

Formal Checking of Multiple Firewalls

Nihel Ben Youssef Ben Souayeh
1
 and Adel Bouhoula

2

1
 higher School of Communication of Tunis (Sup'Com)

University of Carthage, Tunisia

2
 higher School of Communication of Tunis (Sup'Com)

University of Carthage, Tunisia

Abstract
When enterprises deploy multiple firewalls, a packet may be

examined by different sets of firewalls. It has been observed

that the resulting complex firewall network is highly error prone

and causes serious security holes. Hence, automated solutions

are needed in order to check its correctness. In this paper, we

propose a formal and automatic method for checking whether

multiple firewalls react correctly with respect to a security

policy given in a high level declarative language. When errors

are detected, some useful feedback is returned in order to

correct the firewall configurations. Furthermore, we propose a

priority-based approach to ensure that no incoherencies exist

within the security policy. We show that our method is both

correct and complete. Finally, it has been implemented in a

prototype of verifier based on a satisfiability solver modulo

theories. Experiment conducted on relevant case studies

demonstrates the efficiency of our approach.

.

Keywords: network security, distributed firewall configuration,

formal verification, SMT solver.

1. Introduction

Firewalls are the most widely adopted technology for

protecting private networks. Placed, generally, at the

point of entry between public network and private

network zones, a firewall ensures the access control of the

forwarding traffic. However, according to the study

undertaken by Wool [15], most firewalls in Internet are

plagued with policy errors. The main firewall

configuration constraint is that the filtering rules of a

firewall configuration FC file are treated in the order in

which they are read in the configuration file, in a switch-

case fashion. For instance, if two filtering rules associate

different actions to the same flow type, then only rule with

the lower order is really applied. This is in contrast with

the security policy SP, which is a set of rules considered

without order. In this case, the action taken, for the flow

under consideration, can be the one of the non-executed

rule. The following example illustrates how easily firewall

mis-configurations can happen:

Table 1: Firewall Configuration Error

 src_adr dst adr protocol dst_port action

r1

214.0.0.0/8

* tcp * accept

r2 214.65.0.0/16

* tcp 445 deny

The second rule is configured to deny all the outbound

traffic to a known backdoor TCP port for the sasser worm

Which is conform to a specific SP . But even if this rule is

correct by itself, the firewall will accept this flow type

because it matches the rule before. In this case, r1

shadows

 r2 and leaves the hole wide open. A correct configuration

according to this specific SP could be a swap of the two

rules.

As shown by Chapman [18], safely configuring firewall

rules has never been an easy task. Since, firewall

configurations are low-level files, subject to special

configuration constraints in order to ensure an efficient

real

time processing by specific devices. Whereas, the security

policy SP , used to express global security requirements, is

Generally specified in high-level declarative language

easy

to understand. Hence, this makes verifying the

conformance of a firewall configuration FC to a security

policy SP a daunting task. Particularly, when it is to

analyze the impact of the inter-actions of a large number

of rules on the behavior of a firewall. Moreover, when

large enterprise deploy multiple firewalls to manage

internal traffic between private zones due to the growing

number of internal attacks, a packet from the same source

to the same destination may be examined by different sets

of firewalls.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 90

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

It is so even more difficult to check whether all these sets

of firewalls satisfy the end-to-end security policies of the

enterprise.

Several methods have been proposed [14], [2], [4], [1], [3],

 [24], [21] for the detection of inter-rule conflicts in FC.

These work are limited to the problem conflict avoidance,

and do not consider the more general problem of verifying

whether a firewall reacts correctly with respect to a given

SP. Solutions are studied in [11], [7], [16], [23], [13] for

the analysis of firewalls’ behavior. These methods require

some final user interactions by sending queries through a

verification tool. Such manual solutions can be tedious

when checking discrepancies with respect to complicated

security requirements. In [5],[12] and [10] the authors

address the problem of automatic verification by

providing automatic translation tool of the security

requirements (SP), specified in a high level language, into

a set of ordered filtering rules (i.e. a FC). Therefore, these

methods can handle the whole problem of conformance of

FC to SP, but the validity of the compilation itself has not

been proved. In particular, the FC rules obtained may be

in conflict. In our previous work [19], we proposed to

verify the correctness of a single firewall configuration

according to a given SP. In this paper, we consider the

more general and complex case by proposing an

automatic method for checking whether a distributed

firewall is well configured according to a global security

policy, given in an expressive enough declarative

language. Furthermore, the proposed method ensures

conflicts avoidance within the SP that we aim to establish

and returns key elements for the correction of flawed

firewall configurations. Our method has been

implemented as a prototype which can be used either in

order to validate an existing distributed FC with respect to

a given SP or downstream of a compiler of SP. It can also

be used in order to assist the updates of a distributed FC,

since some conflicts may be created by the addition or

deletion of filtering rules. The work of Liu and Gouda [17]

is similar to ours in spirit. However, their solution is

applied for one specific security property and considered

exactly one possible path from a source to a destination

zone. As shown above, it seems necessary to assume that

all paths are topologically possible for ensuring the

correctness of proposed algorithms. Besides that, routing

is designed to be adaptive to link failures and heavy load.

In addition, it is relatively easy to inject routing messages

[22]. In other hand, strengths compared to their work

consist on : First, proving the correctness and the

completeness of our method and second, giving key

elements with high level granularity to help the correction

of firewall mis-configurations which should be the main

and the concrete target of such study.

2. Security Policy

2.1 Formal Specification

A security policy (SP) is a finite set of security directives

defining whether packets are accepted or denied: SP =

{sdi ⇒ Ai |[ei] | 1 ≤ i ≤ n}. Each security directive can be

simple or complex. A simple directive {sdi ⇒ Ai}

describes whether some traffic destined to one or more

services that are required by one or more sources and

given by one or more destinations (as described by the

condition sdi) must be accepted or refused (according to

Ai ∈ {accept, deny}). A complex directive {sdi ⇒ Ai |ei}

is basically a simple directive with some additional

exceptions defined in ei . In our previous work [19], we

consider only one exception in our verification process.

The following examples are simple and complex

directives.

 The sub zone LAN'_A of LAN_A has not the right to access to

the FTP server located in LAN_B .
 The zone LAN_A has not the right to access to the zone

LAN_B . However, the machine A1 in LAN_A can access to

LAN_B and the sub zone LAN”_A has the right to access to the

FTP server located in LAN_B.
 The machine A2 in LAN_A has not the right to access to the sub

zone LAN'_B of LAN_B .

We note that LAN'_A and LAN”_A have a set M of

common machines. Figure 1 presents a formal definition

of the above security policy:

Fig 1. Formal Specification of a Security Policy.

Let we consider definition domain of SP, partitioned the

into dom(SP) = A∈ ∪{accept, deny} SPA. Each set SPA is

composed by a set of domains SPAi of security directives

concerning a specific flow from a source sr to a

destination dt: SPA = {SPAi (sr, dt) | 1 ≤ i ≤ l}. Each set

SPAi represents either the domain of a simple directive, if

the action of the corresponding condition is A, or the

domain of a complex directive’s exception, if its action is

Accept or else the difference between the domains of the

condition and the exceptions of a complex directive if its

main action is A. Formally, SPAi = {dom(sdi ⇒ Ai) \

[dom(ei))]||dom(ei => A); 1 ≤ j ≤ n}. In this case,

SPaccept = dom(e21) ∪ dom(e22) and SPdeny = dom(sd1) ∪

dom(sd2) \ dom(e21 , e22) ∪ dom(sd3). For the next

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 91

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

section, let we consider SDAi the security element whose

domain is SPAi . And let SDA be the set of such elements.

2.2 Fixing Security Policy Incoherencies

First, let we consider EltsA as the set of individual

elements in SP labeled by the action A. Formally, EltsA =

{sdi ⇒ Ai |ei }. For example, in the SP defined in previous

section , Eltsdeny = {sd1 , sd2 , sd3 } and Eltsaccept = {e21 ,

e22 }. Let Before_Ai be the set of elements in EltsA that

should have higher priority than that of eltAi . Once SP

specified in expressive enough language, our goal is to

certify that no contradictions exist within security

directives. To verify SP coherent, we should determine

whether SPaccept ∩ SPdeny = ϕ. In negative cases, this

means that there exists at least a couple of elements (eltAi ,

eltc
Ai) that impose each contradictory actions for common

packets involved in their effective domains. Let Conflict

be the set of such couples. In the security policy given as

example in section 2.1, we can note that the first two

directives are in conflict. Particularly, (eltdeny1 , eltaccept2).

Indeed, sd1 indicates that the sub zone LAN'A has not the

right to access FTP server. Whereas, the set M of

machines common to LAN'A and LAN”_A should be

authorized according to e22 . Once our method outputs

these results, the administrator should define which of

the elements should be considered by priority (ie. The

common machines M have or not the right to access FTP

server). For instance, if, in our example, the administrator

judges that this access should be prohibited then elt deny1

has higher priority than elt accept2. The set Before_Ai is so

expressed as follows:

Thus, each element SPAi of SPA is newly defined as

follows, SPAi = dom(eltAi) \ dom(Before_Ai). In our

case, SP accept = dom(e21) ∪ dom(e22) \ dom(sd1) and SP

deny = dom(sd1)∪dom(sd2)\(dom(e21)∪dom(e22)\

dom(sd1)) ∪ dom(sd3).

3. Conformance Properties

The main goal of this work consists of checking whether a

distributed FC is conform to a given SP. In this section,

we

define formally this notion. We consider a finite domain

P containing all the headers of packets possibly incoming

to or outgoing from a network. A simple firewall

configuration (Fn) is a finite sequence of filtering rules of

the form Fn = (ri ⇒ Ai)0≤i<m . Each precondition ri of a

rule defines a filter for packets of P. The structure of ri is

described later in Section 5. Until then, we just consider a

function dom mapping each ri into the subset of P of

filtered packets. Each right member Ai of a rule of FC is

an action defining the behavior of the firewall on filtered

packets: Ai ∈ {accept, deny}. If no filtering rule ri can be

considered for a specific packet, the default firewall

policy will be applied : def (Fn) ∈ {accept, deny}. This

model describes a generic form of FC which are used by

most firewall products such as CISCO, Access Control

List, IPTABLES, IPCHAINS and Check Point Firewall...

A Path(sr, dt) is an ordered set of firewalls through which

the traffic flow (sr → dt) could go across : Path(sr, dt) =

(Fi | 1 ≤ i ≤ N). Let [[Path(sr, dt)]] be the set of all

possible paths from sr to dt.

A distributed FC is conform to a SP if the action defined

 by SP for each packet p concerning a traffic from sr to dt

is really undertaken by the distributed firewall. Precisely,

we distinguish two cases:
 For each positive security rule SPAi, p should be

accepted whatever the path to cross. This implies that

p should be allowed by each firewall Fn belonging to

each path.

 For each restrictive security rule SPdi, p should be

Fig 2. Inference System for a SPai

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 92

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

denied whatever the path to cross. This implies that p

should be denied by at least one firewall Fn belonging

to each path.

Definition 1 (conformance property for Spai) : A

distributed F C is conform to SPai (sr, dt) iff ∀ p ∈

dom(SPai (sr, dt)), ∀Pa ∈ [[Path(sr, dt)]] and ∀Fn ∈

Pa, AFn (p) = accept.

Definition 2 (conformance property for Spdi) : A

distributed FC is conform to SPdi (sr, dt) iff ∀ p ∈

dom(SPdi (sr, dt)), ∀Pa ∈ [[Path(sr, dt)]], ∃ Fn ∈ Pa,

AFn (p) = deny.

AFn (p) represents the action undertaken by the firewall

Fn for a packet p. It is defined as follows: when def (Fn)

= deny, if there exists a rule ri ⇒ a in Fn such that p ∈

dom(ri) \ ∪ j<i dom(rj), AFn (p) = accept otherwise, AFn

(p) = deny.

Let Accn and Denn be respectivelly the set of accepted

and denied packets by Fn . Accn is defined in this case as

follows: Accn = ∪ i (dom(ri) \ ∪ j<i dom(rj)) with ri ⇒ a.

By analogy, when def (Fn) = accept, if there exists a rule

ri ⇒ d in Fn such that p ∈ dom(ri) \ ∪ j<i dom(rj), AFn (p)

= deny. Otherwise, AFn (p) = accept. Therefore, Denn is

defined as follows: Denn =∪ i (dom(ri) \∪ j<i dom(rj)) with

ri ⇒ d. And in each case, Accn and Denn are

complementary.

4. Inference Systems

We propose, in this section, necessary and sufficient

conditions for the verification of the conformance

property of a distributed FC to a SP. The conditions are

presented mainly as inference systems shown in Figure 2

and Figure 3. The first inference system in Figure 2

concerns each firewall Fn in all paths belonging to

[[Path(sr, dt)]], where sr and dst represent the source and

the destination fields of a positive security rule SPai . The

rules of the system in Figure 2 apply to triples (Fn , D,

Ddn) whose first component Fn is a sequence of filtering

rules and whose second and third

components ,respectively D and Ddn are subsets of P. D

represents the accumulation of the sets of packets filtered

by the rules of Fn processed so far. Ddn represents the sets

of packets considered by SPai and not filtered by the rules

of Fn labeled by positive actions.

We write C |-SP C’ : C’ is obtained from C by application

of one of the inference rules of Figure 2 and Figure 3

(note that C’ may be a triple as above or one of success or

fail) and we denote by |- SP * the reflexive and transitive

closure of |- SP.

recurcallan and recurcalldn are the main inference rules.

For the inference system in Figure 1, recurcalldn deals

with

the first filtering rule r ⇒ d of Fn given in the couple. The

condition for the application of recurcalldn is that the set

of packets dom(r) filtered by this rule and not handled by

the previous rules (i.e. not in D) would not intersect the

domain of SPai . The inference rule recurcallan deals with

the first filtering rule r ⇒ a of Fn given in the couple. The

condition for its application is that the default firewall

policy is deny. It results in excluding the effective part of

the rule r from the set Ddn . Hence, successful repeated

applications of recurcalldn and recurcallan ensure that the

Fn under consideration is conform to SPai. The successn

rule is applied under two conditions. First, recurcalldn

must have been used successfully until all filtering rules

have been processed (in this case the first component Fn

of the triple is empty). Second, the set Ddn should be

empty if the default firewall policy is deny. This latter

Fig 3. Inference System for a SPdi

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 93

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

condition ensures that all the packets accepted by the

security rule SPai are also handled by the firewall

configuration. There are two cases for the application of

failuren. In the first case, failuren is applied to a triple

(Fn , D, Ddn) where Fn is not empty. It means that

recurcalldn has failed on this triple and hence that the Fn

is not conform to SPai . In this case, failuren returns the

first filtering rule of Fn as an example of rule which is not

correct, in order to provide help to the user for correcting

the FC. In the second case, failuren is applied to (ϕ, D,

Dn). It means that successn has

 failed on this triple and that the Fn is not conform to Spai.

In this case, Ddn is returned and can be used in order to

identify packets accepted by the SP and not by the Fn .

The second inference system in Figure 3 concerns the

first firewall Fn for each path belonging to [[Path(sr, dt)]],

where sr and dst represent the source and the destination

fields of a restrictive security rule SPdi . The rules of the

system in Figure 3 apply to triples (Fn , D, Dan) whose

first component Fn is a sequence of filtering rules and

whose second and third components, respectively D and

Dan are subsets of P. Dan is initialized to ϕ if the default

policy of Fn is deny and to Dan−1. Otherwise, relatively to

the previous firewall number n − 1 belonging to the same

path. For this inference system, the inference rule

recurcallan deals with the first filtering rule r ⇒ a of Fn

given in the couple. The condition for the application of

recurcallan is that the default firewall policy is deny. It

results in accumulating the effective part of the rule r to

the set Dan . The next inference rule, recurcalldn deals

with the first filtering rule r ⇒ d of Fn given in the couple.

The condition for the application of recurcalldn is that the

default firewall policy is accept. It results in excluding the

effective part of the rule r from the set Dan. The successn

rule is applied when, first, recurcalldn and recurcallan

have been used successfully until all filtering rules have

been processed (in this case the first component Fn of the

triple is empty). And second, at least one the following

conditions holds:

 The set Dan is empty if the default firewall policy is

accept. This condition ensures that the packets

considered by SPdi but allowed by the (n − 1) previous

firewalls of the same path are totally denied by Fn.

 The intersection of the sets Dan and Dan−1 is empty if

the default policy of Fn is deny. This condition

guarantees that the packets considered by SPdi but

allowed by the (n − 1) previous firewalls of the same

path are not allowed by Fn.

The follown rule applies if the conditions of the successn

rule are not satisfied and the firewall Fn under

consideration is not the last in the path Pa. Applying this

rule updates the set Dan of accepted packets passed

through the n firewalls, although they should be denied

according to SPdi . The application of failuren is triggered

when, either, n = |Pa| and (R = Dan) = ϕ if the default Fn

policy is accept or (R = Dan ∩ Dan−1) = ϕ, otherwise.

The two cases mean that the set R of packets will be

allowed by the chain of firewalls composing the path Pa,

which dissent to SPdi . If this inference rule occurs, our

tool outputs the set R indicating the path Pa under

consideration to help the user to correct its configuration.

Let us now prove that the inference systems presented in

Figure 2 and Figure 3 are correct and complete. From

now on, we assume that SP is consistent. This implies

that ∀ i, ∀ j, SPdi ∩SPaj = ϕ.

 Thus, the theorems below deal with generic cases for

distinct security rules SPdi and SPai .

Theorem 1 (correctness): For a SPai (sr, dt), if ∀Pa ∈

[[Path(sr, dt)]] and ∀Fn ∈ Pa, such that (Fn , ∅,

dom(SPai)) |-*Spai success then the distributed firewall

configuration FC is conform to SPai .

Proof: If for a SPai (sr, dt), ∀Pa ∈ [[P ath(sr, dt)]] and ∀Fn

∈ Pa, (Fn , ∅, dom(SPai)) |- ∗ SPai success then we have two

cases: if def (Fn) = accept then for all p ∈ Spai, ∀ri ⇒ d, p

 dom(ri) \ ∪j<i dom(rj) through the condition of

recullcalldn . Hence, AFn (p) = accept. Second, if def (Fn)

= deny, then dom(SPai) \ ∪i (dom(ri) \ ∪j<i dom(rj)) = ∅.

by the application of recullcallan . In this case, for all p ∈

dom(SPai), there exists ri ⇒ a such that p ∈ dom(ri)\∪j<i

dom(rj). Hence, AFn (p) = accept. Therefore, the

distributed FC is conform to Spai.

Theorem 2: For a SPdi (sr, dt), if ∀Pa ∈ [[P ath(sr, dt)]]

,∃ n ∈ Pa, such that (Fn , ∅, Dan) |-∗ SPdi success then the

distributed firewall configuration FC is conform to SPdi.

Proof: For a SPdi (sr, dt), if ∀Pa ∈ [[P ath(sr, dt)]] and∃F

n ∈ Pa, such that (Fn , ∅, Dan) |-∗ SPdi success then Dan−1

\Denn = ∅ if def (Fn) = accept or Dan−1 ∩ Accn = ∅,

otherwise. This guarantees that the set of packets included

in Dan−1 are totally denied by Fn . Moreover, Dan−1 =

Dan−2 \Denn−1 if def (Fn) = accept or Dan−1 = Dan−2 ∩

Accn−1, otherwise. Thus, Dan−1 represents in the two cases,

the set of packets included in Dan−2 and denied by Fn−1 .

With Da0 = dom(SPdi), We can easily show by induction

on n that Dan−1 represents the set of packets belonging to

dom(SPdi) and not denied by any of the (n − 1) previous

firewalls. It implies that dom(SPdi) ⊆ ∪ (1 i n) Deni . It

follows that ∀p ∈ dom(SPdi), ∃Fn , such that AFn (p) =

deny. Hence, the distributed firewall is conform to SPdi .

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 94

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

Theorem 3: The distributed firewall configuration FC is

conform to SPai (sr, dt) iff ∀Pa ∈ [[Path(sr, dt)]] and

∀Fn ∈ Pa, (Fn , ∅, dom(SPai))|- SPai ∗ success.

Proof: The distributed firewall configuration FC is

conform to SPai (sr, dt) implies that ∀Pa ∈ [[P ath(sr,

dt)]], ∀F n ∈ Pa and ∀p ∈ P, we have p ∈ dom(SPai) and

p ∈ Accn . It implies that dom(SPai) \ Accn = ∅ if def (Fn

) = deny. And, ∀ri ⇒ d, dom(ri) \ ∪j<i dom(rj) ∩

dom(SPai) = ∅, otherwise. Hence, successful repeated

applications of recurcallan and recurcalldn rise to (Fn ,

∅, dom(SPai)) |- SPai * success.

Theorem 4: The distributed firewall configuration FC is

conform to SPdi (sr, dt) iff ∀Pa ∈ [[Path(sr, dt)]] ∃Fn ∈

Pa, such that (Fn , ∅, Dan) |-∗ SPdi success.

Proof: The distributed firewall configuration FC is

conform to SPdi (sr, dt) implies that ∀p ∈ dom(SPai), ∃Fn

∈ Pa such that p ∈ Denn . It implies that dom(SPdi) ⊆ ∪

(1  i  |<pa|) Deni . As shown in Theorem 2, this case is

occurred when (Fn , ∅, Dan) |-∗ SPdi success is reached.

 Theorem 5: If (Fn , D, Ddn) |-∗ SPai fail then the

distributed firewall configuration F C is not conform to

SPai .

Proof: Either we can apply iteratively the recurcallan and

recurcalldn rules starting with (Fn , ∅, SPai), until we

obtain (∅, ∪ j<n dom(rj), Ddn), or one application of the

recurcalldn rule fails. In the latter case, there exists (i <

n) ⇒ d such that dom(ri) \ ∪ j<i dom(rj) ∩ SPai = ∅.

Therefore, there exists p ∈ P such that p ∈ dom(ri) \ ∪j<i

dom(rj) and p ∈ SPai . It follows that FC is not conform

to the security policy SP . If (Fn , ∅, SPai) |-∗ SPai (∅, ∪

j<n dom(rj), Ddn) using recurcallan and recurcalldn but

the application of the successn rule to the last triple fails,

then there exists Ddn = ∅ if def (Fn) = deny. It means that

dom(SPai) \ Accn = ∅. It follows that ∃p ∈ P, such that p

∈ dom(SPai) and p  Accn . Hence, the distributed

firewall configuration FC is not conform to the security

policy Spai.

Theorem 6: If (Fn , D, Dan) |-SPdi* fail then the

distributed firewall configuration FC is conform to SPdi .

Proof: If (Fn , D, Dan) |- SPdi * fail then either Dan = ∅ or

Dan ∩ Dan−1 = ∅ with n = |Pa|. The two cases occur, as

shown in Theorem 2, if dom(SPdi)  ∪ (1 i n) Deni .

It follows that, ∃p ∈ dom(SPdi), such that , Fn with AFn

(p) = deny. Hence, the distributed firewall configuration

FC is not conform to the security policy SPdi. Since the

application of the inferences to (Fn , ∅, dom(SPdai) and

(Fn , ∅, Dan) of respectively the inference systems in

Figure 2 and Figure 3 always terminate, and the outcome

can only be success or fail, it follows immediately from

Theorem 1 and Theorem 2 that if the firewall

configuration FC is not conform to either SPai or SPdi ,

then (Fn , ∅, Dai) |- Spai ∗ fail (completeness of failure).

Fig 4. A Corporate Network

5. Automatic Verification Tool

Presenting the above Conformance Properties as

satisfiability problems permits the automation of the

verification of the conformance of a distributed FC to a

SP. For this purpose, we have used a recent satisfiability

solver modulo theories, Yices [6], in order to describe the

different inputs and to automate the verification process.

Yices provides different additional functions, compared to

simple satisfiability solvers. These functions are based on

theories like those of arrays, list structures and bit vectors.

The first input of our verification tool is a set of firewalls.

Each firewall is composed by a set of filtering rules. Each

rule is defined by a priority order and composed of the

following main fields: the source, the destination, the

protocol and the port. The source and destination fields

correspond to one or more machines identified by an IPv4

address and a mask coded both on 4 bytes, For example,

the following expression written in Yices syntax refers to

the third filtering rule concerning UDP or TCP flow,

coming from the source network 10.0.0.0/8 and reaching

the network 192.168.0.0/16 for a destination port

belonging to the subrange [20 − 60].

(define r :: (-> int bool))(assert (= (r 3) (and (= ips1

 10) (= ipd1 192) (= ipd2 168) (>= port 20)

 (<= port 60) (or (= protocol tcp) (= protocol udp))))).

In order to illustrate the proposed verification procedure,

we have chosen to apply our method to a case study of a

corporate network represented in Figure 4. The network is

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 95

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

divided into three zones delineated by branches of

firewalls F1 , F2 , F3 whose initial configurations FC

corresponds to the rules in figure 5 .

Fig 5. Distributed Firewall Configuration

The security policy SP that should be respected contains

the following directives.

sd 1 : The zone Z1 has not the right to access to The zone Z3 .

sd 2 : The zone Z3 has not the right to access to the SSH server

Z2.

sd 3 : The zone Z1 has the right to access to the TELNET

server Z'3 .

sd 4 : The zone Z3 has the right to access to the DNS server

Z“.2

sd 5 : The zone Z1 has the right to access to The zone Z2 ,

except to its SSH server Z'2 .

As defined in section 2 , [[Path(sr, dt)]] is the set of all

possible paths from a source sr to a destination dt. In this

case, we have :
 [[Path(Z1 , Z3)]] ::= {(F1), (F1 , F2 , F3)}

 [[Path(Z1 , Z2)]] ::= {(F1 , F2), (F1 , F3 , F2)}

 [[Path(Z3 , Z2)]] ::= {(F1 , F2), (F3 , F2)}

5.1 Security Policy Coherence

As previously mentioned, we should first check

whether the security policy is coherent. By implementing

our verification method using Yices, the satisfiability

result obtained is displayed in figure 6. The outcome

shows that SP is not coherent i.e. that the security

directives sd1 and sd3 have contradictory actions for

common packets.

Fig 6. Checking SP Coherence

Indeed, the zone Z1 has the right to access to the

TELNET server according to sd3. Whereas, sd1 denies

this access. To fix such incoherence, the administrator

could fix which

of the two elements has higher priority. For example, let

we consider that elt_deny1 has higher priority than

elt_accept1. In this case, sd1 could be replaced by a

complex directive as follows:
sd 1 : The zone Z1 has not the right to access to The zone Z3,

except to its TELNET server .

5.2 Conformance Verification of positive policies

Once ensured that SP is coherent, we proceed to the

verification of the conformance of the distributed FC to

each positive security rule. The first satisfiability result

obtained is displayed in figure 7. The outcome shows that

the distributed F C is not conform to SP . i.e. that some

packets that should be accepted according to spa2 are

denied by the second firewall of the first path of

[[Path(Z3 , Z2)]] which is F2. It indicates also, that no

rule is accepting this type of traffic. Therefore, these

packets are denied by the default firewall policy of F2

(deny). This conflict can be resolved by adding a rule at

the end of the F2 configuration to deploy SPa2.

Fig. 7 Automatic Verification of spa2

5.2 Conformance Verification of restrictive policies

After that the conformance property to positive policies

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 96

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

has been established, we proceed to the verification of the

distributed F C to the restrictive policies. We obtained the

satisfiability result displayed in Figure 8.

Fig. 8 Automatic Verification of spd2

According to this outcome, the distributed F C is not

conform according to SPa2 : There are some packets

handled by SPa2 that will be accepted by crossing the first

path (F1 , F2) until the firewall F2 . The outcome

indicates also that the second filtering rule of F2 is

accepting some packets previously allowed by F1 , which

is in conflict with the requirements of SPd2 . Indeed, the

rule F2 (2) implements totally the condition of SPd2 but

the action considered is accept. This conflict can be

resolved by changing the later by deny. We note that

YICES ensures the conformance of SPa1, SPd1 ,and SPd3.

Figure 9 presents a correct and complete distributed

configuration according to the defined SP .

Fig 9. A correct and complete distributed Configuration

5. Conclusion

In this paper, we propose a formal and automatic method

for verifying that a distributed firewall configuration is

conform to a security policy. Otherwise, the method

provides key information helping users to correct

configuration errors. Moreover, we also propose a

procedure for checking and fixing the coherence of a

security policy, which is a necessary condition for the

conformance verification. Finally, our method has been

implemented using the satisfiability solver modulo

theories Yices. The experimental results obtained are very

promising.

References
[1] T. Abbes, A. Bouhoula, and M. Rusinowitch. Inference

system for detecting firewall filtering rules anomalies. In

Proc. of the 23rd annual ACM Symp. on Applied Computing,

2008.

[2] E. Al-Shaer and H. Hamed. Firewall policy advisor for

anomaly detection and rule editing. In IEEE/IFIP Integrated

Management, IM’2003, 2003.

[3] E. Al-Shaer and H. Hamed. Discovery of policy anomalies in

distributed firewalls. In IEEE Infocomm, 2004.

[4] M. Benelbahri and A. Bouhoula. Tuple based approach for

anomalies detection within firewall filtering rules. In 12th

IEEE Symp. on Computers and Communications, 2007.

[5] F. Cupens, N. Cuppens-Boulahia, T. Sans, and A. Miege. A

formal approach to specify and deploy a network security

policy. In In Second Workshop on Formal Aspects in

Security and Trust, pages 203-218, 2004.

[6] B. Dutertre and L. Moura. The yices smt solver. Available at

http://yices.csl.sri.com/tool-paper.pdf, 2006.

[7] P. Eronen and J. Zitting. An expert system for analyzing

firewall rules. In Proc. of 6th Nordic Workshop on Secure IT

Systems, 2001.

[8] P. Gupta: Algorithms for Routing Lookups and Packet

Classification. PhD thesis, Stanford University, 2000.

[9] M. Gouda and A. X. Liu. Firewall design: consistency,

completeness and compactness. In In Proc. of the 24th IEEE

Int. Conf. on Distributed Computing Systems, 2004.

[10] H. Hamdi, M. Mosbah, and A. Bouhoula. A domain

specific language for securing distributed systems. In Second

Int. Conf. on Systems and Networks Communications, 2007.

[11] S. Hazelhusrt. Algorithms for analyzing firewall and router

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 97

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

access lists. TR, Univ. of the Witwatersrand, 1999.

[12] Y. Bartal, A. J. Mayer, K. Nissim, and A. Wool. Firmato: A

novel firewall management toolkit.. In IEEE Symposium on

Security and Privacy, 1999.

[13] A. X. Lui, M. Gouda, H. Ma, and A. Ngu. Firewall queries.

In Proc. of the 8th Int. Conf. on Principles of Distributed

Systems, pages 197-212, 2004.

[14] C. Pornavalai and T. Chomsiri. Firewall policy analyzing

by relational algebra. In The 2004 Int. Technical Conf. On

Circuits/Systems, Computers and Communications, 2004.

[15] A. Wool. A quantitative study of firewall configuration

errors. In IEEE Computer, 37(6), 2004.

[16] A. Mayer, A. Wool, and E. Ziskind. Fang: A firewall

analysis engine. In Proc. of the 2000 IEEE Symp. on

Security and Privacy, pages 14–17, 2000.

[17] M. Gouda , A. X. Liu and M. Jafry. Verification fo

Distributed Firewalls. In In Proc. of IEEE GlOBECOM,

2008.

[18] D. B.Chapman. Network (in) security hrough IP packet

filtering. In Proceedings of the Third Usenix Unix Security

Symposium, pages 63-76, 1992.

[19] N. Ben Youssef, A. Bouhoula and F. Jacquemard.

Automatic Verification of Conformance of Firewall

Configurations to Security Policies. In Proc. of the 14th

IEEE Symposium on Computers and Communications

(ISCC’09), 2009.

[20] SMT-COMP www.smtcomp.org.

[21] J.G. Alfaro, N. Bouhalia-cuppens and F. Cuppens.

Complete analysis of configuration rules to guarantee

reliable network security policies. In IEEE Symposium on

Security and Privacy, may 2006.

[22] W.R. Cheswick, S.M Bellovin and A.D. Rubin. Firewalls

and Internet Security: Repelling the Wily Hacker. Addition

Wesley, 2003.

[23] A. X. Liu and M. Gouda . Firewall Policy Queries. In

Proceeding of IEEE transactions on parallel and distributed

systems, 2009.

[24] L. Yuan, H. Chen, J. Mai, C.-N. Chuah, Z. Su and P.

Mohapatra. Fireman: a toolkit for firewall modeling and

analysis. In IEEE Symposium on Security and Privacy, may

2006.

Nihel Ben Youssef Ben Souayeh received in
2007 his engineering degree in computer
science from the National Institute of Applied
Science and Technology. and she received in
2008 his MS degree from the Higer School of
Communications of Tunis (Sup’Com). Nihel
Ben Youssef Ben Souayeh received his Ph.D.
degree in Information and Communication

Technology from Sup’Com in 2012 and his research interests
include network security, formal specification as well as formal
validation and verification techniques. Nihel Ben Youssef Ben
Souayeh works currently as assistant in the National Institute of
Applied Science and Technology. She teaches computer security and
software engineering. She is also member of Tunisian Association of
Digital Security (TADS).

Adel Bouhoula obtained his undergraduate degree

in computer engineering with distinction from the

University of Tunis in Tunisia. He also holds a

Masters, PhD and Habilitation from Henri Poincare

University in Nancy, France. Adel Bouhoula is

currently an Associate Professor at the SupCom

Engineering School of Telecommunications in

Tunisia. He is also the founder and Director of the Research Unit on

Digital Security and the President of the Tunisian Association of

Digital Security (TADS). His research interests include Automated

Reasoning, Algebraic specifications, Rewriting, Network Security,

Cryptography, and Validation of cryptographic protocols.

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012
ISSN (Online): 1694-0814
www.IJCSI.org 98

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.

