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Abstract 
When enterprises deploy multiple firewalls, a packet may be 

examined by different sets of firewalls.   It has been observed 

that the resulting complex firewall network is highly error prone 

and causes serious security holes. Hence, automated solutions 

are needed in order to check its correctness.  In this paper, we 

propose a formal and automatic method for checking whether 

multiple firewalls react correctly with respect to a security 

policy given in a high level declarative language. When errors 

are detected, some useful feedback is returned in order to 

correct the firewall configurations. Furthermore, we propose a 

priority-based approach to ensure that no incoherencies exist 

within the security policy.  We show that our method is both 

correct and complete. Finally, it has been implemented in a 

prototype of verifier based on a satisfiability solver modulo 

theories. Experiment conducted on relevant case studies 

demonstrates the efficiency of our approach. 

. 

Keywords: network security, distributed firewall configuration, 

formal verification, SMT solver. 

1. Introduction 

Firewalls are the most widely adopted technology for 

protecting private networks. Placed, generally, at the 

point of entry between public network and private 

network zones, a firewall ensures the access control of the 

forwarding traffic. However, according to the study 

undertaken by Wool [15], most firewalls in Internet are 

plagued with policy errors. The main firewall 

configuration constraint is that the filtering rules of a 

firewall configuration FC file are treated in the order in 

which they are read in the configuration file, in a switch-

case fashion. For instance, if two filtering rules associate 

different actions to the same flow type, then only rule with 

the lower order is really applied. This is in contrast with 

the security policy SP, which is a set of rules considered 

without order. In this case, the action taken, for the flow 

under consideration, can be the one of the non-executed 

rule. The following example illustrates how easily firewall 

mis-configurations can happen: 

 

Table 1: Firewall Configuration Error 

 src_adr dst adr protocol  dst_port action 

r1 
 

214.0.0.0/8  
 

* tcp * accept 

r2 214.65.0.0/16  
 

* tcp 445 deny 

 

The second rule is configured to deny all the outbound 

traffic to a known backdoor TCP port for the sasser worm 

Which is conform to a specific SP . But even if this rule is 

correct by itself, the firewall will accept this flow type 

because it matches the rule before. In this case, r1 

shadows 

 r2 and leaves the hole wide open. A correct configuration 

according to this specific SP could be a swap of the two 

rules. 

As shown by Chapman [18], safely configuring firewall 

rules has never been an easy task. Since, firewall 

configurations are low-level files, subject to special 

configuration constraints in order to ensure an efficient 

real 

time processing by specific devices. Whereas, the security 

policy SP , used to express global security requirements, is 

Generally specified in high-level declarative language 

easy 

to understand. Hence, this makes verifying the 

conformance of a firewall configuration FC to a security 

policy SP a daunting task. Particularly, when it is to 

analyze the impact of the inter-actions of a large number 

of rules on the behavior of a firewall. Moreover, when 

large enterprise deploy multiple firewalls to manage 

internal traffic between private zones due to the growing 

number of internal attacks,  a packet from the same source 

to the same destination may be examined by different sets 

of firewalls.  
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It is so even more difficult to check whether all these sets 

of firewalls satisfy the end-to-end security policies of the 

enterprise. 

Several methods have been proposed [14], [2], [4], [1], [3], 

 [24], [21] for the detection of inter-rule conflicts in FC. 

These work are limited to the problem conflict avoidance, 

and do not consider the more general problem of verifying 

whether a firewall reacts correctly with respect to a given 

SP. Solutions are studied in [11], [7], [16], [23], [13] for 

the analysis of firewalls’ behavior. These methods require 

some final user interactions by sending queries through a 

verification tool. Such manual solutions can be tedious 

when checking discrepancies with respect to complicated 

security requirements. In [5],[12] and [10] the authors 

address the problem of automatic verification by 

providing automatic translation tool of the security 

requirements (SP), specified in a high level language, into 

a set of ordered filtering rules (i.e. a FC). Therefore, these 

methods can handle the whole problem of conformance of 

FC to SP, but the validity of the compilation itself has not 

been proved. In particular, the FC rules obtained may be 

in conflict. In our previous work [19], we proposed to 

verify the correctness of a single firewall configuration 

according to a given SP. In this paper, we consider the 

more general and complex case by proposing an 

automatic method for checking whether a distributed 

firewall is well configured according to a global security 

policy, given in an expressive enough declarative 

language. Furthermore, the proposed method ensures 

conflicts avoidance within the SP that we aim to establish 

and returns key elements for the correction of flawed 

firewall configurations. Our method has been 

implemented as a prototype which can be used either in 

order to validate an existing distributed FC with respect to 

a given SP or downstream of a compiler of SP. It can also 

be used in order to assist the updates of a distributed FC, 

since some conflicts may be created by the addition or 

deletion of filtering rules. The work of Liu and Gouda [17] 

is similar to ours in spirit. However, their solution is 

applied for one specific security property and considered 

exactly one possible path from a source to a destination 

zone. As shown above, it seems necessary to assume that 

all paths are topologically possible for ensuring the 

correctness of proposed algorithms. Besides that, routing 

is designed to be adaptive to link failures and heavy load. 

In addition, it is relatively easy to inject routing messages 

[22]. In other hand, strengths compared to their work 

consist on : First, proving the correctness and the 

completeness of our method and second, giving key 

elements with high level granularity to help the correction 

of firewall mis-configurations which should be the main 

and the concrete target of such study. 

2. Security Policy 

2.1 Formal Specification 

A security policy (SP) is a finite set of security directives 

defining whether packets are accepted or denied: SP = 

{sdi ⇒ Ai |[ei ] | 1 ≤ i ≤ n}. Each security directive can be 

simple or complex. A simple directive {sdi ⇒ Ai} 

describes whether some traffic destined to one or more 

services that are required by one or more sources and 

given by one or more destinations (as described by the 

condition sdi ) must be accepted or refused (according to 

Ai ∈ {accept, deny}). A complex directive {sdi ⇒ Ai |ei} 

is basically a simple directive with some additional 

exceptions defined in ei . In our previous work [19], we 

consider only one exception in our verification process. 

The following examples are simple and complex 

directives. 

 

 The sub zone LAN'_A of LAN_A  has not the right to access to 

the FTP server located in LAN_B . 
 The zone LAN_A has not the right to access to the zone 

LAN_B . However, the machine A1 in LAN_A can access to 

LAN_B and the sub zone LAN”_A has the right to access to the 

FTP server located in LAN_B. 
 The machine A2 in LAN_A has not the right to access to the sub 

zone LAN'_B of LAN_B . 

 

 

We note that LAN'_A and LAN”_A have a set M of 

common machines. Figure 1 presents a formal definition 

of the above security policy: 

 

 

 

 

 

Fig 1. Formal Specification of a Security Policy. 

Let we consider definition domain of SP, partitioned the 

into dom(SP ) = A∈ ∪{accept, deny} SPA. Each set SPA  is 

composed by a set of domains SPAi  of  security directives 

concerning a specific flow from a source sr to a 

destination dt: SPA  = {SPAi  (sr, dt) | 1 ≤ i ≤ l}. Each set 

SPAi represents either the domain of a simple directive, if 

the action of the corresponding condition is A, or the 

domain of a complex directive’s exception, if its action  is 

Accept  or else the difference between the domains of the  

condition and the exceptions of a complex directive if its 

main action is A. Formally, SPAi  = {dom(sdi ⇒ Ai) \ 

[dom(ei))]||dom(ei => A); 1 ≤ j ≤ n}. In this case, 

SPaccept = dom(e21 ) ∪ dom(e22 ) and SPdeny = dom(sd1) ∪ 

dom(sd2) \ dom(e21 , e22 ) ∪ dom(sd3 ). For the next  
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section, let we consider SDAi  the security element whose 

domain is SPAi . And let SDA be the set of such elements. 

 

2.2  Fixing Security Policy Incoherencies 

First, let we consider EltsA as the set of individual 

elements in SP labeled by the action A. Formally,  EltsA = 

{sdi ⇒ Ai |ei }. For example, in the SP defined in previous  

section , Eltsdeny = {sd1 , sd2 , sd3 }  and Eltsaccept = {e21 , 

e22 }. Let Before_Ai be the set of  elements in EltsA that 

should have higher priority than that  of eltAi .  Once SP 

specified in expressive enough language, our goal is to 

certify that no contradictions exist within security 

directives. To verify SP coherent, we should determine 

whether SPaccept ∩ SPdeny =  ϕ. In negative cases, this 

means that there exists at least a couple of elements (eltAi , 

eltc 
Ai ) that impose each contradictory actions for common 

packets involved in their effective domains. Let Conflict 

be the set of such couples. In the security policy given as 

example in section 2.1, we can note that the first two 

directives are in conflict. Particularly, (eltdeny1 , eltaccept2). 

Indeed, sd1 indicates that the sub zone LAN'A has not the 

right to access FTP server. Whereas, the set M of 

machines common to LAN'A and LAN”_A  should be 

authorized  according to e22 . Once our method outputs 

these results,  the administrator should define which of 

the elements should be considered by priority (ie. The 

common machines M have or not the right to access FTP 

server). For instance, if, in our example, the administrator 

judges that this access should be prohibited then  elt deny1 

has higher priority than elt accept2. The set Before_Ai  is so 

expressed as follows: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Thus, each element SPAi  of SPA  is newly defined as 

follows, SPAi  = dom(eltAi ) \ dom(Before_Ai ). In our 

case, SP accept = dom(e21 ) ∪ dom(e22 ) \ dom(sd1 ) and SP 

deny = dom(sd1 )∪dom(sd2 )\(dom(e21 )∪dom(e22 )\ 

dom(sd1 )) ∪ dom(sd3 ). 

3. Conformance Properties 

The main goal of this work consists of checking whether a 

distributed FC is conform to a given SP. In this section, 

we  

define formally this notion.  We consider a finite domain 

P containing all the headers of packets possibly incoming 

to or outgoing from a network. A simple firewall 

configuration (Fn ) is a finite sequence of filtering rules of 

the form Fn = (ri ⇒ Ai )0≤i<m . Each  precondition ri of a 

rule defines a filter for packets of P. The structure of ri is 

described later in Section 5. Until then, we just consider a  

function dom mapping each ri into the subset of P of 

filtered packets. Each right member Ai of a rule of  FC is 

an action defining the behavior of the firewall on  filtered  

packets: Ai ∈ {accept, deny}. If no filtering rule ri  can be 

considered for a specific packet, the default firewall  

policy will be applied : def (Fn ) ∈ {accept, deny}. This  

model describes a generic form of FC which are used by  

most firewall products such as CISCO, Access Control 

List, IPTABLES, IPCHAINS and Check Point Firewall... 

A Path(sr, dt) is an ordered set of firewalls through which 

the traffic flow (sr → dt) could go across : Path(sr, dt) = 

(Fi | 1 ≤ i ≤ N ). Let [[Path(sr, dt)]] be the set of all 

possible paths from sr to dt. 

A distributed FC is conform to a SP if the action defined 

 by SP for each packet p concerning a traffic from sr to dt 

is really undertaken by the distributed firewall. Precisely, 

we distinguish two cases: 
 For each positive security rule SPAi, p should be 

accepted whatever the path to cross. This implies that 

p should be allowed by each firewall Fn belonging to 

each path. 

 For each restrictive security rule SPdi, p should be  

 

 

Fig 2. Inference System for a SPai 

IJCSI International Journal of Computer Science Issues, Vol. 9, Issue 3, No 2, May 2012 
ISSN (Online): 1694-0814 
www.IJCSI.org 92

Copyright (c) 2012 International Journal of Computer Science Issues. All Rights Reserved.



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

denied whatever the path to cross. This implies that p  

should be denied by at least one firewall Fn belonging  

to each path. 

 

Definition 1 (conformance property for Spai) : A  

distributed F C is conform to SPai (sr, dt) iff ∀ p ∈  

dom(SPai (sr, dt)), ∀Pa ∈  [[Path(sr, dt)]] and ∀Fn ∈   

Pa, AFn (p) = accept.  

Definition 2 (conformance property for Spdi) :  A 

distributed FC is conform to SPdi (sr, dt) iff ∀ p ∈  

dom(SPdi (sr, dt)), ∀Pa ∈  [[Path(sr, dt)]], ∃ Fn ∈  Pa, 

AFn (p) = deny. 

AFn (p) represents the action undertaken by the firewall  

Fn for a packet p. It is defined as follows: when def (Fn ) 

=  deny, if there exists a rule ri ⇒ a in Fn such that  p ∈  

dom(ri ) \ ∪ j<i dom(rj ), AFn (p) = accept otherwise,  AFn 

(p) = deny.  

Let Accn and Denn be respectivelly the set of accepted 

and denied packets by Fn . Accn is defined  in this case as 

follows: Accn = ∪ i (dom(ri ) \ ∪ j<i dom(rj )) with ri ⇒ a. 

By analogy, when def (Fn ) = accept, if there exists a rule 

ri ⇒ d in Fn such that p ∈  dom(ri ) \ ∪ j<i  dom(rj ), AFn (p) 

= deny. Otherwise, AFn (p) = accept. Therefore, Denn is 

defined as follows: Denn =∪ i (dom(ri) \∪ j<i dom(rj)) with 

ri ⇒ d. And in each case, Accn and Denn are 

complementary. 

4. Inference Systems 

We propose, in this section, necessary and sufficient 

conditions for the verification of the conformance 

property of a distributed FC to a SP. The conditions are 

presented mainly as inference systems shown in Figure 2 

and Figure 3.  The first inference system in Figure 2  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

concerns each firewall Fn in all paths belonging to 

[[Path(sr, dt)]], where sr and dst represent the source and 

the destination fields of a positive security rule SPai . The 

rules of the system in Figure 2 apply to triples (Fn , D, 

Ddn ) whose first component Fn is a sequence of filtering 

rules and whose second and third 

components ,respectively D and Ddn are subsets of P. D 

represents the accumulation of the sets of packets filtered 

by the rules of Fn processed so far.  Ddn represents the sets 

of packets considered by SPai and  not filtered by the rules 

of Fn labeled by positive actions. 

We write C |-SP C’ : C’ is obtained from C by  application 

of one of the inference rules of Figure 2 and  Figure 3 

(note that C’ may be a triple as above or one of success or  

fail) and we denote by |- SP * the reflexive and  transitive 

closure of  |- SP. 

recurcallan and recurcalldn are the main inference rules. 

For the inference system in Figure 1, recurcalldn deals 

with 

the first filtering rule r ⇒ d of Fn given in the couple. The 

condition for the application of recurcalldn is that the set  

of packets dom(r) filtered by this rule and not handled by 

the previous rules (i.e. not in D) would not intersect the 

domain of SPai . The inference rule recurcallan deals with 

the first filtering rule r ⇒ a of Fn given in the couple. The 

condition for its application is that the default firewall 

policy is deny. It results in excluding the effective part of 

the rule r from the set Ddn . Hence, successful repeated 

applications of recurcalldn and recurcallan ensure that the 

Fn under consideration is conform to SPai. The successn 

rule is applied under two conditions. First,  recurcalldn 

must have been used successfully until all filtering rules 

have been processed (in this case the first component Fn 

of the triple is empty). Second, the set Ddn should be 

empty if the default firewall policy is deny. This  latter 

 

Fig 3. Inference System for a SPdi 
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condition ensures that all the packets accepted by the  

security rule SPai are also handled by the firewall 

configuration. There are two cases for the application of 

failuren.  In the first case, failuren is applied to a triple 

(Fn , D, Ddn ) where Fn is not empty. It means that 

recurcalldn has failed on this triple and hence that the Fn 

is not conform to SPai . In this case, failuren returns the 

first filtering rule of Fn as an example of rule which is not 

correct, in order to provide help to the user for correcting 

the FC. In the second case, failuren is applied to (ϕ, D, 

Dn ). It means that successn has 

 failed on this triple and that the Fn is not conform to Spai. 

In this case, Ddn is returned and can be used in order to  

identify packets accepted by the SP and not by the Fn . 

The second inference system in Figure 3 concerns the  

first firewall Fn for each path belonging to [[Path(sr, dt)]], 

where sr and dst represent the source and the destination 

fields of a restrictive security rule SPdi . The rules of the 

system in Figure 3 apply to triples (Fn , D, Dan ) whose 

first component Fn is a sequence of filtering rules and 

whose second and third components, respectively D and 

Dan are subsets of P. Dan is initialized to ϕ if the default 

policy of  Fn is deny and to Dan−1. Otherwise, relatively to 

the previous firewall number n − 1 belonging to the same 

path. For this inference system, the inference rule 

recurcallan deals with the first filtering rule r ⇒ a of Fn 

given in the couple. The condition for the application of 

recurcallan is that the default firewall policy is deny. It 

results in accumulating the effective part of the rule r to 

the set Dan . The next inference rule, recurcalldn deals 

with the first filtering rule r ⇒ d of Fn given in the couple. 

The condition for the application of recurcalldn is that the 

default firewall policy is accept. It results in excluding the 

effective part of the rule r from the set Dan. The successn 

rule is applied when, first, recurcalldn and recurcallan 

have been used successfully until all filtering rules have 

been processed (in this case the first component Fn of the 

triple is empty). And second, at least one the following 

conditions holds: 

 
 The set Dan is empty if the default firewall policy is 

accept. This condition ensures that the packets 

considered by SPdi but allowed by the (n − 1) previous 

firewalls of the same path are totally denied by Fn. 

 

 
 The intersection of the sets Dan and Dan−1 is empty  if 

the default policy of Fn is deny. This condition 

guarantees that the packets considered by SPdi but 

allowed by the (n − 1) previous firewalls of the same 

path are not allowed by Fn. 

 

The follown rule applies if the conditions of the successn 

rule are not satisfied and the firewall Fn under 

consideration is not the last in the path Pa. Applying this 

rule updates the set Dan of accepted packets passed 

through the n firewalls, although they should be denied 

according to SPdi . The application of failuren is triggered 

when, either, n = |Pa| and (R = Dan ) = ϕ if the default Fn 

policy is accept or  (R = Dan ∩ Dan−1 ) = ϕ, otherwise. 

The two cases mean that the set R of packets will be 

allowed by the chain of firewalls composing the path  Pa, 

which dissent to SPdi . If this inference rule occurs, our 

tool outputs the set R indicating the path Pa under 

consideration to help the user to correct its configuration. 

Let us now prove that the inference systems presented in 

Figure 2 and Figure 3 are correct and complete. From 

now on, we assume that  SP is consistent. This implies 

that ∀ i, ∀ j, SPdi ∩SPaj = ϕ. 

  Thus, the theorems below deal with generic cases for 

distinct  security  rules SPdi and SPai . 

 

Theorem 1 (correctness):  For  a  SPai (sr, dt), if  ∀Pa ∈ 

[[Path(sr, dt)]] and ∀Fn  ∈  Pa, such that  (Fn , ∅, 

dom(SPai )) |-*Spai   success then the distributed firewall 

configuration FC is conform to SPai . 

 

Proof: If for a SPai (sr, dt), ∀Pa ∈ [[P ath(sr, dt)]] and ∀Fn 

∈ Pa, (Fn , ∅, dom(SPai )) |- ∗ SPai success then we have two 

cases: if def (Fn ) = accept then for all p ∈ Spai, ∀ri ⇒ d, p 

 dom(ri ) \ ∪j<i dom(rj ) through the condition of 

recullcalldn . Hence,  AFn (p) = accept. Second, if def (Fn ) 

= deny, then dom(SPai ) \ ∪i (dom(ri ) \ ∪j<i dom(rj )) = ∅. 

by the application of recullcallan . In this case, for all p ∈ 

dom(SPai ), there exists ri ⇒ a such that p ∈ dom(ri )\∪j<i 

dom(rj). Hence, AFn (p) = accept. Therefore, the 

distributed FC is conform to Spai.  

 

Theorem 2: For a SPdi (sr, dt), if ∀Pa ∈ [[P ath(sr, dt)]] 

,∃ n ∈ Pa, such that (Fn , ∅, Dan ) |-∗ SPdi  success then the 

distributed firewall configuration FC is conform to SPdi. 

 

Proof: For a SPdi (sr, dt), if ∀Pa ∈ [[P ath(sr, dt)]] and∃F 

n ∈ Pa, such that (Fn , ∅, Dan ) |-∗ SPdi  success then Dan−1 

\Denn = ∅ if def (Fn ) = accept or Dan−1 ∩ Accn = ∅, 

otherwise. This guarantees that the set of packets included 

in Dan−1 are totally denied by Fn . Moreover, Dan−1 = 

Dan−2 \Denn−1 if def (Fn ) = accept or Dan−1 = Dan−2 ∩ 

Accn−1, otherwise. Thus, Dan−1 represents in the two cases, 

the set of packets included in Dan−2 and denied by Fn−1 . 

With Da0 = dom(SPdi ), We can easily show by induction 

on n that Dan−1 represents the set of packets belonging to  

dom(SPdi ) and not denied by any of the (n − 1) previous 

firewalls. It implies that dom(SPdi ) ⊆ ∪ (1  i  n) Deni . It 

follows that  ∀p  ∈ dom(SPdi ), ∃Fn , such that AFn (p) = 

deny.  Hence, the distributed firewall is conform to SPdi . 
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Theorem 3: The distributed  firewall configuration FC  is 

conform  to SPai (sr, dt) iff  ∀Pa ∈ [[Path(sr, dt)]] and 

∀Fn ∈ Pa, (Fn , ∅, dom(SPai ))|- SPai ∗  success. 

 

Proof: The distributed firewall configuration FC is 

conform to SPai (sr, dt) implies that ∀Pa ∈ [[P ath(sr, 

dt)]], ∀F n ∈ Pa and ∀p ∈ P, we have p ∈ dom(SPai ) and 

p ∈ Accn . It implies that dom(SPai ) \ Accn = ∅ if def (Fn 

) = deny. And, ∀ri ⇒ d, dom(ri ) \ ∪j<i dom(rj ) ∩ 

dom(SPai ) = ∅, otherwise. Hence, successful repeated 

applications of recurcallan and recurcalldn rise to (Fn , 

∅, dom(SPai )) |- SPai * success. 

 

Theorem 4: The distributed  firewall configuration  FC is 

conform to SPdi (sr, dt) iff ∀Pa ∈ [[Path(sr, dt)]] ∃Fn ∈ 

Pa, such that (Fn , ∅, Dan ) |-∗ SPdi success. 

 

Proof: The distributed firewall configuration FC is 

conform to SPdi (sr, dt) implies that ∀p ∈ dom(SPai ), ∃Fn 

∈ Pa such that p ∈ Denn . It implies that dom(SPdi ) ⊆ ∪ 

(1   i   |<pa|) Deni . As shown in Theorem 2,  this case is 

occurred when (Fn , ∅, Dan ) |-∗ SPdi success is reached. 

 

 Theorem 5: If (Fn , D, Ddn ) |-∗ SPai fail then the 

distributed firewall configuration F C is not conform to 

SPai . 

Proof: Either we can apply iteratively the recurcallan and 

recurcalldn rules starting with (Fn , ∅, SPai ), until we 

obtain (∅, ∪ j<n dom(rj ), Ddn ), or one application of the  

recurcalldn rule fails. In the latter case, there exists (i < 

n) ⇒ d such that dom(ri ) \ ∪ j<i dom(rj ) ∩ SPai = ∅. 

Therefore, there exists p ∈ P such that p ∈ dom(ri ) \ ∪j<i 

dom(rj ) and p ∈ SPai . It follows that FC is not conform 

to the security policy SP .  If (Fn , ∅, SPai ) |-∗ SPai (∅, ∪ 

j<n dom(rj ), Ddn ) using recurcallan and recurcalldn but 

the application of the successn rule to the last triple fails, 

then there exists Ddn = ∅ if def (Fn) = deny. It means that 

dom(SPai ) \ Accn = ∅. It follows that ∃p ∈ P, such that p 

∈ dom(SPai ) and p   Accn . Hence, the distributed 

firewall configuration FC is not conform to the security 

policy Spai. 

Theorem 6: If (Fn , D, Dan ) |-SPdi* fail then the 

distributed firewall configuration FC is conform to SPdi . 

 

Proof: If (Fn , D, Dan ) |- SPdi * fail then either Dan = ∅  or 

Dan ∩ Dan−1 = ∅ with n = |Pa|. The two cases occur, as 

shown in Theorem 2, if dom(SPdi )   ∪ (1  i  n) Deni . 

It follows that, ∃p ∈ dom(SPdi ), such that , Fn with AFn 

(p) = deny. Hence, the distributed firewall configuration 

FC is not conform to the security policy SPdi. Since the 

application of the inferences to  (Fn , ∅, dom(SPdai ) and 

(Fn , ∅, Dan ) of respectively the inference systems in 

Figure 2 and Figure 3 always  terminate, and the outcome 

can only be success or fail,  it  follows immediately from 

Theorem 1 and Theorem 2 that if the firewall 

configuration FC is not conform to either SPai or SPdi , 

then (Fn , ∅, Dai ) |- Spai ∗ fail (completeness of failure). 

 

Fig 4. A Corporate Network 

5. Automatic Verification Tool 

Presenting the above Conformance Properties as 

satisfiability problems permits the automation of the 

verification of the conformance of a distributed FC to a 

SP. For this purpose, we have used a recent satisfiability  

solver modulo theories, Yices [6], in order to describe the 

different inputs and to automate the verification process. 

Yices provides different additional functions, compared to 

simple satisfiability solvers. These functions are based on 

theories like those of arrays, list structures and bit vectors. 

The first input of our verification tool is a set of firewalls. 

Each firewall is composed by a set of filtering rules.  Each 

rule is defined by a priority order and composed of  the 

following main fields: the source, the destination, the  

protocol and the port. The source and destination fields 

correspond to one or more machines identified by an IPv4 

address and a mask coded both on 4 bytes, For example, 

the following expression written in Yices syntax refers to 

the third filtering rule concerning UDP or TCP flow, 

coming from the source network 10.0.0.0/8 and reaching 

the network 192.168.0.0/16 for a destination port 

belonging to the subrange [20 − 60]. 

 
(define r :: (-> int bool))(assert (= (r 3) (and (= ips1 

 10) (= ipd1 192) (= ipd2 168) (>= port 20) 

 (<= port 60) (or (= protocol tcp) (= protocol udp))))). 

 

In order to illustrate the proposed  verification procedure, 

we have chosen to apply our method to a case study of a 

corporate network represented in Figure 4. The network is 
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divided into three zones delineated by branches of 

firewalls F1 , F2 , F3 whose initial configurations FC 

corresponds to  the rules in  figure 5 . 

Fig 5. Distributed Firewall Configuration 

The security policy SP that should be respected contains 

the following directives. 

 
sd 1 : The zone Z1 has not the right to access to The zone Z3 . 

sd 2 : The zone Z3 has not the right to access to the SSH server 

Z2. 

sd 3 : The zone Z1 has  the right to access to the TELNET 

server Z'3 . 

sd 4 : The zone Z3 has the right to access to the DNS server 

Z“.2 

sd 5 : The zone Z1 has the right to access to The zone Z2 , 

except to its SSH server Z'2 . 

 

As defined in section 2 , [[Path(sr, dt)]] is the set of all  

possible paths from a source sr to a destination dt. In this  

case, we have : 
         [[Path(Z1 , Z3 )]] ::= {(F1 ), (F1 , F2 , F3 )} 

        [[Path(Z1 , Z2 )]] ::= {(F1 , F2 ), (F1 , F3 , F2 )} 

       [[Path(Z3 , Z2 )]] ::= {(F1 , F2 ), (F3 , F2 )} 

 

5.1 Security Policy Coherence 

As previously mentioned,  we should first check 

whether the security policy is coherent. By implementing 

our verification method using Yices, the  satisfiability 

result obtained is displayed in figure 6. The outcome 

shows that SP is not coherent i.e. that the security 

directives sd1 and sd3 have contradictory actions for 

common packets.  

 

 

 

Fig 6. Checking SP Coherence 

Indeed, the zone Z1 has the right to access to the 

TELNET server according to sd3. Whereas,  sd1 denies 

this access. To fix such incoherence, the administrator 

could fix which 

of the two elements has higher priority.  For example, let 

we consider that elt_deny1 has higher priority than 

elt_accept1. In this case, sd1 could be replaced by a 

complex directive as follows: 
sd 1 : The zone Z1 has not the right to access to The zone Z3, 

except to its TELNET server . 

5.2 Conformance Verification of positive policies 

Once ensured that SP is coherent, we proceed to the 

verification of the conformance of the distributed FC to 

each positive security rule. The first satisfiability result 

obtained is displayed in figure 7.  The outcome shows that 

the distributed F C is not conform to SP . i.e. that some 

packets that should be accepted according to spa2 are 

denied by the second firewall of the first path of  

[[Path(Z3 , Z2 )]] which is F2. It indicates also, that no 

rule is accepting this  type of traffic. Therefore, these 

packets are denied by the  default firewall policy of F2 

(deny). This conflict can be resolved by adding a rule at 

the end of the F2 configuration to deploy  SPa2.  

 

 

Fig. 7  Automatic Verification of spa2 

5.2 Conformance Verification of restrictive policies 

After that the conformance property to positive policies 
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has been established, we proceed to the verification of the 

distributed F C to the restrictive policies. We obtained the 

satisfiability result displayed in Figure 8. 

 

Fig. 8  Automatic Verification of spd2 

According to this outcome, the distributed F C is not 

conform according to SPa2 : There are some packets  

handled by SPa2 that will be accepted by crossing the first  

path (F1 , F2 ) until the firewall F2 . The outcome 

indicates also that the second filtering rule of F2 is 

accepting some packets previously  allowed by F1 , which 

is in conflict with the requirements of SPd2 . Indeed, the 

rule F2 (2) implements totally the condition of SPd2 but 

the action considered is accept. This conflict can be 

resolved by changing the later  by deny. We note that 

YICES ensures the conformance of SPa1, SPd1 ,and SPd3. 

Figure 9 presents a correct and complete distributed 

configuration according to the defined SP . 

 

 

Fig 9. A correct and complete distributed Configuration 

5. Conclusion  

In this paper, we propose a formal and automatic method 

for verifying that a distributed firewall configuration is 

conform to a security policy. Otherwise, the method 

provides key information helping users to correct 

configuration errors. Moreover, we also propose a 

procedure for checking and fixing the coherence of a 

security policy, which is a necessary condition for the 

conformance verification. Finally, our method has been 

implemented using the satisfiability solver modulo 

theories Yices. The experimental results obtained are very 

promising.  
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