 
image processing is to improve the pictorial information in 
order to perform subsequently other tasks such as image-
based classification, feature extraction or pattern 
recognition. Image processing is usually an expensive and 
time-consuming task, for example in point to point 
processing, a grayscale image of 1024×1024 pixels, will 
require a CPU make to more than one million operations, 
and if it is a color image the number of  operations must be 
multiplied by the number of channels.  
 
In recent years, video cards or graphics processing units 
(GPU) have become tools for processing in parallel large 
amounts of information (in order of millions of data). 
NVIDIA developed the CUDA architecture that groups 
cores of GPU in a vector which can be programmed to 
reduce processing time over large amounts of data [14]. 
 
The use of a GPU to parallelize tasks started several years 
ago, for example, Fung and Mann [1] in 2004 proposed a 
new architecture using multiple GPUs for image 
processing and computer vision; they obtained significant 
speed up over a CPU implementation. In 2006 Farrugia et 

al [2] developed the GPUCV library to speed up the 
images time processing using GPUs; they observed that 
processing time with GPUCV varies from 18 to 1.2 times 
faster than native OpenCV function. With the emergence 
of CUDA, research was only focused on the design of 
algorithms and the task of how to operate a GPU was 
“forgotten” for the processing task. In 2007 Sham et al [16] 
presented an efficient method to compute mutual 
information (MI) between images. They improve the 
efficiency of MI calculations by a factor of 25 compared 
with a standard CPU-based implementation. Fung and 
Mann [3] in 2008 used CUDA to assist in “converting 
pictures into numbers” (i.e. computer vision). They 
obtained a speed up from 9.8 until 21 times than CPU 
implementation. In 2008 Zhiyi et al [4] improved 
execution times for some filters as histogram equalization, 
edge detection, DCT encode and decode algorithms; they 
obtained times from 8 to 200 faster than CPU. Tarabalka et 
al [17] in 2009 used GPUs for real-time processing of 
large data volumes recorded by a hyperspectral image; 
they reported that their GPU implementation run 
significantly faster, about 10 to 100 times. 
 
This paper presents an approach, the point to point processing 
of digital images using parallel computing order to reduce 
execution times. This approach is tested over images of 
several resolutions, using grayscale, brightening, 
darkening, thresholding and contrast of images. The results 
show that the filters implemented in CUDA are faster than 
OpenCV functions and C implementations. 
 
The remainder of the paper is organized as follows. In 
Sections 2, 3 and 4 we include a brief background on 
digital images processing, parallel computing, CUDA and 
OpenCV. Section 5 describes the proposed approach, 
while experimental results are showed in Section 6. Finally 
conclusions and future work are presented in Section 7. 

2. Digital image processing 

According to Jain [5], digital image processing consists of 
the application of functions that transform a two-
dimensional image using a computer. Others authors as 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 1

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

Crane [6] define this task as a science that manipulates 
digital images that covers an extend set of techniques to 
enhance or distort them. 
 
A digital image is a set of bits that represents something; 
this set is obtained through a vision sensor, then this is 
transformed into digital format. In formal terms, a digital 
image is a two-dimensional function f(x,y) where x and y 
are cartesian coordinates  and  f  is the intensity of some 
point in the plane. The x, y and f values are finite and 
discrete amounts; any point in the image is often called a 
picture element or pixel [7]. 
 
A color space is a form to represent colors and 
relationships between them. Human vision is tri-chromatic, 
this means that the vision has three receptors that react to 
red (R), green (G) and blue (B) colors. The RGB space 
color works in the same way; it has three channels to 
represent each color [8]. In addition, a color digital image 
is a matrix of pixels where each element has three values 
(one for red, one for green and one for blue) in the range 
of [0, 255]. The combination of these three channels 
defines a color. It is possible to obtain until 16.8 million of 
colors (255 × 255 × 255). 

There are several transformations or processing types that 
can be applied to digital images such as point to point, 
oriented to a region, geometrics and arithmetic, among 
others. In this paper the point to point operations are used 
because they are the simplest filter to implement in image 
processing. 

2.1 Point to point processing 

In the point to point processing type a transformation 
changes only one pixel in one channel. Let f(x,y) be a pixel 
value in x and y coordinates of an image, g(x,y) a trans-
formation of f(x,y) and T a function over f(x,y). Then T 
maps f(x,y) into g(x,y) and the transformation only affects 
to the pixel in (x,y) coordinates as showed in the Eq.(1). 

𝑔(𝑥,𝑦) = 𝑇[𝑓(𝑥,𝑦)]                               (1) 

Examples of this kind of image processing are negative, 
grayscale, brightening, darkening and thresholding filters. 

2.2 Grayscale filter 

Grayscale is a function that obtains as a result light 
intensity instead of colors. Sometimes this filter is called 
incorrectly black and white [9]. A way to obtain a 
grayscale image is averaging the three channels as showed 
in Eq.(2). 

𝐺𝑟𝑎𝑦𝐼(𝑥,𝑦) =  𝑅𝑒𝑑(𝑥,𝑦) + 𝐺𝑟𝑒𝑒𝑛(𝑥,𝑦) + 𝐵𝑙𝑢𝑒(𝑥,𝑦)
3

         (2) 
 
where GrayI  is the image in grayscale. 

Pratt [10] suggests to use Eq. (3) due to eye sensibility, i.e., 
in the human vision there is an order in the degree of 
sensitivity to the colors: first the green, second the red and 
third the blue. Therefore, using Eq. (3), green color has 
more bright than the other ones; this is known as 
luminescence [10].  

Gray(x, y)=0.3×Red(x, y)+0.59×Green(x, y)+0.11×Blue(x, y) (3) 

2.3 Negative filter 
 
The negative transformation inverts the intensity levels of 
an image. This is useful in grayscale images when is 
needed to find some significant characteristics and the 
predominant color is white (or black) like x-ray plate [9].  
A color image has an intensity range of [0, 255], then Eq. 
(4) can be used to obtain a negative color. 

𝑁𝑒𝑔(𝑥,𝑦)  =  255 − 𝑓(𝑥,𝑦)                        (4) 

2.4 Brightening  filter 

Brightening filter maps the pixel values to higher ones 
through a function applied to f(x,y) or constants 
values [19]  as showed in Eq. (5). 

𝑔(𝑥,𝑦) =  𝑎𝑓(𝑥,𝑦) + 𝑏                           (5) 

where a>1 and b>0 are constants. 
 
One way to do this transformation is using the sine 
function in the range of [0, 𝜋

2
] as showed in Eq. (6). 

𝐵𝑟𝑖𝑔ℎ𝑡(𝑥,𝑦) =  𝜇 sin (𝑘 𝐼(𝑥,𝑦))              (6) 

where k is the angular frequency, μ is the maximum 
amplitude [18] and I(x,y) is the original image.  
 
Eq. (6) has to be normalized due to the range of values of 
an image are between [0, 255], then k changes for 𝜋

2 𝛬
 and μ 

for Λ. After of normalization process, the result is the Eq. 
(7). 

𝐵𝑟𝑖𝑔ℎ𝑡(𝑥,𝑦)  =  Λ sin 𝜋 𝐼(𝑥,𝑦)
2Λ

         (7) 

where Λ ∈ [0,255]. 

2.5 Darkening filter 

There are cases where images appear very bright due to 
light exposure; thus they can be processed to be darker. 
The cosine function can be used for this purpose, due to 
this function works as the inverse of the sine function in 
the range of [0, π

2
], it decreases the intensities values, and 

as a result, the color image is darker than the original one 
[7]. Eq. (8) shows the general form to apply a darkening 
filter to an image. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 2

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

𝐷𝑎𝑟𝑘(𝑥,𝑦) =  𝜇 (1 − cos�𝑘 𝐼(𝑥,𝑦)�)      (8) 

The normalization is the same that the used by the sine 
function so that the Eq. (9) is applied to a digital image. 

𝐷𝑎𝑟𝑘(𝑥,𝑦) =  Λ (1 − cos �𝜋 𝐼(𝑥,𝑦)
2Λ

�)      (9) 

where Λ ∈ [0,255]. 
 
Figure 1 shows the behavior of the sine function (a) and 
the cosine function (b). 
 

 
Fig. 1 Graphic for (a) bright image and (b) dark image. 

2.6 Contrast filters 

Sometimes the application of brightening or darkening 
does not highlight details of an image. Thus, we can 
handle two options:  
 

1. To increase the intensity of the lighter tones and 
decrease the darker ones. 

2. To increase the intensity of the darker and 
decrease the lighter tones. 

 
This type of processing is called contrast. The contrast is 
achieved by means of a threshold from which the higher 
tones will increase its value and the lower will decrease 
and vice versa. There is a case called the High Contrast 
filter, where the values above a threshold will be the 
maximum value and those which are below will be the 
minimum, obtaining as result an image in two colors: 
white and black [7]. This type of contrast is also known as 
image thresholding. This transformation can be done 
applying Eq. (10). Figure 2 shows how the values change 
by the application of thresholding function [19]. 
 

𝐵𝑖𝑛(𝑥,𝑦) = �0         𝐼(𝑥,𝑦) ≤ 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑
255    𝐼(𝑥,𝑦) > 𝑡ℎ𝑟𝑒𝑠ℎ𝑜𝑙𝑑            (10) 

 
Fig. 2 High contrast function with threshold a. 

 

There are several options in cases where the contrast will 
improve the tone without going as far as the thresholding 
[7]. In this work three techniques are used: 1) the inverse 
sinusoidal function (showed in Eq. 11), 2) the hyperbolic 
tangent function (showed in Eq. 12) for increasing the 
contrast and 3) sine function for decrease. 

𝐼𝑛𝑣𝑆𝑖𝑛(𝑥,𝑦) = 𝐼(𝑥,𝑦) − 𝜆 sin �2𝜋 𝐼(𝑥,𝑦)
Λ

�             (11) 

𝐻𝑦𝑇𝑎𝑛(𝑥,𝑦) = 𝛬
2
�1 − 𝑡𝑎𝑛ℎ �𝛼 �𝐼(𝑥,𝑦) − 𝛼𝛬

2
���        (12) 

where α > 0. 
 
The functions described above increase the contrast as 
shows in Figure 3. 
 

 
Fig. 3 (a) inverse sinusoidal and (b) hyperbolic tangent contrast. 

 
Figure 3 shows a softer change than thresholding, 
midrange tones increases higher than the last values, the 
same way is for the decremented tones [7]. There is a sine 
function for the inverse result almost identical to the 
inverse sinusoidal, an addition operation is used instead of 
subtraction, in Eq. (13) a plus operator is used and in Eq. 
(11) a minus operator. 

𝑆𝑖𝑛(𝑥,𝑦) = 𝐼(𝑥,𝑦) + 𝜆 sin �2𝜋 𝐼(𝑥,𝑦)
Λ

�         (13) 

where 𝜆 ∈ [0, 40).  
 
Although the functions are similar, the result is not the 
same as showed in Figure 4. The curve is inverted and the 
darker values turn to brighter ones and vice versa.  
 

  
Fig. 4 Sine function to decrease contrast. 

 
Figure 5 shows examples of applying the processing 
techniques described in this section. In (a) the original 
image, in (b) the grayscale image, in (c) the negative 
image, in (d) the thresholding, in (e) brightening of an 
image, in (f) darkening of an image, in (g) the contrast 
increase and in (h) the contrast decrease of an image. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 3

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 
Fig. 5 Examples of point to point transformations. 

3. Parallel computing 

Parallel computing is an alternative to solve problems that 
require large times of processing or handling large 
amounts of information in "acceptable time" (according to 
each criterion). In parallel processing, a program is able to 
create multiple tasks that work together to solve a problem 
[11]. The main idea is to divide the problem into simple 
tasks and solve them concurrently, in such a way the total 
time can be divided between the total tasks (in the best 
case).   
 
Parallel processing cannot be applied to all problems, in 
other words, not all the problems can be coded in a parallel 
form. A parallel program must have some features for a 
correct and efficient operation; otherwise, it is possible 
that runtime or operation does not have the expected 
performance. These features include the following [12]: 
 

• Granularity.- It is defined as the number of basic 
units and it is classified as:  
o Coarse-grained.- Few tasks of more intense 

computing.  
o Fine grain.- A large number of small parts 

and less intense computing. 
• Type of parallel processing: 

o Explicit.- The algorithm includes 
instructions to specify which processes are 
built and executed in parallel way.  

o Implicit.- The compiler has the task of 
inserting the necessary instructions to run 
the program on a parallel computer. 

• Synchronization.- This prevents the overlap of 
two or more processes.  

• Latency.- This is the time transition of 
information from request to receipt.  

• Scalability.- It is defined as the ability of an 
algorithm to maintain its efficiency by increasing 
the number of processors and the size of the 
problem in the same proportion [13].  

• Acceleration and efficiency are metrics to assess 
the quality of a parallel implementation. 

3.1 CUDA 

Since a few years ago, two approaches was established 
about microprocessors design: the multicores processors 
addressed to keep the executions speed of sequential 
programs when there is movement between processor 
cores and many-cores processors focused to perform 
parallel applications [14].  
  
In many-cores processors there are graphics cards or GPUs 
(Graphics Process Unit). From 2001 to 2005 the difference 
between CPU and GPU was small, since 2006 the 
performance of GPU increases significantly. In 2009 the 
peak floating-point calculation throughput was about 10 to 
1, this means GPU reached 1 teraflop (1000 gigaflops1) 
and CPU only 100 gigaflops [14]. The difference in the 
performance is due to the philosophy of design from both 
processors approaches. 
 
The idea of using CPU and GPUs for intense numeric 
computing motivates the design of CUDA (Compute 
Unified Device Architecture), a programming model for 
execution of an application in CPU and GPU [14]. 
 
Figure 6 shows the architecture of CUDA-capable GPU. It 
is organized in modules called Streaming Multi-processors 
(SMs), two SMs form a block each one with an 
independent parallel cache and a Global Memory. The 
access to the Global Memory space is sequential unlike 
random access of a CPU. The SMs are composed by 
Streaming Processors (SPs) that share a logic control and a 
space instruction cache, the total of SPs depend on GPUs 
model. The SPs can execute multiple threads per 
application (even thousands of threads). Meanwhile CPUs 
only support 2 or 4 threads per core according to a model 
[14]. For example, the G80 chip has 128 SPs organized in 
16 SMs; each SM supports up to 768 threads, in total more 
than 12,000 threads for this chip. 
 

Parallel programming in CUDA is explicit and fine 
grain, i.e., it is necessary to design how the task will be 
divided to be executed in parallel and how the 
communication between tasks can be done. These tasks 
should be as simple as possible, i.e. minimum operations 
that cannot be divided in simpler tasks. In a CUDA 
program, a kernel function specifies the code to be 
executed by all threads during a parallel phase. These 
functions are identified as host, device and global [14]. 
The first one refers to the section of a program that is 

                                                           
1 One gigaflop means one thousand millions of floating-
point operations 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 4

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

executed only in the CPU, while the second one is 
executed only in the GPU. "Global" means that the CPU 
and the GPU can be able to communicate between them. 
 

 
Fig. 6 CUDA diagram architecture. 

4. OpenCV 

OpenCV (Open Source Computer Vision) is an open 
source library originally developed by Intel, which 
provides functions for creating real time applications of 
computer vision and machine learning. Figure 7 shows the 
three modules of OpenCV, one for image processing and 
computer vision, another one for automatic learning and 
the last one that provides functions for handling image and 
video and graphic user interface for presentation. This 
library is written in C and C++ and can be run in 
environments such as Linux, Windows and Mac OS X. It 
is possible to obtain optimized codes using the “Integrated 
Performance Primitives” (IPP) library that has low-level 
optimized routines used in several algorithms [15]. 
 

 
Fig. 7 Components of the OpenCV library [15]. 

 
OpenCV consists of over 500 functions of vision. There 
are functions for digital images processing with filters and 
masks that can be applied to an image to improve the 
quality or to find information that is not easily available at 
a glance. These functions are used in several areas such as 
industry inspection, medical imaging, security, user 
interfaces, camera calibration, stereo vision and robotics. 

5. Digital image processing using parallel 
computing 

Our approach is divided into two sections: the first one 
obtains images in grayscale and binary; and the second one 
transforms the images using the brightening, the darkening 
and contrast filters. 
 
Algorithm 1 shows the set of steps used for image 
transformation performed in a GPU. The step 4 can be 
changed for every proposed filter.  
 
The CPU will create 32×32 blocks, a total of 1024 blocks. 
Each block executes a number of threads defined as 
follows: width×height of the image divided by 1024. Thus, 
for example, for images of 1024×1024 pixels, each block 
will have 1024 threads. This is done because the card 
model does not support more than 1024 threads per block. 
 

Algorithm 1. Image transformation in CUDA. 
Input: I original image 
Output: I’’’  resulting image of the transformation 
 
1. Load an image I 
2. This image I is transformed to a vector I’ of integer 

values with the three consecutive channels in each 
pixel, it means that each pixel in the vector is ordered 
as follows: 

• r1, g1, b1, r2, g2, b2, . . ., rn, gn, bn 
where r is the red one, g is the green one and b is the blue 
one and the subindexes are used to indicate the number 
of pixel. 

3. Then, I’ is stored in the GPU memory 
4. After that, the new transformation is applied and the 

result is stored in a new vector I’’. One or three 
channels can be used. 

5. Then, the vector I’’ is transferred to RAM memory 
6. Finally, the vector I’’ is transformed to an image I’’’ to 

verify the correct performance of the filters 
 
5.1 Grayscale and thresholding 
 
Eq. (2) is used for grayscale transformation, the average of 
three channels become in an image with just one channel. 
Figure 8 shows the general steps for a gray scale 
transformation for a color image. This is decomposed in 
three channels (red, green and blue), each GPU core 
processes a pixel. The three colors are added and divided 
by 3, and then they are stored in a new array in the same 
position using only one channel. 
 
Algorithm 2 shows the algorithm to obtain a grayscale 
image in a CPU. In line 1, the algorithm is performed 
through the entire image. Eq. (2) is applied to each pixel 
and the result is stored in a vector called GI (Grayscale 
Image) in the same pixel position. In all algorithms the 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 5

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

index i is one pixel in position i and the indexes i×3, i×3+1 
and i×3+2 refer to the red, green and blue channels 
respectively. 
 

 
Fig. 8. General diagram for the transformation in grayscale. Each core in 
GPU processes the average of the three channels of the pixels and 
stored it in a new image. 
 

Algorithm 2.  Grayscale transformation in a CPU. 
Input: I image vector 
Output: GI grayscale image   
 
1. for  i = 0 to  (width(I) × height(I)) do  
2.    GI[i] = (I[i×3] + I[i×3+1] + I[i×3+2] ) /3  
3.  endfor 

 
Algorithm 3 shows the algorithm for a GPU using CUDA. 
In this Algorithm can be noticed the difference between 
the CPU and GPU version. First, there is not a loop strictly, 
in this case an identifier is assigned to a variable i; this is 
the combination of thread number in matrix threads and 
the block number as showed in Figure 9.  
 

Algorithm 3. Grayscale transformation using CUDA 
in a GPU. 
Input: I image vector 
Output: GSC grayscale image  
 
1. For each GPU task i = blockIdx.x × (blockDim.x × 

blockDim.y) + blockDim.x × threadIdx.y + threadIdx.x; 
2. GSC[i] = (I[i×3] + I[i×3+1] + I [i×3+2] ) /3 
3. endfor 

 
 
Algorithm 4 shows the algorithm to obtain a thresholding 
image using CUDA. First, given an input threshold value, 
which will be the reference for applying the Eq. (10), 
every pixel value above this threshold will be set up to 255 
and lower values will be set up to 0. Line 2 can be 
replaced by the comparison of the expression (I[i×3] + 
I[i×3+1] + I[i×3+2]) /3 to avoid the compute of the gray 
scale before the thresholding. 

 
Fig. 9. Blocks and threads in CUDA. It can be seen as a matrix formed of 
a small matrix, then the location of a single thread in the complete matrix 
is a combination of a block number and a thread number in the block. 
 
 

Algorithm 4. Thresholding image transformation 
using CUDA in a GPU. 
Input: GSC the grayscale image and a threshold  
Output: IT the binary image 
 
1. For each GPU task i = blockIdx.x × (blockDim.x × 

blockDim.y)+ blockDim.x × threadIdx.y + threadIdx.x; 
2. if  GSC[i] < threshold  
3.  IT [i] = 0; 
4. else 
5.  IT[i] = 255; 
6. endfor 

 
5.2 Color image processing 
 
Two cases are handled for color image processing: filters 
using OpenCV functions and equivalent functions 
developed in C. In these cases the transformation function 
is applied to the three channels and is stored in the final 
vector. 
 
First for the brightening filter, using Eq. (7), the lambda 
value is established as input parameter. Algorithm 5 shows 
a section of the algorithm section where the function is 
applied, the k value is defined as π/(2×lamda) due to 
normalization of the sine function. Lines 3, 4 and 5 of 
Algorithm 5 shows that the Eq. (7) is applied to each 
channel of the image and all channels are stored in a new 
image BI. 
 
A similar process is carried on darkening filter, where the 
cosine function corresponding to Eq. (8). Also the value of 
lambda is established as parameter and k value is defined 
as a part of the normalization function. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 6

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

Algorithm 5. Brightening image transformation using 
CUDA in a GPU. 
Input: I original image vector and lamda   
Output: BI  the brightening image 
 
1. k = π/(2×lamda) 
2. For each GPU task i = blockIdx.x × (blockDim.x × 

blockDim.y)+ blockDim.x × threadIdx.y + threadIdx.x 
3.       BI[i×3] = lambda (sin(k × I[i×3])) 
4.       BI[i×3+1] = lamda(sin(k × I[i×3+1])) 
5.       BI[i×3+2] = lamda(sin(k × I[i×3+2])) 
6. endfor 

 
 
Algorithm 6 shows the algorithm using the Eq. (8) in 
parallel, as the case of the sine function, all channels are 
used for this filter and these are stored in the new vector 
DI.   
 

Algorithm 6. Darkening image transformation using 
CUDA in a GPU. 
Input: I original image vector and lamda   
Output: DI  the darkening image 
 
1. k = π/(2×lamda) 
2. For each GPU task i = blockIdx.x × (blockDim.x × 

blockDim.y) + blockDim.x × threadIdx.y + threadIdx.x 
3.      DI[i×3] = lambda (1-cos(k × I[i×3])) 
4.      DI[i×3+1] = lamda(1-cos (k × I[i×3+1])) 
5.      DI[i×3+2] = lamda(1-cos (k × I[i×3+2]))  
6. endfor 

 
Algorithm 7 shows that the function filter were used on 
maximum range of pixel values, so that Λ from Eq.(10) 
was set up to 255, then k was equal to 2π

255
. Another 

contrast function is the hyperbolic tangent corresponding 
to Eq. (12). This function and inverse sinusoidal function 
increases the image contrast. The algorithm for hyperbolic 
tangent is showed in Algorithm 8 also set up Λ to 255 and 
k to 2

255
. 

 
Algorithm 7. Inverse sinusoidal contrast image 
transformation using CUDA in a GPU. 
Input: I original image vector and lamda   
Output: ISCI  the inverse sinusoidal contrast image 
 
1. k = 2π/255 
2. For each GPU task i = blockIdx.x × (blockDim.x × 

blockDim.y) + blockDim.x × threadIdx.y + threadIdx.x 
3. ISCI [i×3] =  I[i×3] – lambda(sin(k× I[i×3])) 
4. ISCI[i×3+1]= I[i×3+1]–lambda(sin(k× I[i×3+1])) 
5. ISCI [i×3+2]= I[i×3+2]–lambda(sin(k× I[i×3+2]))  
6. endfor 

 
 

Algorithm 8. Hyperbolic tangent contrast image 
transformation using CUDA in a GPU. 
Input: I original image vector  
Output: THCI hyperbolic tangent contrast 
 
1. k = 255/2 
2. For each GPU task i = blockIdx.x × (blockDim.x × 

blockDim.y) + blockDim.x × threadIdx.y + threadIdx.x; 
3.       THCI[i×3] = k(1+tanh( I[i×3] - k)) 
4.       THCI[i×3+1] = k(1+tanh( I[i×3+1] - k)) 
5.       THCI[i×3+2] = k(1+tanh( I[i×3+2] - k))  
6. endfor 

 
The last filter in color is the sine contrast function. This 
function decreases the contrast in an image. Algorithm 9 
shows the algorithm for the sine function to adjust the 
contrast. In this filter an addition operation was performed 
and the other operation is a subtraction. Again a lambda 
value is designed as parameter and Λ was set up to 255.  
 

Algorithm 9. Sine contrast image transformation using 
CUDA in a GPU. 
Input: I original image vector and lamda   
Output: SCI the sine contrast image 
 
1. k = 2π/255 
2. For each GPU task i = blockIdx.x × (blockDim.x × 

blockDim.y) + blockDim.x × threadIdx.y + threadIdx.x; 
3. SCI [i×3] =  I[i×3i] +  lambda( sin(k× I[i×3])) 
4. SCI[i×3+1] = I[i×3+1] + lambda (sin (k× I[i×3+1])) 
5. SCI[i×3+2] = I[i×3+2] + lambda (sin (k× I[i×3+2])) 
6. endfor  

6. Experimental results 

Eight modules were implemented in CUDA which apply 
the transformation with the restriction that the image to be 
processed must be stored in GPU memory previously to 
process it. It is important to notice that we are only 
considering the execution time, not the time used to 
transfer data between RAM memory and the GPU memory. 
Our approach is tested using images of different sizes, this 
in order to verify if the execution times are kept in 
proportion to apply the transformation to an image of 
larger sizes. The dimensions of the images used for this 
experimentation are of 256×256, 512×512, 1024×1024, 
1800×1400 and 4000×3000 pixels. 
 
The computer used for experiments was a desktop PC with 
AMD Phenom II Quad-core to 3.2 GHz, 12 GB of RAM, 
operating system 64-bit Linux Fedora 14 and OpenCV 
version 2.3. For CUDA processing a GeForce 430 GT 
video card with 96 cores and 1 GB of RAM DDR3 is used.  
 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 7

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

The transformation is applied on 10 different images for 
each resolution; first with an OpenCV version and later 
using the CUDA kernels. There are 5 modules that are not 
developed with OpenCV. The reason is that darkening, 
brightening and contrast filters have not equivalent in this 
library, and therefore they are developed in C language. 
 
The results are presented in Tables 1-8 for the grayscale, 
brightening, darkening, image thresholding and contrast 
with the inverse sinusoidal, hyperbolic tangent and sine 
functions, respectively. Tables 1, 2 and 5 show execution 
times for CUDA modules and OpenCV functions. Tables 
3, 4, 6, 7 and 8 show execution times for CUDA modules 
and C language module for CPU. 
 
We can notice in Tables 1 and 5 with the grayscale 
transformation and image threshold that CUDA obtains 
better results than OpenCV for all cases. However, in 
Table 2 the negative image for small resolutions (256×256 
and 512×512) CUDA module is slower than OpenCV 
function and when the resolution is increased CUDA 
became better than OpenCV. 
 
Using a module programed in C language for Tables 3, 4, 
6, 7 and 8 in all cases CUDA modules obtain better times 
in comparison with the version programed in C language. 
In these cases the difference in times is larger than 
OpenCV, for example 2040ms of CUDA versus 34ms of C 
language module for inverse sinusoidal contrast 
transformation in the higher resolution.  
 
 

Table 1. Grayscale transformation execution times. 
Resolution OpenCV CUDA 
256 × 256 0.178176 0.1022784 
512 × 512 0.6816352 0.3869152 

1024 × 1024 2.8476448 1.5157472 
1800 × 1400 6.7490382 3.64163556 
4000 × 3000 31.591331 17.2692191 

 
 

Table 2. Negative transformation execution times. 
Resolution OpenCV CUDA 
256 × 256 0.1439168 0.1556832 
512 × 512 0.5186912 0.5487712 

1024 × 1024 2.3863488 2.10624 
1800 × 1400 5.5122464 5.0195488 
4000 × 3000 25.7547744 23.7847103 

 
 

Table 3. Brightening image transformation execution times. 
Resolution CPU in C CUDA 
256 × 256 8.847117 0.19903 
512 × 512 36.12278 0.761405 

1024 × 1024 142.6773 2.995606 
1800 × 1400 342.4271 7.20223 
4000 × 3000 1610.854 33.97197 

Table 4. Darkening image transformation execution times. 

Resolution CPU in C CUDA 
256 × 256 9.5512192 0.2016992 
512 × 512 38.731661 0.7718848 

1024 × 1024 151.256079 3.0336608 
1800 × 1400 336.17552 7.2744512 
4000 × 3000 1719.52881 34.4515743 

 
 

Table 5. Threshold image transformation execution times. 
Resolution OpenCV CUDA 
256 × 256 0.2222272 0.146016 
512 × 512 0.868816 0.555968 

1024 × 1024 3.478688 2.1979296 
1800 × 1400 8.2935616 5.2435488 
4000 × 3000 42.4278015 24.6556834 

 
 

Table 6. Inverse sinusoidal contrast transformation execution times. 
Resolution CPU in C CUDA 
256 × 256 11.26008 0.203088 
512 × 512 46.3111264 0.776816 

1024 × 1024 184.731943 3.057152 
1800 × 1400 448.714719 7.3071904 
4000 × 3000 2040.16223 34.6397216 

 
 

Table 7. Hyperbolic tangent contrast transformation execution times. 
Resolution CPU in C CUDA 
256 × 256 5.681072 0.1872896 
512 × 512 22.7657601 0.7213312 

1024 × 1024 91.6525903 2.823536 
1800 × 1400 219.788937 6.8108832 
4000 × 3000 1054.94413 32.2680701 

 
 

Table 8. Sine contrast transformation execution times. 
Resolution CPU in C CUDA 
256 × 256 12.5076096 0.2077856 
512 × 512 51.3341637 0.7901344 

1024 × 1024 205.06483 3.1164224 
1800 × 1400 500.958685 7.4421792 
4000 × 3000 2273.02695 35.2699835 

 
 
In Figures 10, 11, and 14 we present a graphic comparison 
for the CUDA and OpenCV version. For module in C the 
graphics are showed in Figure 12, 13, 15, 16 and 17. 
 
In Figure 11 both curves are very close together and do not 
separate in the most points, in resolution 256×256 and 
512×512 the curve of OpenCV is under of CUDA for 
remaining resolutions CUDA curve is slightly above. 
 
In Figures 10 and 14 the behavior is similar in both curves 
and the difference between CUDA and OpenCV is not 
large in comparison with the Figures 12, 13, 15, 16 and 17 
where the gain of CUDA is larger. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 8

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 
Fig. 10. Comparative graphic of CUDA vs. OpenCV for grayscale 
transformation. 

 

 
Fig. 11. Comparative graphic of CUDA vs. OpenCV for negative image. 

 

 
Fig. 12. Comparative graphic of CUDA vs. module in C for brightening 
image. 

 
Fig. 13. Comparative graphic of CUDA vs. module in C for darkening 
image transformation. 

 

 
Fig. 14. Comparative graphic of CUDA vs. OpenCV for threshold image. 

 

 
Fig. 15. Comparative graphic of CUDA vs. module in C for inverse 
sinusoidal contrast function. 
 
 

 
Fig. 16. Comparative graphic of CUDA vs. module in C for hyperbolic 
tangent contrast function. 
 

 
Fig. 17. Comparative graphic of CUDA vs. module in C for sine contrast 
function 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 9

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

7. Conclusions 

We have presented an approach for digital image 
processing using parallel computing. For this purpose, 
eight modules were implemented using CUDA for running 
in a GPU. Due to some filters are not implemented in 
OpenCV, two filters were developed using C without 
optimization; and this was reflected in the large difference 
in execution times. When the comparison was done with 
OpenCV functions, the gain proportion was less than the C 
module. The fact of this large difference allows us to 
conclude two things: 1) CUDA increases the performance 
execution of some tasks that need millions of operations 
and 2) it is possible obtain better times if the code is 
optimized, for this purpose, the gain in parallel may be not 
very significant. However, from the results we can 
conclude that CUDA obtained better results in most cases 
than OpenCV. Future works include testing our approach 
to compute Haar-like features for object classification. 
 
References 
[1] J. Fung and S.Mann, “Using multiple graphics cards as a 
general purpose parallel computer : Applications to computer 
vision,” in Proceedings of the 17th International Conference on 
Pattern Recognition (ICPR2004) 2004, vol. 1, pp. 805-808. 
[2] E. G. Farrugia J.-P., Horain P. and Y. Alusse, “Gpucv: A 
framework for image processing acceleration with graphics 
processors,” In 2006 IEEE International Conference on 
Multimedia and Expo, 2006, pp. 585–588. 
[3] J. Fung and S. Mann, “Using graphics devices in reverse: 
Gpu-based image processing and computer vision," in 2008 IEEE 
International Conference on Multimedia and Expo. IEEE, June 
2008, pp. 9-12. 
[4] Z. Yang, Y. Zhu, and Y. Pu, “Parallel image processing based 
on CUDA,” In Proceedings of the 2008 International Conference 
on Computer Science and Software Engineering - Volume 03 
(CSSE '08) , 2008, Vol. 3, pp. 198-201. 
[5] A. K. Jain, Digital Image Processing. Prentice Hall, 1989. 
[6] R. Crane, A simplified approach to image processing: 
classical and modern techniques. Prentice Hall, 1997. 
[7] R. C. Gonzalez and R. E. Woods, Digital Image Processing, 
2nd edition. Prentice-Hall, Inc, 2002. 
[8] S. Montabone, Beginning Digital Image Processing: Using 
Free Tools for Photographers. CRC Press, 2010. 
[9] A. Bovik, The essential guide to image processing. San 
Diego, California: Academic Press, 2009. 
[10] W. K. Pratt, Fundamentals of Digital Image Processing. 
New York: John Wiley & Sons, 1991. 
[11] P. Pacheco, An Introduction to Parallel Programming. 
Morgan Kaufmann, 2011. 
[12] A. G. López, J. Delgado, and S. Castañeda, “Metodologías 
de paralelización en la supercomputadora cicese2000,” 
Departamento de Cómputo Dirección de Telemática Centro de 
Investigación Científica y de Educación Superior de Ensenada, 
Tech. Rep., February 2000. 
[13] R. T. Rasúa, “Algoritmos paralelos para la solución de 
problemas de optimización discretos aplicados a la 
decodificación de señales,” Ph.D. dissertation, Departamento de 

Sistemas Informáticos y Computación. Universidad Politécnica 
de Valencia, Valencia, España, 2009. 
[14] D. Kirk and W. Hwu, Programming Massively Parallel 
Processors. A Hands-on Approach. Morgan Kaufmann 
Publishers, January 2010. 
[15] G. Bradski and A. Kaehler, Learning OpenCV, ser. Nutshell 
Handbook. USA: O´ Reilly Media, Inc., 2008. 
[16] Shams, Ramtin and Barnes, Nick, “Speeding up Mutual 
Information Computation Using NVIDIA CUDA Hardware,” In 
Proceedings of the 9th Biennial Conference of the Australian 
Pattern Recognition Society on Digital Image Computing 
Techniques and Applications (DICTA '07), 2007, pp. 555-560. 
[17] Yuliya Tarabalka and Trym Vegard Haavardsholm, 
Ingebjørg Kåsen and Torbjørn Skauli,  “Real-time anomaly 
detection in hyperspectral images using multivariate normal 
mixture models and GPU processing”, Journal of Real-Time 
Image Processing, 2009, Vol. 4, No.3, pp. 287-300. 
[18] W. Burger and M. J. Burge, Principles of digital image 
processing: core algorithms. Springer, 2009. 
[19] R. Szeliski, Computer Vision: Algorithms and 
Applications. Springer, 2011. 
 
 
Eric Olmedo is currently a student of the Master of Systems 
Engineering and Intelligent Computing at the Universidad 
Politéctica de Puebla (UPP). He holds a BEng (2009) degree in 
Computer Systems from Benemérita Universidad Autonoma de 
Puebla (BUAP). His current interest areas include machine 
learning and computer vision. 
 
Jorge de la Calleja is an associate professor of computer science 
at the Universidad Politéctica de Puebla (UPP).  He holds MSc 
(2003) and PhD (2008)  degrees in Computer Science from the 
National Institute of Astrophysics, Optics and Electronics (INAOE) 
and a BEng (2001) degree in Computer Systems from Benemérita 
Universidad Autonoma de Puebla (BUAP). His current research 
areas include machine learning and computer vision. Since 
January 2012, Dr. De la Calleja has been awared as national 
researcher from the National Council for Science and Technology 
(CONACyT).  
 
Antonio Benitez Ruiz is an associate professor of computer 
science at the Universidad Politéctica de Puebla (UPP).  He holds 
MSc (1997) and PhD (2005) degrees in Computer Science from 
Universidad de las Américas Puebla (UDLAP) and a BEng (1990) 
degree in Computer Systems from Benemérita Universidad 
Autonoma de Puebla (BUAP). He has participated in projects 
related to the development of robotics and description of virtual 
environments. His current research areas include computer 
perception and virtual reality. Dr. Benitez coordinates the graduate 
education department at the UPPuebla. 
 
María Auxilio Medina Nieto is an associate professor of 
computer science at Universidad Politécnica de Puebla (UPP).  
She holds MSc (2001) and PhD (2008) degrees in Computer 
Science from Universidad de las Américas Puebla (UDLAP) and a 
BEng (1999) degree in Computer Systems from Benemérita 
Universidad Autónoma de Puebla (BUAP). She has participated in 
projects related to the development of software agents and their 
applicationsto digital libraries. Currently, her research topics are 
information retrieval, knowledge representation based on 
ontologies, and information and communications technologies. Dr. 
Medina coordinates ICT’s academic community at the UPPuebla. 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 3, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 10

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.




